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One of the oldest problems in linguistics is reconstructing the
words that appeared in the protolanguages from which modern
languages evolved. Identifying the forms of these ancient lan-
guages makes it possible to evaluate proposals about the nature
of language change and to draw inferences about human history.
Protolanguages are typically reconstructed using a painstaking
manual process known as the comparative method. We present a
family of probabilistic models of sound change as well as algo-
rithms for performing inference in these models. The resulting
system automatically and accurately reconstructs protolanguages
from modern languages. We apply this system to 637 Austronesian
languages, providing an accurate, large-scale automatic reconstruc-
tion of a set of protolanguages. Over 85% of the system'’s recon-
structions are within one character of the manual reconstruction
provided by a linguist specializing in Austronesian languages. Be-
ing able to automatically reconstruct large numbers of languages
provides a useful way to quantitatively explore hypotheses about the
factors determining which sounds in a language are likely to change
over time. We demonstrate this by showing that the reconstructed
Austronesian protolanguages provide compelling support for a hy-
pothesis about the relationship between the function of a sound
and its probability of changing that was first proposed in 1955.
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Reconstruction of the protolanguages from which modern lan-
guages are descended is a difficult problem, occupying histor-
ical linguists since the late 18th century. To solve this problem
linguists have developed a labor-intensive manual procedure called
the comparative method (1), drawing on information about the
sounds and words that appear in many modern languages to hy-
pothesize protolanguage reconstructions even when no written
records are available, opening one of the few possible windows
to prehistoric societies (2, 3). Reconstructions can help in un-
derstanding many aspects of our past, such as the technological
level (2), migration patterns (4), and scripts (2, 5) of early societies.
Comparing reconstructions across many languages can help reveal
the nature of language change itself, identifying which aspects
of language are most likely to change over time, a long-standing
question in historical linguistics (6, 7).

In many cases, direct evidence of the form of protolanguages is
not available. Fortunately, owing to the world’s considerable lin-
guistic diversity, it is still possible to propose reconstructions by
leveraging a large collection of extant languages descended from a
single protolanguage. Words that appear in these modern lan-
guages can be organized into cognate sets that contain words sus-
pected to have a shared ancestral form (Table 1). The key
observation that makes reconstruction from these data possible is
that languages seem to undergo a relatively limited set of regular
sound changes, each applied to the entire vocabulary of a language
at specific stages of its history (1). Still, several factors make re-
construction a hard problem. For example, sound changes are often
context sensitive, and many are string insertions and deletions.

In this paper, we present an automated system capable of
large-scale reconstruction of protolanguages directly from words
that appear in modern languages. This system is based on a
probabilistic model of sound change at the level of phonemes,
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building on work on the reconstruction of ancestral sequences
and alignment in computational biology (8-12). Several groups
have recently explored how methods from computational biology
can be applied to problems in historical linguistics, but such work
has focused on identifying the relationships between languages
(as might be expressed in a phylogeny) rather than reconstructing
the languages themselves (13-18). Much of this type of work has
been based on binary cognate or structural matrices (19, 20), which
discard all information about the form that words take, simply in-
dicating whether they are cognate. Such models did not have the
goal of reconstructing protolanguages and consequently use a rep-
resentation that lacks the resolution required to infer ancestral
phonetic sequences. Using phonological representations allows us
to perform reconstruction and does not require us to assume that
cognate sets have been fully resolved as a preprocessing step. Rep-
resenting the words at each point in a phylogeny and having a model
of how they change give a way of comparing different hypothesized
cognate sets and hence inferring cognate sets automatically.

The focus on problems other than reconstruction in previous
computational approaches has meant that almost all existing
protolanguage reconstructions have been done manually. How-
ever, to obtain more accurate reconstructions for older languages,
large numbers of modern languages need to be analyzed. The
Proto-Austronesian language, for instance, has over 1,200 de-
scendant languages (21). All of these languages could potentially
increase the quality of the reconstructions, but the number of
possibilities increases considerably with each language, making it
difficult to analyze a large number of languages simultaneously.
The few previous systems for automated reconstruction of pro-
tolanguages or cognate inference (22-24) were unable to handle
this increase in computational complexity, as they relied on de-
terministic models of sound change and exact but intractable
algorithms for reconstruction.

Being able to reconstruct large numbers of languages also
makes it possible to provide quantitative answers to questions
about the factors that are involved in language change. We dem-
onstrate the potential for automated reconstruction to lead to
novel results in historical linguistics by investigating a specific
hypothesized regularity in sound changes called functional load.
The functional load hypothesis, introduced in 1955, asserts that
sounds that play a more important role in distinguishing words are
less likely to change over time (6). Our probabilistic reconstruction
of hundreds of protolanguages in the Austronesian phylogeny
provides a way to explore this question quantitatively, producing
compelling evidence in favor of the functional load hypothesis.
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Table 1. Sample of reconstructions produced by the system
Known Modern Languages Reconstructed Ancestors*

Glosst Fijian Pazeh Melanau  Inabaknon  Manual Automated Al
star kalokalo® mintol biten bitu’on *bitugen *bitugen 0
to hold taura maira? magem kumkom *gemgem  *gemgem 0
house vale xuma? lebu? ruma *rumaq *Rumaq 0
bird manumanu  aiam manuk manok *qayam *qayam 0
to cut, hack tata tartatak  tutek hadhad *taraq *taraq 0
at e - ga? - * i 0
what? cava ?axai ua? inew  ay *nanu *anu 1
this 0oqo ?imini itew *ini *ani 1
wind cagi varo panay bariyo *bali *beliu 2

*Complete sets of reconstructions can be found in SI Appendix.
TRandomly selected by stratified sampling according to the Levenshtein edit distance A.
*Levenshtein distance to a reference manual reconstruction, in this case the reconstruction of Blust (42).

5The colors encode cognate sets.
YWe use this symbol for encoding missing data.

Model

We use a probabilistic model of sound change and a Monte Carlo
inference algorithm to reconstruct the lexicon and phonology of
protolanguages given a collection of cognate sets from modern
languages. As in other recent work in computational historical
linguistics (13-18), we make the simplifying assumption that each
word evolves along the branches of a tree of languages, reflecting
the languages’ phylogenetic relationships. The tree’s internal
nodes are languages whose word forms are not observed, and the
leaves are modern languages. The output of our system is a pos-
terior probability distribution over derivations. Each derivation
contains, for each cognate set, a reconstructed transcription of
ancestral forms, as well as a list of sound changes describing the
transformation from parent word to child word. This represen-
tation is rich enough to answer a wide range of queries that would
normally be answered by carrying out the comparative method
manually, such as which sound changes were most prominent
along each branch of the tree.

We model the evolution of discrete sequences of phonemes,
using a context-dependent probabilistic string transducer (8).
Probabilistic string transducers efficiently encode a distribution
over possible changes that a string might undergo as it changes
through time. Transducers are sufficient to capture most types of
regular sound changes (e.g., lenitions, epentheses, and elisions) and
can be sensitive to the context in which a change takes place. Most
types of changes not captured by transducers are not regular (1) and
are therefore less informative (e.g., metatheses, reduplications, and
haplologies). Unlike simple molecular InDel models used in com-
putational biology such as the TKF91 model (25), the parameter-
ization of our model is very expressive: Mutation probabilities are
context sensitive, depending on the neighboring characters, and
each branch has its own set of parameters. This context-sensitive
and branch-specific parameterization plays a central role in our
system, allowing explicit modeling of sound changes.

Formally, let 7 be a phylogenetic tree of languages, where each
language is linked to the languages that descended from it. In
such a tree, the modern languages, whose word forms will be
observed, are the leaves of 7. The most recent common ancestor
of these modern languages is the root of 7. Internal nodes of the
tree (including the root) are protolanguages with unobserved
word forms. Let L denote all languages, modern and otherwise.
All word forms are assumed to be strings in the International
Phonetic Alphabet (IPA).

We assume that word forms evolve along the branches of the
tree 7. However, it is usually not the case that a word belonging
to each cognate set exists in each modern language—words are
lost or replaced over time, meaning that words that appear in the
root languages may not have cognate descendants in the lan-
guages at the leaves of the tree. For the moment, we assume there
is a known list of C cognate sets. For eachce {1,...,C} let L(c)
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denote the subset of modern languages that have a word form in
the cth cognate set. For eachsetc € {1, ..., C} and each language
¢€ L(c), we denote the modern word form by w,,. For cognate set
¢, only the minimal subtree z(c) containing L(c) and the root is
relevant to the reconstruction inference problem for that set.

Our model of sound change is based on a generative process
defined on this tree. From a high-level perspective, the genera-
tive process is quite simple. Let ¢ be the index of the current
cognate set, with topology z(c). First, a word is generated for the
root of z(c), using an (initially unknown) root language model
(i.e., a probability distribution over strings). The words that ap-
pear at other nodes of the tree are generated incrementally, using
a branch-specific distribution over changes in strings to generate
each word from the word in the language that is its parent in z(c).
Although this distribution differs across branches of the tree,
making it possible to estimate the pattern of changes involved in
the transition from one language to another, it remains the same
for all cognate sets, expressing changes that apply stochastically
to all words. The probabilities of substitution, insertion and de-
letion are also dependent on the context in which the change
occurs. Further details of the distributions that were used and
their parameterization appear in Materials and Methods.

The flexibility of our model comes at the cost of having literally
millions of parameters to set, creating challenges not found in
most computational approaches to phylogenetics. Our inference
algorithm learns these parameters automatically, using estab-
lished principles from machine learning and statistics. Specifi-
cally, we use a variant of the expectation-maximization algorithm
(26), which alternates between producing reconstructions on the
basis of the current parameter estimates and updating the pa-
rameter estimates on the basis of those reconstructions. The
reconstructions are inferred using an efficient Monte Carlo in-
ference algorithm (27). The parameters are estimated by opti-
mizing a cost function that penalizes complexity, allowing us to
obtain robust estimates of large numbers of parameters. See S/
Appendix, Section 1 for further details of the inference algorithm.

If cognate assignments are not available, our system can be
applied just to lists of words in different languages. In this case it
automatically infers the cognate assignments as well as the
reconstructions. This setting requires only two modifications to
the model. First, because cognates are not available, we index the
words by their semantic meaning (or gloss) g, and there are thus
G groups of words. The model is then defined as in the previous
case, with words indexed as wg. Second, the generation process is
augmented with a notion of innovation, wherein a word wy, in
some language ¢’ may instead be generated independently from
its parent word wg,. In this instance, the word is generated from
a language model as though it were a root string. In effect, the
tree is “cut” at a language when innovation happens, and so the
word begins anew. The probability of innovation in any given
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Fig. 1. Quantitative validation of
reconstructions and identification
of some important factors influ-
encing reconstruction quality. (A) 0500
Reconstruction error rates for a
baseline (which consists of picking
one modern word at random), our
system, and the amount of dis-
agreement between two linguist’s
manual reconstructions. Reconstruc-
tion error rates are Levenshtein
distances normalized by the mean
word form length so that errors
can be compared across languages.
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Agreement between linguists was computed on only Proto-Oceanic because the dataset used lacked multiple reconstructions for other protolanguages. (B) The
effect of the topology on the quality of the reconstruction. On one hand, the difference between reconstruction error rates obtained from the system that ran
on an uninformed topology (first and second) and rates obtained from the system that ran on an informed topology (third and fourth) is statistically significant.
On the other hand, the corresponding difference between a flat tree and a random binary tree is not statistically significant, nor is the difference between using
the consensus tree of ref. 41 and the Ethnologue tree (29). This suggests that our method has a certain robustness to moderate topology variations. (C) Re-
construction error rate as a function of the number of languages used to train our automatic reconstruction system. Note that the error is not expected to
go down to zero, perfect reconstruction being generally unidentifiable. The results in A and B are directly comparable: In fact, the entry labeled “Ethnologue”
in B corresponds to the green Proto-Austronesian entry in A. The results in A and B and those in C are not directly comparable because the evaluation in C
is restricted to those cognates with at least one reflex in the smallest evaluation set (to make the curve comparable across the horizontal axis of C).

language is initially unknown and must be learned automatically
along with the other branch-specific model parameters.

Results

Our results address three questions about the performance of our
system. First, how well does it reconstruct protolanguages? Second,
how well does it identify cognate sets? Finally, how can this approach
be used to address outstanding questions in historical linguistics?

Protolanguage Reconstructions. To test our system, we applied it to
a large-scale database of Austronesian languages, the Austrone-
sian Basic Vocabulary Database (ABVD) (28). We used a pre-
viously established phylogeny for these languages, the Ethnologue
tree (29) (we also describe experiments with other trees in Fig. 1).
For this first test of our system we also used the cognate sets
provided in the database. The dataset contained 659 languages at
the time of download (August 7, 2010), including a few languages
outside the Austronesian family and some manually reconstructed
protolanguages used for evaluation. The total data comprised
142,661 word forms and 7,708 cognate sets. The goal was to re-
construct the word in each protolanguage that corresponded to
each cognate set and to infer the patterns of sound changes along
each branch in the phylogeny. See SI Appendix, Section 2 for
further details of our simulations.

We used the Austronesian dataset to quantitatively evaluate the
performance of our system by comparing withheld words from
known languages with automatic reconstructions of those words.
The Levenshtein distance between the held-out and reconstructed
forms provides a measure of the number of errors in these
reconstructions. We used this measure to show that using more
languages helped reconstruction and also to assess the overall
performance of our system. Specifically, we compared the system’s
error rate on the ancestral reconstructions to a baseline and also to
the amount of divergence between the reconstructions of two
linguists (Fig. 14). Given enough data, the system can achieve
reconstruction error rates close to the level of disagreement be-
tween manual reconstructions. In particular, most reconstructions
perfectly agree with manual reconstructions, and only a few con-
tain big errors. Refer to Table 1 for examples of reconstructions.
See SI Appendix, Section 3 for the full lists.

We also present in Fig. 1B the effect of the tree topology on
reconstruction quality, reiterating the importance of using in-
formative topologies for reconstruction. In Fig. 1C, we show that
the accuracy of our method increases with the number of ob-
served Oceanic languages, confirming that large-scale inference
is desirable for automatic protolanguage reconstruction: Recon-
struction improved statistically significantly with each increase
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except from 32 to 64 languages, where the average edit distance
improvement was 0.05.

For comparison, we also evaluated previous automatic re-
construction methods. These previous methods do not scale to
large datasets so we performed comparisons on smaller subsets
of the Austronesian dataset. We show in SI Appendix, Section 2
that our method outperforms these baselines.

We analyze the output of our system in more depth in Fig. 2
A-C, which shows the system learned a variety of realistic sound
changes across the Austronesian family (30). In Fig. 2D, we show
the most frequent substitution errors in the Proto-Austronesian
reconstruction experiments. See SI Appendix, Section 5 for
details and similar plots for the most common incorrect inser-
tions and deletions.

Cognate Recovery. Previous reconstruction systems (22) required
that cognate sets be provided to the system. However, the crea-
tion of these large cognate databases requires considerable an-
notation effort on the part of linguists and often requires that at
least some reconstruction be done by hand. To demonstrate that
our model can accurately infer cognate sets automatically, we
used a version of our system that learns which words are cognate,
starting only from raw word lists and their meanings. This system
uses a faster but lower-fidelity model of sound change to infer
correspondences. We then ran our reconstruction system on
cognate sets that our cognate recovery system found. See SI Ap-
pendix, Section 1 for details.

This version of the system was run on all of the Oceanic lan-
guages in the ABVD, which comprise roughly half of the Aus-
tronesian languages. We then evaluated the pairwise precision
(the fraction of cognate pairs identified by our system that are also
in the set of labeled cognate pairs), pairwise recall (the fraction of
labeled cognate pairs identified by our system), and pairwise F1
measure (defined as the harmonic mean of precision and recall)
for the cognates found by our system against the known cognates
that are encoded in the ABVD. We also report cluster purity,
which is the fraction of words that are in a cluster whose known
cognate group matches the cognate group of the cluster. See S/
Appendix, Section 2.3 for a detailed description of the metrics.

Using these metrics, we found that our system achieved a pre-
cision of 0.844, recall of 0.621, F1 of 0.715, and cluster purity of
0.918. Thus, over 9 of 10 words are correctly grouped, and our
system errs on the side of undergrouping words rather than clus-
tering words that are not cognates. Because the null hypothesis in
historical linguistics is to deem words to be unrelated unless
proved otherwise, a slight undergrouping is the desired behavior.
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Fig. 2. Analysis of the output of our system in more depth. (A) An Austronesian phylogenetic tree from ref. 29 used in our analyses. Each quadrant is
available in a larger format in SI Appendix, Figs. $2-S5, along with a detailed table of sound changes (S/ Appendix, Table S5). The numbers in parentheses
attached to each branch correspond to rows in S/ Appendix, Table S5. The colors and numbers in parentheses encode the most prominent sound change along
each branch, as inferred automatically by our system in S/ Appendix, Section 4. (B) The most supported sound changes across the phylogeny, with the width of
links proportional to the support. Note that the standard organization of the IPA chart into columns and rows according to place, manner, height, and
backness is only for visualization purposes: This information was not encoded in the model in this experiment, showing that the model can recover realistic
cross-linguistic sound change trends. All of the arcs correspond to sound changes frequently used by historical linguists: sonorizations /p/ > /b/ (1) and /t/ > /d/
(2), voicing changes (3, 4), debuccalizations /f/ > /h/ (5) and /s/ > /h/ (6), spirantizations /b/ > /v/ (7) and /p/ > // (8), changes of place of articulation (9, 70), and
vowel changes in height (77) and backness (72) (1). Whereas this visualization depicts sound changes as undirected arcs, the sound changes are actually
represented with directionality in our system. (C) Zooming in a portion of the Oceanic languages, where the Nuclear Polynesian family (i) and Polynesian
family (ii) are visible. Several attested sound changes such as debuccalization to Maori and place of articulation change /t/ > /k/ to Hawaiian (30) are suc-
cessfully localized by the system. (D) Most common substitution errors in the PAn reconstructions produced by our system. The first phoneme in each pair
(x,y) represents the reference phoneme, followed by the incorrectly hypothesized one. Most of these errors could be plausible disagreements among human
experts. For example, the most dominant error (p, v) could arise over a disagreement over the phonemic inventory of Proto-Austronesian, whereas vowels are

common sources of disagreement.

Because we are ultimately interested in reconstruction, we then
compared our reconstruction system’s ability to reconstruct words
given these automatically determined cognates. Specifically, we
took every cognate group found by our system (run on the Oceanic
subclade) with at least two words in it. Then, we automatically
reconstructed the Proto-Oceanic ancestor of those words, using
our system. For evaluation, we then looked at the average Lev-
enshtein distance from our reconstructions to the known recon-
structions described in the previous sections. This time, however,
we average per modern word rather than per cognate group, to
provide a fairer comparison. (Results were not substantially dif-
ferent when averaging per cognate group.) Compared with re-
construction from manually labeled cognate sets, automatically
identified cognates led to an increase in error rate of only 12.8%
and with a significant reduction in the cost of curating linguistic
databases. See SI Appendix, Fig. S1 for the fraction of words with
each Levenshtein distance for these reconstructions.

Functional Load. To demonstrate the utility of large-scale recon-
struction of protolanguages, we used the output of our system to
investigate an open question in historical linguistics. The func-
tional load hypothesis (FLH), introduced 1955 (6), claims that
the probability that a sound will change over time is related to
the amount of information provided by a sound. Intuitively, if
two phonemes appear only in words that are differentiated from
one another by at least one other sound, then one can argue that
no information is lost if those phonemes merge together, be-
cause no new ambiguous forms can be created by the merger.
A first step toward quantitatively testing the FLH was taken in
1967 (7). By defining a statistic that formalizes the amount of
information lost when a language undergoes a certain sound
change—on the basis of the proportion of words that are dis-
criminated by each pair of phonemes—it became possible to
evaluate the empirical support for the FLH. However, this initial

Bouchard-C6té et al.

investigation was based on just four languages and found little
evidence to support the hypothesis. This conclusion was criti-
cized by several authors (31, 32) on the basis of the small number
of languages and sound changes considered, although they pro-
vided no positive counterevidence.

Using the output of our system, we collected sound change
statistics from our reconstruction of 637 Austronesian languages,
including the probability of a particular change as estimated by our
system. These statistics provided the information needed to give
a more comprehensive quantitative evaluation of the FLH, using
a much larger sample than previous work (details in SI Appendix,
Section 2.4). We show in Fig. 3 4 and B that this analysis provides
clear quantitative evidence in favor of the FLH. The revealed
pattern would not be apparent had we not been able to reconstruct
large numbers of protolanguages and supply probabilities of dif-
ferent kinds of change taking place for each pair of languages.

Discussion

We have developed an automated system capable of large-scale
reconstruction of protolanguage word forms, cognate sets, and
sound change histories. The analysis of the properties of hun-
dreds of ancient languages performed by this system goes far
beyond the capabilities of any previous automated system and
would require significant amounts of manual effort by linguists.
Furthermore, the system is in no way restricted to applications
like assessing the effects of functional load: It can be used as
a tool to investigate a wide range of questions about the structure
and dynamics of languages.

In developing an automated system for reconstructing ancient
languages, it is by no means our goal to replace the careful
reconstructions performed by linguists. It should be emphasized
that the reconstruction mechanism used by our system ignores
many of the phenomena normally used in manual recon-
structions. We have mentioned limitations due to the transducer
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Fig. 3. Increasing the number of languages we can A
reconstruct gives new ways to approach questions in
historical linguistics, such as the effect of functional
load on the probability of merging two sounds. The
plots shown are heat maps where the color encodes
the log of the number of sound changes that fall
into a given two-dimensional bin. Each sound
change x > y is encoded as a pair of numbers in the
unit square, (I,m), as explained in Materials and
Methods. To convey the amount of noise one could
expect from a study with the number of languages
that King previously used (7), we first show in A the
heat map visualization for four languages. Next, we
show the same plot for 637 Austronesian languages
in B. Only in this latter setup is structure clearly

Merger posterior

210 4x10°°
Functional load

100

10*

Merger posterior

6x10° 0 2410 4x10° 6x10° 810 110+
Functional load

visible: Most of the points with high probability of merging can be seen to have comparatively low functional load, providing evidence in favor of the
functional load hypothesis introduced in 1955. See S/ Appendix, Section 2.4 for details.

formalism but other limitations include the lack of explicit mod-
eling of changes at the level of the phoneme inventories used by
a language and the lack of morphological analysis. Challenges
specific to the cognate inference task, for example difficulties with
polymorphisms, are also discussed in more detail in SI Appendix.
Another limitation of the current approach stems from the as-
sumption that languages form a phylogenetic tree, an assumption
violated by borrowing, dialect variation, and creole languages.
However, we believe our system will be useful to linguists in
several ways, particularly in contexts where there are large num-
bers of languages to be analyzed. Examples might include using
the system to propose short lists of potential sound changes and
correspondences across highly divergent word forms.

An exciting possible application of this work is to use the
model described here to infer the phylogenetic relationships
between languages jointly with reconstructions and cognate sets.
This will remove a source of circularity present in most previous
computational work in historical linguistics. Systems for inferring
phylogenies such as ref. 13 generally assume that cognate sets are
given as a fixed input, but cognacy as determined by linguists is in
turn motivated by phylogenetic considerations. The phylogenetic
tree hypothesized by the linguist is therefore affecting the tree
built by systems using only these cognates. This problem can be
avoided by inferring cognates at the same time as a phylogeny,
something that should be possible using an extended version of
our probabilistic model.

Our system is able to reconstruct the words that appear in
ancient languages because it represents words as sequences of
sounds and uses a rich probabilistic model of sound change. This
is an important step forward from previous work applying com-
putational ideas to historical linguistics. By leveraging the full
sequence information available in the word forms in modern
languages, we hope to see in historical linguistics a breakthrough
similar to the advances in evolutionary biology prompted by the
transition from morphological characters to molecular sequences
in phylogenetic analysis.

Materials and Methods

This section provides a more detailed specification of our probabilistic
model. See S/ Appendix, Section 1.2 for additional content on the algo-
rithm and simulations.

Distributions. The conditional distributions over pairs of evolving strings are
specified using a lexicalized stochastic string transducer (33).

Consider a language ¢’ evolving to ¢ for cognate set c. Assume we have a
word form x=w,. The generative process for producing y =w, works as
follows. First, we consider x to be composed of characters xix; ...x,, with
the first and last ones being a special boundary symbol x; =# €%, which is
never deleted, mutated, or created. The process generates y=y1y> ...y, inn
chunks y;e2*,ie{1,...,n}, one for each x;. The y; s may be a single char-
acter, multiple characters, or even empty. To generate y;, we define a mu-
tation Markov chain that incrementally adds zero or more characters to an
initially empty y;. First, we decide whether the current phoneme in the top
word t=x; will be deleted, in which case y;=¢ (the probabilities of the
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decisions taken in this process depend on a context to be specified shortly).
If tis not deleted, we choose a single substitution character in the bottom
word. We write » =3u {{} for this set of outcomes, where ¢ is the special
outcome indicating deletion. Importantly, the probabilities of this multino-
mial can depend on both the previous character generated so far (i.e., the
rightmost character p of y;_4) and the current character in the previous
generation string (t), providing a way to make changes context sensitive.
This multinomial decision acts as the initial distribution of the mutation
Markov chain. We consider insertions only if a deletion was not selected in
the first step. Here, we draw from a multinomial over ~, where this time the
special outcome ¢ corresponds to stopping insertions, and the other ele-
ments of ~ correspond to symbols that are appended to y;. In this case, the
conditioning environment is t=x; and the current rightmost symbol p in y;.
Insertions continue until { is selected. We use 05, and 6;¢,, to denote the
probabilities over the substitution and insertion decisions in the current
branch ¢ - ¢. A similar process generates the word at the root ¢ of a tree or
when an innovation happens at some language ¢, treating this word as
a single string y; generated from a dummy ancestor t =x;. In this case, only
the insertion probabilities matter, and we separately parameterize these
probabilities with 6z ¢p. There is no actual dependence on t at the root or
innovative languages, but this formulation allows us to unify the parame-
terization, with each 6,,¢p, € R**', where w € {R,S,/}. During cognate in-
ference, the decision to innovate is controlled by a simple Bernoulli random
variable ny for each language in the tree. When known cognate groups are
assumed, n¢ is set to 0 for all nonroot languages and to 1 for the root
language. These Bernoulli distributions have parameters ;.

Mutation distributions confined in the family of transducers miss certain
phylogenetic phenomena. For example, the process of reduplication (as in
"bye-bye”, for example) is a well-studied mechanism to derive morpholog-
ical and lexical forms that is not explicitly captured by transducers. The same
situation arises in metatheses (e.g., Old English frist > English first). How-
ever, these changes are generally not regular and therefore less informative
(1). Moreover, because we are using a probabilistic framework, these events
can still be handled in our system, even though their costs will simply not be
as discounted as they should be.

Note also that the generative process described in this section does not
allow explicit dependencies to the next character in ¢. Relaxing this as-
sumption can be done in principle by using weighted transducers, but at the
cost of a more computationally expensive inference problem (caused by the
transducer normalization computation) (34). A simpler approach is to use
the next character in the parent ¢’ as a surrogate for the next character in ¢.
Using the context in the parent word is also more aligned to the standard
representation of sound change used in historical linguistics, where the
context is defined on the parent as well.

More generally, dependencies limited to a bounded context on the parent
string can be incorporated in our formalism. By bounded, we mean that it
should be possible to fix an integer k beforehand such that all of the
modeled dependencies are within k characters to the string operation. The
caveat is that the computational cost of inference grows exponentially in k.
We leave open the question of handling computation in the face of un-
bounded dependencies such as those induced by harmony (35).

Parameterization. Instead of directly estimating the transition probabilities of
the mutation Markov chain (which could be done, in principle, by taking them
to be the parameters of a collection of multinomial distributions) we express
them as the output of a multinomial logistic regression model (36). This
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model specifies a distribution over transition probabilities by assigning
weights to a set of features that describe properties of the sound changes
involved. These features provide a more coherent representation of the
transition probabilities, capturing regularities in sound changes that reflect
the underlying linguistic structure.

We used the following feature templates: OPERATION, which identifies
whether an operation in the mutation Markov chain is an insertion, a de-
letion, a substitution, a self-substitution (i.e., of the form x > y, x=y), or the
end of an insertion event; MARKEDNESS, which consists of language-specific
n-gram indicator functions for all symbols in X (during reconstruction, only
unigram and bigram features are used for computational reasons; for cognate
inference, only unigram features are used); FAITHFULNESS, which consists of
indicators for mutation events of the form 1 [ x > y ], where x€Z%, ye /.
Feature templates similar to these can be found, for instance, in the work of
refs. 37 and 38, in the context of string-to-string transduction models used in
computational linguistics. This approach to specifying the transition proba-
bilities produces an interesting connection to stochastic optimality theory (39,
40), where a logistic regression model mediates markedness and faithfulness
of the production of an output form from an underlying input form.

Data sparsity is a significant challenge in protolanguage reconstruction.
Although the experiments we present here use an order of magnitude more
languages than previous computational approaches, the increase in observed
data also brings with it additional unknowns in the form of intermediate
protolanguages. Because there is one set of parameters for each language,
adding more data is not sufficient to increase the quality of the recon-
struction; it is important to share parameters across different branches in the
tree to benefit from having observations from more languages. We used the
following technique to address this problem: We augment the parameteri-
zation to include the current language (or language at the bottom of the
current branch) and use a single, global weight vector instead of a set of
branch-specific weights. Generalization across branches is then achieved
by using features that ignore ¢, whereas branch-specific features depend
on ¢ Similarly, all of the features in OPERATION, MARKEDNESS, and
FAITHFULNESS have universal and branch-specific versions.
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Using these features and parameter sharing, the logistic regression model
defines the transition probabilities of the mutation process and the root
language model to be

exp{{4, f(o,t,p, ¢, &)}

Ztotd) XK@, &)

Owtpe=0ntpe(&A)=

where €/, f:{S,[,R}xExIxLx s —»Rk is the feature function (which
indicates which features apply for each event), (-, -) denotes inner product,
and 2 € R¥ is a weight vector. Here, k is the dimensionality of the feature space
of the logistic regression model. In the terminology of exponential families, Z
and u are the normalization function and the reference measure, respectively:
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Here, u is used to handle boundary conditions, ensuring that the resulting
probability distribution is well defined.

During cognate inference, the innovation Bernoulli random variables v
are similarly parameterized, using a logistic regression model with two kinds
of features: a global innovation feature «giobai €R and a language-specific
feature x, €R. The likelihood function for each vy then takes the form

1
1 + exp{_KgIobaI - K(}'
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This Supporting Information describes the learning and inference algorithms used by our system (Section 1),
details of simulations supporting the accuracy of our system and analyzing the effects of functional load (Section 2),
lists of reconstructions (Section 3), lists of sound changes (Section 4), and analysis of frequent errors (Section 5).

1 Learning and inference

The generative model introduced in the Materials and Methods section of the main paper sets us up with two
problems to solve: estimating the values of the parameters characterizing the distribution on sound changes on
each branch of the tree, and inferring the optimal values of the strings representing words in the unobserved
protolanguages. Section 1.1 introduces the full objective function that we need to optimize in order to estimate
these quantities. Section 1.2 describes the Monte Carlo Expectation-Maximization algorithm we used for solving
the learning problem. We present the algorithm for inferring ancestral word forms in Section 1.4.

1.1 Full objective function

The generative model specified in the Materials and Methods section of the main paper defines an objective func-
tion that we can optimize in order to find good protolanguage reconstructions. This objective function takes the
form of a regularized log-likelihood, combining the probability of the observed languages with additional con-
straints intended to deal with data sparsity. This objective function can be written concisely if we let Py (-), Px(+|)
denote the root and branch probability models described in the Materials and Methods section of the paper (with
transition probabilities given by the above logistic regression model), I(c), the set of internal (non-leaf) nodes in
7(c), pa(f), the parent of language £, r(c), the root of 7(c) and W (c) = (X*)()l. The full objective function is
then

[IALIZ + I[5l13
202

C
Ll()‘v H) = Zlog Z ]P/\(wc,r(c)) H Pk(wc,i|wc,pa(£)7ncﬁ)Pn(nchcE) - (1)
c=1

weEW (c) Lel(c)

where the second term is a standard L? regularization penalty intended to reduce over-fitting due to data sparsity
(we used 02 = 1) [1]. The goal of learning is to find the value of )\, the parameters of the logistic regression model
for the transition probabilities, that maximizes this function.



1.2 A Monte Carlo Expectation-Maximization algorithm for reconstruction

Optimization of the objective function given in Equation 1 is done using a Monte Carlo variant of the Expectation-
Maximization (EM) algorithm [2]. This algorithm breaks down into two steps, an E step in which the objective
function is approximated and an M step in which this approximate objective function is optimized. The M step
is convex and computed using L-BFGS [3] but the E step is intractable [4], in part because it requires solving
the problem of inferring the words in the protolanguages. We approximate the solution to this inference problem
using a Markov chain Monte Carlo (MCMC) algorithm [5]. This algorithm repeatedly samples words from the
protolanguages until it converges on the distribution implied by our generative model. Since this procedure is
guaranteed to find a local maximum of the objective, we ran it with several different random initializations of the
model parameters. The next two subsections provide the details of these two parts of our system.

1.2.1 E step: Inferring the posterior over string reconstructions

In the E step, the inference problem is to compute an expectation under the posterior over strings in a protolanguage
given observed word forms at the leaves of the tree.! The typical approach in biological InDel models [6] is to
use Gibbs sampling, where the entire string at each node in the tree is repeatedly resampled, conditioned on its
parent and children. We will call this method Single Sequence Resampling (SSR). While conceptually simple, this
approach suffers from mixing problems in large trees, since it can take a long time for information to propagate
from one region of the tree to another [6]. Consequently, we use a different MCMC procedure, called Ancestry
Resampling (AR) that alleviates these mixing problems. This method was originally introduced for biological
applications [7], but commonalities between the biological and linguistic cases make it possible to use it in our
model.

Concretely, the problem with SSR arises when the tree under consideration is large or unbalanced. In this case,
it can take a long time for information from the observed languages to propagate to the root of the tree. Indeed,
samples at the root will initially be independent of the observations. AR addresses this problem by resampling one
thin vertical slice of all sequences at a time, called an ancestry (for the precise definition of the algorithm, see [7]).
Slices condition on observed data, avoiding mixing problems, and can propagate information rapidly across the
tree. We ran the ancestry resampling algorithm for a number of iterations that increased linearly with the number of
iterations of the EM algorithm that had been completed, resulting in an approximation regime that could allow the
EM algorithm to converge to a solution [8]. To speed-up the large experiments, we also used an approximation in
AR. This approximation is based on fixing the value of a set-valued auxiliary variables z,4, where z, = {wg ¢}, and
¢ ranges over the set of all languages (both internal and at the leaves). Conditioning on these variables, sampling
wg ¢|2z, can be done exactly using dynamic programming and rejection sampling.

1.2.2 M step: Convex optimization of the approximate objective

In the M step, we individually update the parameters A and « as specified in Equation 1. We show how ) is updated
in this section, x can be optimized similarly. Let C = (w, ¢, p, £) denote local transducer contexts from the space
C = {S,I,R} x ¥ x ¥ x L of all such contexts. Let N(C, &) be the expected number of times the transition
& was used in context C in the preceding E-step. Given these sufficient statistics, the estimate of A is given by
optimizing the expected complete (regularized) log-likelihood O()) derived from the original objective function
given Equation [1] in the Materials and Methods section of the main paper (ignoring terms that do not involve \),

O = Y Y N[0 7(C.6) 1o Y exp{in €€ ] - -
-
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ITo be precise: the posterior is over both protolanguage strings and the derivations between these strings and the modern words.



We use L-BFGS [3] to optimize this convex objective function. L-BFGS requires the partial derivatives
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where Fj = docec 2oeesr N(C,€)f;(C,€) is the empirical feature vector and N(C,-) = > . N(C,§) is the

number of times context C was used. F  and N(C,-) do not depend on A and thus can be precomputed at the
beginning of the M-step, thereby speeding up each L-BFGS iteration.

1.3 Approximate Expectation-Maximization for cognate inference

The procedure for cognate inference is similar: we again operate within the Expectation-Maximization framework,
and the M-steps are identical. However, because of different characteristics of the cognate inference problem, we
make a few different choices for approximations for the E-step. The Monte Carlo inference algorithm described
in the preceding section works exceedingly well for reconstructing words for known cognates. However, a Monte
Carlo approach to determining which words are cognate requires resampling the innovation variables 14, which
is likely to lead to slow mixing of the Markov chain.

We therefore take a different approach when doing cognate inference. Here, we restrict our system to not
perform inference over all possible reconstructions for all words, but to only use words that correspond to some
observed modern word with the same meaning. The simplification is of course false, but it works well in practice.
Specifically, we perform inference on the tree for each gloss using message passing [9], also known as pruning
in the computational biology literature [10], where each message /.(wg¢) has a non-zero score only when wg is
one of the observed modern word forms in gloss g. The result of inference yields expected alignments counts for
each character in each language along with the expected number of innovations that occur at each language. These
expectations can then be used in the convex M-step.

1.4 Ancestral word form reconstruction

In the E step described in the preceding section, a posterior distribution 7 over ancestral sequences given observed
forms is approximated by a collection of samples X, X5, ... Xg. In this section, we describe how this distribution
is summarized to produce a single output string for each cognate set.

This algorithm is based on a fundamental Bayesian decision theoretic concept: Bayes estimators. Given a loss
function over strings Loss : X* x 3* — [0, 00), an estimator is a Bayes estimator if it belongs to the random set:

argmin E™ Loss(z, X) = argmin Z Loss(z, y)m(y).
reEX* reEX* yer=

Bayes estimators are not only optimal within the Bayesian decision framework, but also satisfy frequentist opti-
mality criteria such as admissibility [11]. In our case, the loss we used is the Levenshtein [12] distance, denoted
Loss(x,y) = Lev(z,y) (we discuss this choice in more detail in Section 2).

Since we do not have access to 7, but rather to an approximation based on S samples, the objective function
we use for reconstruction rewrites as follows:

S
argmin Z Lev(z,y)m(y) = argmm— ZLQV x, Xs)
reX* yes reX*
S
= argmanLev x, Xs).
zeX*



The raw samples contain both derivations and strings for all protolanguages, whereas we are only interested in
reconstructing words in a single protolanguage. This is addressed by marginalization, which is done in sampling
representations by simply discarding the irrelevant information. Hence, the random variables X in the above
equation can be viewed as being string-valued random variables.

Note that the optimum is not changed if we restrict the minimization to be taken on & € ¥* such thatm < |z| <
M where m = min, | X;|, M = max, |X;|. However, even with this simplification, optimization is intractable.
As an approximation, we considered only strings built by at most k£ contiguous substrings taken from the word
forms in X1, Xs,..., Xg. If k = 1, then it is equivalent to taking the min over {X; : 1 < s < S}. At the other
end of the spectrum, if £ = S, it is exact. This scheme is exponential in k, but since words are relatively short, we
found that £ = 2 often finds the same solution as higher values of k.

1.5 Finding Cognate Groups

Our cognate model finds cuts to the phylogeny in order to determine which words are cognate with one another.
However, this approach cannot straightforwardly handle instances where the evolution of the words did not follow
strictly treelike behavior. This limitation applies to polymorphisms—where multiple words for a given meaning
are available in a language—and also for borrowing—where the words did not evolve according to the phylogeny.

However, we can modify the inference procedure to capture these kinds of behaviors using a post hoc agglom-
erative “merge” procedure. Specifically, we can run our procedure to find an initial set of cognate groups, and
then merge those cognate groups that produce an increase in model score. That is, we create several initial small
subtrees containing some cognates, and then stitch them together into one or more larger trees. Thus, non-treelike
behaviors like borrowing will be represented as multiple trees that “overlap.” For instance, if two languages each
have two words for one meaning (say A and B), then the initial stage might find that the two A’s are cognate,
leaving the two B’s as singleton cognate groups. However, merging these two words into a single group will likely
produce a gain in likelihood, and so we can merge them. Note this procedure is unlikely to work well for long
distance borrowings, as the sound changes involved in long distance borrowing are likely to be very different from
those according to the phylogeny. Nevertheless, we found this procedure to be effective in practice.

2 Experiments

In this section, we give more details on the results in the main paper, namely those concerning validation using
reconstruction error rate, and those measuring the effect of the tree topology and the number of languages. We
also include additional comparisons to other reconstruction methods, as well as cognate inference results. In
Section 2.1, we analyze in isolation the effects of varying the set of features, the number of observed languages,
the topology, and the number of iterations of EM. In Section 2.2 we compare performance to an oracle and to two
other systems.

Evaluation of all methods was done by computing the Levenshtein distance [12] (uniform-cost edit distance)
between the reconstruction produced by each method and the reconstruction produced by linguists. The Leven-
shtein distance is the minimum number of substitutions, insertions, or deletions of a phoneme required to transform
one word to another. While the Levenshtein distance misses important aspects of phonology (all phoneme substi-
tutions are not equal, for instance), it is parameter-free and still correlates to a large extent with linguistic quality
of reconstruction. It is also superior to held-out log-likelihood, which fails to penalize errors in the modeling
assumptions, and to measuring the percentage of perfect reconstructions, which ignores the degree of correctness
of each reconstructed word. We averaged this distance across reconstructed words to report a single number for
each method. The statistical significance of all performance differences are assessed using a paired t-test with
significance level of 0.05.



2.1 Evaluating system performance

We used the Austronesian Basic Vocabulary Database (ABVD) [13] as the basis for a series of experiments used
to evaluate the performance of our system and the factors relevant to its success. The database, downloaded from
http://language.psy.auckland.ac.nz/austronesian/

on August 7, 2010, includes partial cognacy judgments and IPA transcriptions,” as well as a several reconstructed
protolanguages.

In our main experiments, we used the tree topology induced by the Ethnologue classification [14] in order
to facilitate interpretability of the results (i.e. so that we can give well-known names to clades in the tree in
our analyses). Our method does not require specifying branch lengths since our unsupervised learning procedure
provides a more flexible way of estimating the amount of change between points of the phylogenetic tree.

The first claim we verified experimentally is that having more observed languages aids reconstruction of pro-
tolanguages. In the results in this section, we used the subset of the languages under Proto-Oceanic (POc) to
speed-up the computations. To test this hypothesis we added observed modern languages in increasing order of
distance d.. to the target reconstruction of POc so that the languages that are most useful for POc reconstruction
are added first. This prevents the effects of adding a close language after several distant ones being confused with
an improvement produced by increasing the number of languages.

The results are reported in Figure 1(c) of the main paper. They confirm that large-scale inference is desirable
for automatic protolanguage reconstruction: reconstruction improved statistically significantly with each increase
except from 32 to 64 languages, where the average edit distance improvement was 0.05.

We then conducted a number of experiments intended to identify the contribution made by different factors it
incorporates. We found that all of the following ablations significantly hurt reconstruction: using a flat tree (in
which all languages are equidistant from the reconstructed root and from each other) instead of the consensus tree,
dropping the markedness features, dropping the faithfulness features, and disabling sharing across branches. The
results of these experiments are shown in Table S.1.

For comparison, we also included in the same table the performance of a semi-supervised system trained by
K-fold validation. The system was run K = 5 times, with 1 — K ! of the POc words given to the system as
observations in the graphical model for each run. It is semi-supervised in the sense that target reconstructions for
many internal nodes are not available in the dataset, so they are still not filled.?

2.2 Comparisons against other methods

The first competing method, PRAGUE was introduced in [15]. In this method, the word forms in a given protolan-
guage are reconstructed using a Viterbi multi-alignment between a small number of its descendant languages. The
alignment is computed using hand-set parameters. Deterministic rules characterizing changes between pairs of
observed languages are extracted from the alignment when their frequency is higher than a threshold, and a proto-
phoneme inventory is built using linguistically motivated rules and parsimony. A reconstruction of each observed
word is first proposed independently for each language. If at least two reconstructions agree, a majority vote is
taken, otherwise no reconstruction is proposed. This approach has several limitations. First, it is not tractable for
larger trees, since the time complexity of their multi-alignment algorithm grows exponentially in the number of
languages. Second, deterministic rules, while elegant in theory, are not robust to noise: even in experiments with
only four daughter languages, a large fraction of the words could not be reconstructed.

Since PRAGUE does not scale to large datasets, we also built a second, more tractable baseline. This new
baseline system, CENTROID, computes the centroid of the observed word forms in Levenshtein distance. Let

2While most word forms in ABVD are encoded using IPA, there are a few exceptions, for example language family specific conventions
such as the usage of the okina symbol (’) for glottal stops (?) in some Polynesian languages or ad hoc conventions such as using the bigram
‘ng’ for the agma symbol (1)). We have preprocessed as many of these exceptions as possible, and probabilist methods are generally robust to
reasonable amounts of encoding glitches.

3We also tried a fully supervised system where a flat topology is used so that all of these latent internal nodes are avoided; but it did not
perform as well—this is consistent with the -Topology experiment of Table S.1.



Lev(z,y) denote the Levenshtein distance between word forms = and y. Ideally, we would like the baseline
system to return:

argmin Z Lev(z,y),
TeEX* yeo

where O = {y1,...,9|0|} is the set of observed word forms. This objective function is motivated by Bayesian
decision theory [11], and shares similarity to the more sophisticated Bayes estimator described in Section 2. How-
ever it replaces the samples obtained by MCMC sampling by the set of observed words. Similarly to the algorithm
of Section 2, we also restrict the minimization to be taken on z € ¥(O)* such that m < |z| < M and to strings
built by at most & contiguous substrings taken from the word forms in O, where m = min; |y;|, M = max; |y;|
and 3(0) is the set of characters occurring in O. Again, we found that & = 2 often finds the same solution as
higher values of k. The difference was in all the cases not statistically significant, so we report the approximation
k = 2 in what follows.
We also compared against an oracle, denoted ORACLE, which returns

argmin Lev(y, z*),
yeO

where z* is the target reconstruction. We will denote it by ORACLE. This is superior to picking a single closest
language to be used for all word forms, but it is possible for systems to perform better than the oracle since it has
to return one of the observed word forms. Of course, this scheme is only available to assess system performance
on held-out data: It cannot make new predictions.

We performed the comparison against a previous system proposed in [15] on the same dataset and experimental
conditions as used in [15]. The PMJ dataset was compiled by [16], who also reconstructed the corresponding
protolanguage. Since PRAGUE is not guaranteed to return a reconstruction for each cognate set, only 55 word forms
could be directly compared to our system. We restricted comparison to this subset of the data. This favors PRAGUE
since the system only proposes a reconstruction when it is certain. Still, our system outperformed PRAGUE, with
an average distance of 1.60 compared to 2.02 for PRAGUE. The difference is marginally significant, p = 0.06,
partly due to the small number of word forms involved.

To get a more extensive comparison, we considered the hybrid system that returns PRAGUE’s reconstruction
when possible and otherwise back off to the Sundanese (Snd.) modern form, then Madurese (Mad.), Malay (Mal.)
and finally Javanic (Jv.) (the optimal back-off order). In this case, we obtained an edit distance of 1.86 using our
system against 2.33 for PRAGUE, a statistically significant difference.

We also compared against ORACLE and CENTROID in a large-scale setting. Specifically, we compare to the
experimental setup on 64 modern languages used to reconstruct POc described before. Encouragingly, while
the system’s average distance (1.49) does not attain that of the ORACLE (1.13), we significantly outperform the
CENTROID baseline (1.79).

2.3 Cognate recovery

To test the effectiveness of our cognate recovery system, we ran our system on all of the Oceanic languages in the
ABVD, which comprises roughly half of the Austronesian languages. We then evaluated the pairwise precision,
recall, F1, and purity scores, defined as follows. Let G = {G1,Ga,...,G,} denote the known partitions of the
forms into cognates, and let F' = {Fy, Fh, ..., F;} denote the inferred partitions. Let pairs(F') denote the set of
unordered pairs of indices in the same partition in F: pairs(F') = {{4,j} : Ik s.t. i,j € Fg,i # j}, and similarly



for pairs(G). The metrics are defined as follows:

|pairs(G) N pairs(F)|

precision = et ,
recall = |pairs(G) N pairs(F)|
|pairs(G)| )
Fl =2 precision - recall

precision + recall’

1
purity = i ngx |Gy N Fyl.
!

Using these metrics, we found that our system achieved a precision of 84.4, recall of 62.1, F1 of 71.5, and
cluster purity of 91.8. Thus, over 9 out of 10 words are correctly grouped, and our system errs on the side of under-
grouping words rather than clustering words that are not cognates. Since the null hypothesis in historical linguistics
is to deem words to be unrelated unless proven otherwise, a slight under-grouping is the desired behavior.

Since we are ultimately interested in reconstruction, we then compared our reconstruction system’s ability to
reconstruct words given these automatically determined cognates. Specifically, we took every cognate group found
by our system (run on the Oceanic subclade) with at least two words in it. That is, we excluded words that our
system found to be isolates. Then, we automatically reconstructed the Proto-Oceanic ancestor of those words using
our system (using the auxiliary variables z described in Section 1.2.1).

For evaluation, we then looked at the average edit distance from our reconstructions to the known reconstruc-
tions described in the previous sections. This time, however, we average per modern word rather than per cognate
group, to provide a fairer comparison. (Results were not substantially different averaging per cognate group.)

Using known cognates from the ABVD, there was an average reconstruction error of 2.19, versus 2.47 for the
automatically reconstructed cognates, or an increase in error rate of 12.8%. The fraction of words with each Leven-
shtein distance for these reconstructions is shown in Figure S.1. While the plots are similar, the automatic cognates
exhibit a slightly longer tail. Thus, even with automatic cognates, the reconstruction system can reconstruct words
faithfully in many cases, only failing in a few instances.

2.4 Computation of functional loads

To measure functional load quantitatively, we used the same estimator as the one used in [17]. This definition
is based on associating a context vector ¢, ¢ to each phoneme and language. For a given language with N (¢)
phoneme tokens, these context vectors are defined as follows: first, fix an enumeration order of all the contexts
found in the corpus, where the context is defined as a pair of phonemes, one at the left and one at the right of a
position. Element ¢ in this enumeration will correspond to component ¢ of the context vectors. Then, the value of
component ¢ in context vector ¢ ¢ is set to be the number of time phoneme x occurred in context ¢ and language
{. Finally, King’s definition of functional load FL,(x, y) is the dot product of the two induced context vectors:

1 .
FLy(z,y) = W<Crhcyi ZCM X ey,0(i),

where the denominator is simply a normalization that insures FL,(x,y) < 1. Note that if « and y are in comple-
mentary distribution in language /, then the two vectors ¢, ¢ and ¢, ¢ are orthogonal. The functional load is indeed
zero in this case.

In Figure 3 of the main paper, we show heat maps where the color encodes the log of the number of sound
changes that fall into a given 2-dimensional bin. Each sound change = > y is encoded as pair of numbers in the
unit interval, (l m), where [ is an estimate of the functional load of the pair and 7 is the posterior fraction of the
instances of the phoneme x that undergo a change to y. We now describe how l, m were estimated. The posterior



fraction i for the merger x > y between languages pa(¢) — ¢ is easily computed from the same expected
sufficient statistics used for parameter estimation:

ZPEE N(Sv z,p, ‘€7 y)
Zp/GZ Zy/ez N(Sv x7p’7£, y/) '
The estimate of the functional load requires additional statistics, i.e. the expected context vectors &, , and expected

phoneme token counts N (¢), but these can be readily extracted from the output of the MCMC sampler. The
estimate is then:

(x> y) =

. 1
le(z,y) = W@z,e,cyﬁ'

Finally, the set of points used to construct the heat map is:

{(fpa(g)(x,y),mg(x > y)) e L —{root},z € X,y X, x# y}

3 Reconstruction lists

In Table S.2-S.4, we show the lists of consensus reconstructions produced by our system (the ‘Automatic’ column).
For comparison, we also include a baseline (randomly picking one modern word), and the edit distances (when it
is greater than zero). In Proto-Oceanic, since two manual reconstructions are available, we include the distances
of the automatic reconstruction to both manual reconstructions (‘P-A’ and ‘B-A’) and the distance between the two
manual reconstructions (‘B-P’).

4 Sound changes

In Figures S.2-S.5, we zoom and rotate each quadrant of the tree shown in Figure 2 of the main paper. For
information on the most frequent change of each branch, refer to the row in Table S.5 corresponding to the code in
parenthesis attached to each branch. By most frequent, we mean the change with the highest expected count in the
last EM iteration, collapsing contexts for simplicity. In cases where no change is observed with an expected count
of more than 1.0, we skip the corresponding entry—this can be caused for example by languages where cognacy
information was too sparse in the dataset. The functional load, normalized to be in the interval [0, 1] is also shown
for reference.

S Frequent errors

In Figure S.6, we analyze the frequent discrepancy between the PAn reconstruction from our system with those
from [18]. The most frequent problematic substitutions, insertions, and deletions are shown. These frequencies
were obtained by aligning, after running the system, the reconstructions with the references. The aligner is a pair-
HMM trained via EM, using only phoneme identity and gap information [19]. The frequencies were extracted
from the posterior alignments.
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| Condition | Edit dist. |

| Unsupervised full system | 1.87 ‘
-FAITHFULNESS 2.02
-MARKEDNESS 2.18
-Sharing 1.99
-Topology 2.06

Semi-supervised system ‘ 1.75 ‘

Table S.1: Effects of ablation of various aspects of our unsupervised system on mean edit distance to POc. -Sharing
corresponds to the restriction to the subset of the features in OPERATION, FAITHFULNESS and MARKEDNESS that
are branch-specific, -Topology corresponds to using a flat topology where the only edges in the tree connect
modern languages to POc. The semi-supervised system is described in the text. All differences (compared to the
unsupervised full system) are statistically significant.



Table S.2. Proto-Austronesian reconstructions

Gloss Reference  Baseline Distance  Automatic ~ Distance
tohold(1) *gemgem  *higem 3 *gemgem
smoke(1) *qebel *qivil 3 *qebel

toscratch(1) *ka raw *kagaw 1 *ka raw

and(2) *mah *ma, 1 *ma 1
leg/foot(1) *qaqay *ai 4 *qaqay

shoulder(1) *qaba ra *vala 4 *qaba ra
woman/female(1)  *bahi *babinay 4 *vavaian 5
left(1) *kawi ri *kayli 3 *kawi ri

day(1) *qalejaw *andew 5 *qalejaw
mother(1) *tina *qina 1 *tina

tosuck(1) *sepsep *sipsip 2 *sepsep

small(2) *kedi *kedhi 1 *kedi

night(1) *be ryi *beyi 2 *be ryi
tosqueeze(1) *pe req *perah 3 *pereq 1
tohit(1) *palu *mipalo 3 *palu

rat(1) *labaw *lapo 3 *kulavaw 3
you(1l) *ikamu *kamo 2 *kamu 1
toplant(1) *mula *himula 2 *mula

toswell(1) *ba req *ba req *ba req

tosee(1) *Kita *Kita *Kita

one(1) *isa *sa 1 *isa

tosleep(1) *tudu r *maturug 4 *tudu r

dog(1) *wasu *kahu 2 *vatu
topound,beat(20) *tutuh *nutu 2 *tutu 1
stone(1) *batu *batu *batu

green(1) *mataq *mataq *mataq

father(1) *tama *gqama 1 *tama

this(1) *ini *eni 1 *ani 1
tooth(1) *nipen *lipon 2 *nipen

tochoose(1) *piliq *pili? 1 *piliq

star(1) *bitugen *bitun 2 *bitugen

tobuy(23) *baliw *taiw 2 *taiw 2
tovomit(1) *utaq *mutjaq 2 *utaq

towork(1) *qumah *quma 1 *quma 1
wide(1) *malawas ~ *yawig 5 *malabe r
tocut,hack(1) *ta raq *ta raq *ta raq

tofear(1) *matakut *taku? 3 *matakut
tolive,bealive(l) *maqudip  *ma?uyi 3 *maqudip
thunder(3) *de ruy *zun) 3 *deruy 1
tofly(2) *layap *layap *layap

toshoot(1) *panaq *fanak 2 *panaq

name(1) *pajan *ngaza 4 *pajan

tobuy(1) *beli *poli 2 *beli

and(1) *ka *kae 1 *ka

when?(1) *ijan *pirang 3 *pijan 1
todig(1) *kalih *kali 1 *kali 1
ash(1) *qabu *abu 1 *qabu

big(1) *ma raya *ma raya *ma raya
tocut,hack(3) *tektek *tutek 2 *tektek
road/path(1) *zalan *dalan 1 *zalan

tostand(1) *di ri *diri 1 *di ri

sand(1) *genay *one 4 *qenay

continued on next page
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continued from previous page

Gloss Reference Baseline Distance  Automatic Distance
meat/flesh(31) *isi *ici 1 *isi

what?(2) *nanu *anu 1 *anu 1
toswell(26) * ribawa *malifawa 4 *abeh 5
bird(2) *qayam *ayam 1 *qayam

hand(1) *lima *lime 1 *lima

in,inside(1) *idalem *dalale 4 *idalem

if(2) *nm *no 1 *nu
toknow,beknowledgeable(2)  *bajaq *mafana? 5 *mafana? 5
at(20) *di *ri 1 *di

wind(2) *bali *feli 2 *beliu 2
new(1) *mabaqge ru  *ba?ru 5 *vaquan 6
blood(1) *da raq *da raq *da raq

breast(1) *susu *S0S0 2 *susu

i(1) *iaku *ako 2 *iaku

salt(1) *qasi ra *sie 4 *qasi ra

toflow(1) *qalu r *ilir 4 *qalu r

five(1) *lima *lima *lima

at(1) *] #] #]

other(1) *duma *duma *duma

leaf(2) *bi raq *bela 3 *bela 3
all(1) *amin *kemon 3 *amin

rotten(1) *mabu raq *mavuk 4 *mabu ruk 2
tocook(1) *tanek *tanok 1 *tanek

head(1) *qulu *Puyuh 3 *qulu

mouth(2) *pusu *putu 1 *pguju 1
house(1) * rumaq *uma 2 * rumaq

if(1) *ka *ke 1 *ka

neck(1) *lige r *liqig 2 *lige r

needle(1) *za rum *dagim 3 *za rum

he/she(1) *siia *a 2 *siia

fruit(1) *buaq *buaq *buaq

back(1) *likud *likude? 2 *likud

tochew(2) *qelqgel *qmelgel 1 *qmelgel 1
salt(2) *timus *timus *timus

we(2) *kami *sikami 2 *kami

long(1) *inaduq *nandu 3 *anaduq 1
we(1) *ikita *itam 3 *kita 1
three(1) *telu *tilu 1 *telu

lake(1) *danaw *ranu 3 *danaw

toeat(1) *kaen *kman 2 *kman 2
no,not(3) *ini *ini *ini

where?(1) *inu *sadinno 5 *ainu 1
how?(1) *kuja *gagua 4 *kua 1
tothink(34) *nemnem *nimnim 2 *kinemnem 2
who?(2) *siima *cima 2 *tima 2
tobite(1) *Kka rat *kagat 1 *Kka rat

tail(1) *iku r *ikog 2 *iku r
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Table S.3. Proto-Oceanic reconstructions

Reconstructions Pairwise distances
Gloss Blust (B) Pawley (P)  Automatic (A) B-P P-A B-A
fish(1) *ikan *ikan *ikan
five(1) *lima *lima *lima
what?(1) *sapa *saa *sava 1 1 1
meat/flesh(1) *pisiko *pisako *kiko 1 3 3
star(1) *pituqun  *pituqon *vetuqu 1 4 3
fog(1) *kaput *kaput *kabu 2 2
toscratch(44) *karu *kadru *kadru 1 1
shoulder(1) *pa ra *qapa ra *vara 2 2
where?(3) *pai *pea *vea 2 1 3
toclimb(2) *sake *sake *cake 1 1
toeat(1) *kani *kani *kani
two(1) *rua *rua *rua
dry(11) *maca *masa *mamasa 1 2 3
narrow(1) *kopit *kopit *kapi 2 2
todig(1) *keli *keli *keli
bone(2) *su ri *su ri *sui 1 1
stone(1) *patu *patu *patu
left(1) *mawiri  *mawi ri *mawii 1 1
they(1) *ira *ira *sira 1 1
toliedown(1) *qinop *qeno *eno 2 1 3
tohide(1) *puni *puni *yuni 1 1
rope(1) *tali *tali *tali
smoke(2) *qasu *qasu *qasu
when?(1) *paican *paijan *pisa 1 3 3
we(2) *kamami  *kami *kami 2 2
this(1) *ne *ani *eni 2 1 2
egg(l) *qatolur  *katolu r *tolu 1 3 3
stick/wood(1) *kayu *kayu *kai 2 2
tosit(16) *nopo *nopo *nofo 1 1
toshoot(1) *panaq *pana *pana 1 1
liver(1) *qate *qate *qate
needle(1) *sa rum *sa rum *sau 2
feather(1) *pulu *pulu *vulu 1 1
topound,beat(2)  *tutuk *tuki *tutuk 3 3
near(9) *tata *tata *tata
heavy(1) *mamat *mapat *mamava 1 3 2
year(1) *taqun *taqun *taqu 1
old(1) *matuqa *matuqa *matuqa
fire(1) *api *api *avi 1 1
tochoose(1) *piliq *piliq *vili 2 2
rain(1) *qusan *qusan *usa 2 2
togrow(1) *tubuq *tubuq *tubu 1 1
tosee(1) *kita *kita *kita
tohear(1) *rono r *rono r *rono 1 1
tochew(1) *mamaq *mamaq *mama 1 1
louse(1) *kutu *kutu *kutu
wind(1) *apin *matani *matani 4 4
bad,evil(1) *saqat *saqat *saqa 1 1
hand(1) *lima *lima *lima
toflow(1) *tape *tape *tave 1 1
night(1) *boyi *boni *boni

continued on next page
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continued from previous page

Reconstructions Pairwise distances
Gloss Blust (B) Pawley (P) Automatic (A) B-P  P-A  B-A
day(5) *qaco *qaco *qaso 1 1
tospit(14) *qanusi *qanusi *agusu 3 3
person/humanbeing(l)  *taumataq *tamwata *tamata 1 2
tovomit(1) *mumutaq *mumuta *muta 1 2 3
name(1) *pajan *qajan *qasa 1 2 3
snake(12) *mwata *mwata *mwata
man/male(1) *mwa rugane  *taumwaqane  *mwane 5 5 4
tobreathe(1) *manawa *manawa *manawa
far(1) *sauq *sauq *sau 1 1
tobuy(1) *poli *poli *voli 1 1
tovomit(8) *luaq *luaq *lua 1 1
tocook(9) *tunu *tunu *tunu
thick(3) *matolu *matolu *matolu
leg/foot(1) *waqe *waqe *waqe
tobite(1) *ka rat *Kka rati *Kkarat 1 2 1
leaf(1) *raun *rau *dau 1 1 2
sky(1) *lanit *lanit *lapi 1 1
todrink(1) *num *inum *inum
tostand(2) *tuqur *taqur *tuqu 1 2 1
i(1) *au *au *yau 1 1
warm(1) *mapanas *mapanas *mavana 2 2
moon(1) *pulan *pulan *vula 2 2
how?(1) *kua *kuya *kua 1 1
three(1) *tolu *tolu *tolu
toplant(2) *tanum *tanom *tanom 1 1 1
mosquito(1) *namuk *namuk *namu 1 1
bird(1) *manuk *manuk *manu 1 1
four(1) *pani *pat *vati 2 2 2
water(2) *wai r *wai r *wai 1 1
one(1) *sakai *tasa *sa 3 2 3
skin(1) *kulit *kulit *kulit
toyawn(1) *mawap *mawap *mawa 1 1
he/she(1) *ia *ia *ia
nose(1) *isur *ijug *isu 1 2 1
thatch/roof(1) *qatop *qatop *qato 1 1
towalk(2) *pano *pano *vano 1 1
flower(1) *puga *puga *vuga 1 1
dust(1) *qapuk *qapuk *avu 3 3
neck(18) * ruga * ruqa *ua 2 2
eye(1l) *mata *mata *mata
father(1) *tama *tamana *tama 2 2
tofear(1) *matakut *matakut *matakut
root(2) *waka ra *waka r *waka 1 1 2
tostab,pierce(8) *soka *soka *soka
breast(1) *susu *susu *susu
tolive,bealive(l) *maqurip *maqurip *maquri 1 1
head(1) *qulu *qulu *qulu
thou(1) *ko *iko *kou 1 2 1
fruit(1) *puaq *puaq *vua 2
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Table S.4. Proto-Polynesian reconstructions

Gloss Reference Baseline Distance  Automatic Distance
rope(9) *taula *taura 1 *taula
short(11) *pukupuku *putupurtu 2 *pukupuku
strikewithfist *moto *moko 1 *moto
coral *puga *puga *puga
cook *tafu *tahu 1 *tafu
painful,sick(1)  *masaki *mahaki 1 *masaki
downwards *hifo *ifo 1 *hifo
dive *ruku *uku 1 *ruku
toface *hana *hana *haga
grasp *kapo *Papo 1 *kapo
bay *fana *hana 2 *fana
tail *siku *situ 1 *siku
toblow(6) *pupusi *pupuhi 1 *pupusi
channel *awa *ava 1 *awa
pandanus *fara *fala 1 *fara
urinate *mimi *mimi *mimi
navel *pito *pito *pito
gall *Pahu *au 2 *Pahu
wave *palu *palu *palu
sleep *mohe *moe 1 *mohe
warm(1) *mafanafana  *mafanafana *mafanafana
beak *gutu *putu *gutu
tooth *nifo *niho 1 *nifo
dance *saka *haka 1 *saka
leg *ware *wae 1 *wate
drown *lemo *lemo *lemo
water *wai *vai 1 *wai
nose *isu *isu *isu
taro *talo *kalo 1 *talo
tohide(1) *funi *huna 2 *suna 2
upwards *hake *ate 2 *hake
overripe *pere *pee 1 *pere
tosit(16) *nofo *noho 1 *nofo
red *kula *Pula 1 *kula
tochew(1) *mama *mama *mama
three(1) *tolu *tolu *tolu
tosleep(10) *mohe *moe 1 *mohe
nine *hiwa *iwa 1 *hiwa
dawn *ata *ata *ata
feather(1) *fulu *fulu *fulu
canoe *waka *vata 2 *waka
left(11) *sema *hema 1 *sema
ashes *refu *lehu 2 *refu
dew *sau *sau *sau
small *riki *riki *riki
house *fale *hale 1 *fale
voice *le?o *leo 1 *le?0
octopus *feke *he?e 2 *feke
toclimb(2) *kake *a?e 2 *ake 1
sea *tahi *Kkai 2 *tahi
day *?aho *ao 2 *?aho
branch *marna *mana *marna

continued on next page
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continued from previous page

Gloss Reference Baseline Distance ~ Automatic Distance

lovepity *Palo?ofa *aroha 5 *Palo?ofa

flyrun *lele *rere 2 *lele

thick(3) *matolutolu  *matolutolu *matolutoru

tostrippeel  *hisi *hihi 1 *hisi

sitdwell *nofo *noho 1 *nofo

black *kele *Pele 1 *kele

torch *rama *ama 1 *rama

Table S.5. Sound changes

Code Parent Child Functional load Number of occurrences
(1) v (ProtoOcean) > P (AdmiraltyIslands) 0.09884 5.67800
2) a (Northern Dumagat) > A (Agta) 5.132e-05 110.26986
3) q (Bisayan) > ? (AklanonBis) 0.03289 46.31015
@) a (Schouten) > El (Ali) 7.158e-05 5.45255
5) e (UlatInai) > a (Alune) 1.00000 1.31832
(6) e (SeramStraits) > o (Amahai) 0.05802 6.91108
@) a (SouthwestNewBritain) > e (Amara) 0.19090 1552212
®) a (CentralWestern) > e (AmbaiYapen) 0.21003 5.74372
[©) i (SeramStraits) > a (Ambon) 0.27139 3.04082
(10) a (EastVanuatu) > e (AmbrymSout) 0.09085 14.42495
(11) s (BimaSumba) > h (Anakalang) 0.03743 10.01598
(12) a (Vanuatu) > e (AnejomAnei) 0.08559 14.43646
13) f (Futunic) > P (Anuta) 0.09282 19.96156
(14) n (Wetar) > ] (Aputai) 0.04788 7.10435
(15) t (WestSanto) > T (ArakiSouth) 0.21996 20.80080
(16) Not enough data available for reliable sound change estimates
a7 (NorthPap inlandDE) ) > t (AreTaupota) 0.06738 292590
(18) > (Southern Malaita) > 0 (AreareMaas) 0.01151 1.99913
(19) bl (Southern Malaita) > o (AreareWaia) 0.01151 1.99971
(20) a (Bibling) > e (Aria) 0.29446 4.99706
@I Not enough data available for reliable sound change estimates
(22) 2 (SanCristobal) > o (ArosiOneib) 0.00562 1.99971
(23) Not enough data available for reliable sound change estimates
24) b (ProtoCentr) > P (Aru) 0.13711 9.35892
(25) a (RajaAmpat) > 3 (As) 0.05156 474243
(26) o (Utupua) > u (Asumboa) 0.07562 3.70741
7 a (Central Manobo) > o (AtaTigwa) 0.00291 7.29063
(28) s (Formosan) > h (Atayalic) 0.04098 431225
29) 1 (West NuclearTimor) > n (Atoni) 0.23175 7.02772
(30) t (Ibanagic) > q (AttaPamplo) 0.47297 7.87084
[€15) a (Suauic) > e (Auhelawa) 0.18692 7.98362
(32) ] (MalekulaCentral) > n (Avava) 0.10747 15.49566
(33) a (ProtoCentr) > e (Babar) 0.04891 5.61192
(34) 2 (Choiseul) > o (Babatana) 0.01953 8.94227
(35) 2 (Choiseul) > o (BabatanaAv) 0.01953 1.99952
(36) 2 (Choiseul) > o (BabatanaKa) 0.01953 2.99952
37 Not enough data available for reliable sound change estimates
(38) o (Choiseul) > o (BabatanaTu) 0.01953 2.99961
(39) v (Ivatan) > b (Babuyan) 0.01574 16.97554
(40) a (BorneoCoastBajaw) > e (Bajo) 0.04774 21.59109
41) a (NuclearCordilleran) > A (Balangaw) 0.00387 37.89097
42) ] (BaliSasak) > n (Bali) 0.19166 13.91349
(43) e (ProtoMalay) > El (BaliSasak) 6.064e-04 26.22332
(44) h (BimaSumba) > B (Baliledo) 0.03743 7.64100
(45) P (East CentralMaluku) > f (BandaGeser) 0.05559 3.52479
(46) a (Sulawesi) > o (BanggaiWdi) 0.06991 8.61615
@7) a (Palawano) > o (Banggi) 6.735e-04 7.69053
(48) e (LocalMalay) > a (BanjareseM) 0.10667 36.24790
(49) a tl ic) > o (Banoni) 0.16106 5.69268
(50) T (Sangiric) > d (Bantik) 0.01606 6.99267
(51) b (Sulawesi) > w (Baree) 0.05030 10.71565
(52) q (ProtoMalay) > ? (Barito) 0.04087 15.54090
(53) e (Madak) > o (Barok) 0.04576 1.91240
(54) u (Northern EastFormosan) > o (Basai) 0.00130 5.88492
(55) u (BashiicCentralLuzonNorthernMindoro) > o (Bashiic) 0.02423 63.00884
(56) T (NorthernPhilippine) > y (BashiicCentralLuzonNorthernMindoro) 0.01665 3.54936
(57) i} (Palawano) > n (BatakPalaw) 0.04752 4.94491
(58) ) (SanCristobal) > o (BauroBaroo) 0.00562 1.99981
(59) Not enough data available for reliable sound change estimates
(60) Not enough data available for reliable sound change estimates
1) P (Vitiaz) > £ (Bel) 0.01771 1.06548
(62) u (BerawanLowerBaram) > o (Belait) 0.03125 12.34195
(63) f (Futunic) > h (Bellona) 0.01009 15.97130
(64) t (Pangasinic) > s (Benguet) 0.09759 1.35377
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Code Parent Child Functional load Number of occurrences
(65) u (BerawanLowerBaram) > o (BerawanLon) 0.03125 13.55252
(66) k (NorthSarawakan) > ? (BerawanLowerBaram) 0.15797 10.19426
(67) e (SouthwestNewBritain) > i (Bibling) 0.03719 2.29657
(68) 2 (RajaAmpat) > o (BigaMisool) 0.03843 5.00642
(69) k (CentralPhilippine) > c (BikoINagaC) 9.303e-05 12.87548
(70) a (Blaan) > B (BilaanKoro) 0.01132 23.88863
(71) 1 (Blaan) > n (BilaanSara) 0.08320 18.08416
(72) Not enough data available for reliable sound change estimates

(73) u (Northern NuclearBel) > o (Bilibil) 0.03687 2.95970
(74) a (ProtoMalay) > i (Bilic) 0.00777 19.43024
(75) 2 (Sout dNorth I ic) > o (Bilur) 0.00242 1.97890
(76) t (BimaSumba) > d (Bima) 0.08028 9.97797
(7 b (ProtoCentr) > w (BimaSumba) 0.08312 11.67021
(78) a (NorthSarawakan) > e (Bintulu) 0.07029 9.74568
79 i (Manobo) > u (Binukid) 0.03862 2.90829
(80) i (CentralPhilippine) > u (Bisayan) 0.01651 18.53014
81) i (Bilic) > a (Blaan) 0.08598 17.06499
(82) Not enough data available for reliable sound change estimates

(83) Not enough data available for reliable sound change estimates

(84) t (GorontaloMongondow) > s (BolaangMon) 0.03159 4.79938
(85) o (TukangbesiBonerate) > bl (Bonerate) 0.02521 18.76480
(86) u (Seram) > i (Bonfia) 0.14937 11.37310
87 u (Bontok) > o (BontocGuin) 0.04335 58.88829
(88) a (BontokKankanay) > i (Bontok) 0.10466 3.41602
(89) q (Bontok) > ? (BontokGuin) 8.294e-04 49.64130
(90) u (NuclearCordilleran) > o (BontokKankanay) 0.03806 9.39059
[C2)) u (SuluBorneo) > o (BorneoCoastBajaw) 0.05043 3.53556
92) v (GelaGuadalcanal) > P (Bughotu) 0.09530 1.99015
93) a (Bugis) > El (BugineseSo) 0.00654 17.32980
94) ] (SouthSulawesi) > k (Bugis) 0.10991 2.98167
(95) s (Bughotu) > h (Bugotu) 0.03395 8.55895
(96) e (KayanMurik) > a (Bukat) 0.06056 4.02644
(C0) a (SouthHalmahera) > e (Buli) 0.05583 3.50307
(98) o (Vanikoro) > 2 (Buma) 0.13019 23.27248
(99) a (Sabahan) > o (BunduDusun) 0.05640 1.58162
(100) u (Formosan) > o (Bunun) 2.254e-04 11.98634
(101) u (CentralMaluku) > o (BuruNamrol) 0.01570 19.92112
(102) o (South Bisayan) > u (ButuanTausug) 0.03947 3.20776
(103) u (ButuanTausug) > o (Butuanon) 0.03983 30.32254
(104) T (NorthP MainlandDE ) > 1 (Bwaidoga) 0.10631 8.92246
(105) a (NewCaledonian) > £ (Canala) 0.05974 4.64394
(106) ] (ProtoChuuk) > n (Carolinian) 0.04042 23.82083
(107) u (Bisayan) > o (Cebuano) 0.03656 8.68282
(108) 1 (SouthHalmaheraWestNewGuinea) > r (CenderawasihBay) 0.11907 11.14761
(109) u (EastFormosan) > o (Central Ami) 4.190e-04 12.82795
(110) u (SouthCentralCordilleran) > o (CentralCordilleran) 0.02941 3.43974
(111) e (ProtoMalay) > El (CentralEastern) 6.064e-04 32.49321
(112) i (ProtoOcean) > s (CentralEasternOceanic) 0.00410 2.00058
(113) e (BashiicCentralLuzonNorthernMindoro) > i (CentralLuzon) 0.01063 2.14101
(114) r (ProtoCentr) > T (CentralMaluku) 0.02692 12.80932
(115) u (MaselaSouthBabar) > £ (CentralMas) 0.04503 4.21108
(116) ] (RemoteOceanic) > g (CentralPacific) 0.00869 11.59225
117) k (Peripheral PapuanTip) > g (CentralPapuan) 0.11515 5.29705
(118) u (MesoPhilippine) > o (CentralPhilippine) 0.01374 38.98219
(119) X (NortheastVanuatuBanksIslands) > k (Central Vanuatu) 0.02455 3.46857
(120) i (CenderawasihBay) > u (CentralWestern) 0.12684 1.99006
(121 u (Bisayan) > o (Central Bisayan) 0.03656 7.64073
(122) 1 (East Nuclear Polynesian) > T (Central East Nuclear Polynesian) 0.02709 235911
(123) a (Manobo) > i (Central Manobo) 0.09378 18.50241
(124) a (Santalsabel) > u (Central Santalsabel) 0.27278 1.22175
(125) t (Chamic) > k (ChamChru) 0.34269 7.73602
(126) y (Malayic) > i (Chamic) 0.00237 1.73963
(127) b (ProtoMalay) > P (Chamorro) 0.15451 10.03113
(128) ¥ (East Santalsabel) > g (ChekeHolo) 0.03879 10.10942
(129) o (Sout dNorth I ic) > 2 (Choiseul) 0.00242 8.56855
(130) a (ChamChru) > ) (Chru) 0.02139 31.97181
(131) a (ProtoChuuk) > e (Chuukese) 0.11108 36.12356
(132) a (ProtoChuuk) > e (ChuukeseAK) 0.11108 59.55135
(133) E) (Atayalic) > a (CiuliAtaya) 0.02870 6.00504
(134) e (North Babar) > o (Dai) 0.02409 5.70633
(135) n (North Babar) > 1 (DaweraDawe) 0.16784 23.27929
(136) hi (LandDayak) > n (DayakBakat) 0.26785 7.13031
(137) ] (South West Barito) > n (DayakNgaju) 0.16918 29.67016
(138) a (NorthSarawakan) > e (Dayic) 0.07029 5.15706
(139) a (Loyaltylslands) > e (Dehu) 0.20861 4.46889
(140) g (Bwaidoga) > y (Diodio) 0.08008 12.32717
(141) 1 (NorthPap MainlandDE ) > T (Dobuan) 0.10631 12.30865
(142) P (Southern Malaita) > b (Dorio) 8.555e-04 1.99973
(143) 1 (Nuclear WestCentralPapuan) > T (Doura) 0.13489 5.63596
(144) u (Northern Dumagat) > o (DumagatCas) 0.01544 18.63984
(145) s (SouthwestMaluku) > h (EastDamar) 0.02479 6.75499
(146) a (CentralPacific) > o (EastFijianPolynesian) 0.23158 1.54042
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Code Parent Child Functional load Number of occurrences
(147) c (Formosan) > t (EastFormosan) 0.04224 6.87583
(148) b (MaselaSouthBabar) > v (EastMasela) 0.00417 5.01447
(149) i (BimaSumba) > u (EastSumban) 0.17438 28.36485
(150) b (NortheastVanuatuBankslIslands) > v (EastVanuatu) 0.16115 2.78838
(151) e (Barito) > i (East Barito) 0.02495 4.21938
(152) P (CentralMaluku) > f (East CentralMaluku) 0.09093 7.47879
(153) u (Manus) > o (East Manus) 0.01231 4.11061
(154) g (NewGeorgia) > h (East NewGeorgia) 0.02220 5.62094
(155) a (NuclearTimor) > e (East NuclearTimor) 0.14170 3.51835
(156) 1 (Nuclear Polynesian) > T (East Nuclear Polynesian) 0.04761 79.14382
(157) 5 (Santalsabel) > o (East Santalsabel) 0.02383 4.65059
(158) ) (CentralEastern) > o (EasternMalayoPolynesian) 0.00303 18.76994
(159) a (RemoteOceanic) > e (EasternOuterlslands) 0.14981 13.43554
(160) a (AdmiraltyIslands) > e (Eastern AdmiraltyIslands) 0.16811 7.58136
(161) a (BandaGeser) > o (ElatKeiBes) 0.05446 15.50349
(162) T (SamoicOutlier) > 1 (Ellicean) 0.03331 5.08687
(163) a (Futunic) > e (Emae) 0.20786 3.97652
(164) e (SouthwestBabar) > £ (Emplawas) 0.18331 11.05576
(165)  Not enough data available for reliable sound change estimates

(166) i (BimaSumba) > e (EndeLio) 0.04706 5.22061
(167) a (Sumatra) > El (Enggano) 0.00149 1.61296
(168) Not enough data available for reliable sound change estimates

(169) Not enough data available for reliable sound change estimates

(170) f (Wetar) > h (Erai) 0.03346 7.93007
(171) a (Vanuatu) > e (Erromanga) 0.08559 16.54778
(172) B (SanCristobal) > o (Fagani) 0.00562 1.99961
(173) B (SanCristobal) > o (FaganiAguf) 0.00562 1.99952
(174) 9 (SanCristobal) > o (FaganiRihu) 0.00562 1.99690
(175) Not enough data available for reliable sound change estimates

(176) u (WesternPlains) > o (Favorlang) 0.01234 20.09559
(177) s (EastFijianPolynesian) > c (FijianBau) 0.04333 9.93879
(178) f (Timor) > w (FloresLembata) 0.01025 7.38989
(179) 1 (ProtoAustr) > T (Formosan) 0.01978 16.25315
(180) T (Futunic) > 1 (FutunaAniw) 0.05835 2.94909
(181) T (Futunic) > 1 (FutunaEast) 0.05835 48.57376
(182) 1 (SamoicOutlier) > T (Futunic) 0.03331 74.90293
(183) 1 (WestCentralPapuan) > T (Gabadi) 0.13055 5.24097
(184) u (Ibanagic) > o (Gaddang) 0.01362 18.75014
(185) e (Are) > i (Gapapaiwa) 0.06186 4.23744
(186) a (BimaSumba) > o (GauraNggau) 0.13543 29.26141
(187) a (ProtoMalay) > El (Gayo) 0.00259 24.49089
(188) T (Northern NuclearBel) > z (Gedaged) 0.02021 7.64916
(189) c (GelaGuadalcanal) > s (Gela) 0.01050 2.08324
(190) k (SoutheastSolomonic) > g (GelaGuadalcanal) 0.01749 19.76693
(191) b (GeserGorom) > w (Geser) 0.06536 3.91631
(192) f (BandaGeser) > w (GeserGorom) 0.05946 4.12917
(193)  Not enough data available for reliable sound change estimates

(194) g (Guadalcanal) > (Ghari) 4.995¢-04 9.42542
(195) Not enough data available for reliable sound change estimates

(196) h (Guadalcanal) > Y (GhariNggae) 5.670e-05 2.00000
(197) 2 (Guadalcanal) > o (GhariNgger) 0.00601 2.99863
(198) Not enough data available for reliable sound change estimates

(199) Not enough data available for reliable sound change estimates

(200) a (SouthHalmahera) > o (Giman) 0.11966 11.83686
(201) a (GorontaloMongondow) > o (Gorontalic) 0.12679 8.78982
(202) k (Gorontalic) > ? (GorontaloH) 0.00973 18.65349
(203) a (Sulawesi) > o (GorontaloMongondow) 0.06991 26.41042
(204) s (GelaGuadalcanal) > c (Guadalcanal) 0.01050 3.50693
(205)  Not enough data available for reliable sound change estimates

(206) Not enough data available for reliable sound change estimates

(207) ] (NehanNorthBougainville) > n (Haku) 0.10208 6.26107
(208) i (MesoPhilippine) > u (Hanunoo) 0.02599 24.61094
(209) t (Marquesic) > k (Hawaiian) 0.31942 56.48048
(210) u (Peripheral Central Bisayan) > o (Hiligaynon) 0.02028 1.95625
@11y T (Ambon) > 1 (HituAmbon) 0.03275 16.21990
(212) g (West NewGeorgia) > ¥ (Hoava) 0.00152 7.69893
(213) a (NorthNewGuinea) > e (HuonGulf) 0.13866 4.84173
214) a (LoyaltylIslands) > e (Taai) 0.20861 8.25767
(215) u (Malayic) > o (Iban) 0.00621 12.93856
(216) k (NorthernCordilleran) > q (Ibanagic) 0.40890 11.09862
217) ] (Sabahan) > n (Idaan) 0.13834 5.84917
(218) e (Futunic) > a (IfiraMeleM) 0.20786 4.95522
(219) i (NuclearCordilleran) > o (Ifugao) 0.01254 19.55025
(220) k (Ifugao) > q (IfugaoAmga) 0.34057 4.76075
(221) k (Ifugao) > q (IfugaoBata) 0.34057 17.99754
(222) i (Kallahan) > o (IfugaoBayn) 0.01101 17.75466
(223) n (Wetar) > ] (Tliun) 0.04788 10.14036
(224) u (NorthernLuzon) > o (Tlokano) 0.02660 29.66945
(225) a (Peripheral Central Bisayan) > u (Tlonggo) 0.12642 4.07172
(226) a (SouthernCordilleran) > i (Tlongot) 0.07296 10.35510
227 ] (Ilongot) > n (IlongotKak) 0.06631 9.13131
(228) a (Ivatan) > e (Imorod) 0.08734 6.03794
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Code Parent Child Functional load Number of occurrences
(229) n (SouthwestBabar) > m (Imroing) 0.23281 10.35889
(230) u (SamaBajaw) > o (Inabaknon) 0.02973 19.36631
(231) a (LocalMalay) > e (Indonesian) 0.10667 3.03924
(232) u (Benguet) > o (Inibaloi) 0.03849 64.30170
(233) y (Maranaolranon) > i (Iranun) 0.00959 4.31410
(234) a (Ivatan) > e (Iraralay) 0.08734 11.08683
(235) 1 (Ivatan) > d (Isamorong) 0.01340 14.95905
(236) t (Ibanagic) > s (IsnegDibag) 0.05600 291874
(237) h (Ivatan) > X (Itbayat) 0.00445 31.26009
(238) o (Ivatan) > u (Itbayaten) 5.820e-04 67.10087
(239) u (Kalingaltneg) > o (ItnegBinon) 0.02352 60.52923
(240) 1 (Ivatan) > d (Ivasay) 0.01340 14.96335
(241) g (Bashiic) > y (Ivatan) 0.02574 5.02873
(242) e (Ivatan) > i (IvatanBasc) 0.00723 32.77267
(243) q (ProtoMalay) > h (Javanese) 0.07129 15.44980
(244) a (Northern NewCaledonian) > e (Jawe) 0.13215 8.47484
(245) e (West Barito) > o (Kadorih) 7.673e-05 3.80522
(246) b} (SanCristobal) > o (Kahua) 0.00562 1.99971
(247) 2 (SanCristobal) > o (KahuaMami) 0.00562 1.99952
(248) 1 (Gorontalic) > T (Kaidipang) 0.01053 21.87631
(249) k (KairiruManam) > q (Kairiru) 0.00897 10.55125
(250) u (Schouten) > i (KairiruManam) 0.17315 1.37804
(251) n (Tlongot) > ] (Kakidugenl) 0.06631 9.38577
(252) T (Mansakan) > 1 (Kalagan) 0.04611 3.61546
(253) i (MesoPhilippine) > i (Kalamian) 0.02195 3.10459
(254) i (Kalingaltneg) > o (KalingaGui) 0.01076 22.89422
(255) a (CentralCordilleran) > i (Kalingaltneg) 0.13957 2.25237
(256) s (Benguet) > h (Kallahan) 0.02667 15.50239
(257) s (Kallahan) > h (KallahanKa) 0.00566 1.92678
(258) i (Kallahan) > e (KallahanKe) 0.00403 38.49811
(259) n (BimaSumba) > i} (Kambera) 0.00600 25.28750
(260) b (Tsouic) > v (Kanakanabu) 0.01715 4.07361
(261) v (PatpatarTolai) > w (Kandas) 0.03857 3.91962
(262) u (BontokKankanay) > o (KankanayNo) 0.04380 49.14539
(263) n  (CentralLuzon) > y (Kapampanga) 0.01456 6.07915
(264) t (Ellicean) > d (Kapingamar) 3.974e-05 35.94977
(265) v (LavongaiNalik) > f (KaraWest) 0.02487 421517
(266) a (SouthHalmahera) > e (Kasiralrah) 0.05583 5.86174
(267) e (South West Barito) > € (Katingan) 0.00426 27.03064
(268) 1 (Pasismanua) > i (KaulongAuV) 0.01894 6.17672
(269) a (Northern EastFormosan) > i (Kavalan) 0.08596 4.99960
(270) b (ProtoMalay) > v (KayanMurik) 1.449¢-07 6.64852
271) a (KayanMurik) > e (KayanUmaJu) 0.06056 5.93656
(272) a (SarmiJayapuraBay) > e (KayupulauK) 0.32087 3.93441
(273) a (FloresLembata) > e (Kedang) 0.10748 14.89342
274) b (KeiTanimbar) > B (KeiTanimba) 4.198e-05 4.13306
(275) a (SoutheastMaluku) > e (KeiTanimbar) 0.17157 1.74318
(276) a (Dayic) > e (KelabitBar) 0.07691 10.95832
277) e (East NuclearTimor) > £ (Kemak) 2.255e-04 5.94197
(278) i (NorthSarawakan) > e (KenyahLong) 0.03423 6.39511
(279) a (LocalMalay) > o (Kerinci) 0.01029 37.28182
(280) a (KilivilaLouisiades) > e (Kilivila) 0.14778 5.83519
(281) o (Peripheral PapuanTip) > a (KilivilaLouisiades) 0.17286 223572
(282) o (Central Santalsabel) > 5 (KilokakaY's) 0.02707 5.60509
(283) b (MicronesianProper) > n (Kiribati) 0.04469 10.23912
(284) ? (Manam) > k (Kis) 0.07162 3.84299
(285) t (KisarRoma) > k (Kisar) 0.05336 24.56857
(286) f (SouthwestMaluku) > w (KisarRoma) 0.03321 7.75331
(287) a (BimaSumba) > o (Kodi) 0.13543 22.04728
(288) 1 (ProtoCentr) > T (Koiwailria) 0.06793 11.95360
(289) 2 (Central Santalsabel) > o (Kokota) 0.02707 31.07342
(290) e (Pesisir) > o (Komering) 0.00325 8.58447
(291) a (Blaan) > b (KoronadalB) 0.01132 30.81323
(292) s (NgeroVitiaz) > T (Kove) 0.06561 7.13972
(293) u (PatpatarTolai) > a (Kuanua) 0.16803 1.98361
(294) B (West NewGeorgia) > o (Kubokota) 0.00573 2.00145
(295) v (Nuclear WestCentralPapuan) > b (Kuni) 0.11533 6.21112
(296) Not enough data available for reliable sound change estimates

(297) a (MicronesianProper) > e (Kusaie) 0.12251 14.33579
(298) 2 (Northern Malaita) > o (Kwai) 0.00348 1.99952
(299) a (Northern Malaita) > o (Kwaio) 0.18875 8.31055
(300) 1 (Tanna) > T (Kwamera) 0.05929 25.71039
(301) ] (Northern Malaita) n (KwaraaeSol) 0.03728 9.80996
(302) Not enough data available for reliable sound change estimates

(303) e (MelanauKajang) > B (Lahanan) 0.00231 14.95868
(304) i (Willaumez) > e (Lakalai) 0.11589 1.41234
(305) T (Nuclear WestCentralPapuan) > 1 (Lala) 0.13489 4.70309
(306) u (FloresLembata) > o (LamaholotI) 0.02895 10.53359
(307) Not enough data available for reliable sound change estimates

(308) s (BimaSumba) > h (Lamboya) 0.03743 9.36744
(309) o (Bibling) > u (LamogaiMul) 0.12203 5.67124
(310) a (Pesisir) > E) (Lampung) 0.00929 12.80317
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(311) e (ProtoMalay) > a (LandDayak) 0.04499 11.18206
(312) Not enough data available for reliable sound change estimates

(313) k (Northern Malaita) > g (Lau) 0.07399 10.37078
(314) Not enough data available for reliable sound change estimates

(315) Not enough data available for reliable sound change estimates

(316) T (NewlIreland) > 1 (LavongaiNalik) 0.13377 4.12434
(317) a (East Manus) > e (Leipon) 0.13133 15.77294
(318) a (Tanna) > e (Lenakel) 0.05393 9.10010
319) Not enough data available for reliable sound change estimates

(320) h (Gela) ¥ (LengoGhaim) 5.895e-05 1.98182
(321) Not enough data available for reliable sound change estimates

(322) f (SouthwestMaluku) > w (Letinese) 0.03321 8.50360
(323) n (West Manus) > I (Levei) 0.18931 43.18724
(324) a (LavongaiNalik) > e (LihirSungl) 0.07781 10.60106
(325) i (West Manus) > e (Likum) 0.08687 4.08584
(326) e (EndeLio) > B} (LioFloresT) 0.00290 10.17585
(327) a (Malayan) > e (LocalMalay) 0.09530 18.43396
(328) Not enough data available for reliable sound change estimates

(329) T (Manus) > ? (Loniu) 0.00619 8.93647
(330) a (SoutheastIslands) > e (Lou) 0.09902 12.46015
(331) i (LocalMalay) > e (LowMalay) 0.03770 2.99404
(332) a (RemoteOceanic) > e (Loyaltylslands) 0.14981 15.79651
(333) t (Ellicean) > k (Luangiua) 0.47404 39.73227
(334) e (MonoUruava) > a (LungaLunga) 0.13896 3.85273
(335) K} (West NewGeorgia) > o (Lungga) 0.00573 2.00155
(336) B (West NewGeorgia) > o (Luga) 0.00573 2.00145
(337) b (East Barito) > w (Maanyan) 0.07537 6.13215
(338) a (NewIreland) > e (Madak) 0.16211 8.90472
(339) k (Madak) > g (MadakLamas) 0.05218 9.51948
(340) 1 (LavongaiNalik) > T (Madara) 0.10006 10.95189
(341) u (ProtoMalay) > o (Madurese) 0.01585 39.16274
(342) 1 (CentralPapuan) > T (MagoriSout) 0.12605 395178
(343) a (Nuclear PapuanTip) > i (Maisin) 0.22933 2.17692
(344) n (SouthSulawesi) > ] (Makassar) 0.18370 10.70075
(345) k (MalaitaSanCristobal) > ? (Malaita) 0.09152 5.02310
(346) v (SoutheastSolomonic) > f (MalaitaSanCristobal) 0.06368 25.62607
(347) Not enough data available for reliable sound change estimates

(348) ] (LocalMalay) > n (MalayBahas) 0.17169 34.31949
(349) P (Malayic) > m (Malayan) 0.17398 3.33605
(350) q (ProtoMalay) > h (Malayic) 0.07129 31.25704
(351) a (Vanuatu) > e (MalekulaCentral) 0.08559 25.93669
(352) a (NortheastVanuatuBanksIslands) > e (MalekulaCoastal) 0.08702 31.59187
(353) a (Vitiaz) > o (Maleu) 0.11223 11.90975
(354) e (Bugis) > a (Maloh) 0.07175 4.70755
(355) u (CentralPhilippine) > o (Mamanwa) 0.01883 38.86565
(356) u (East NuclearTimor) > a (Mambai) 0.34369 4.99285
(357) e (BimaSumba) > a (Mamboru) 0.13262 7.46411
(358) k (KairiruManam) > ? (Manam) 0.01548 9.58872
(359) a (Marquesic) > e (Mangareva) 0.26245 3.72483
(360) s (BimaSumba) > c (Manggarai) 2.420e-05 8.94154
(361) T (Tahitic) > 1 (Manihiki) 9.361e-04 13.67126
(362) ] (SouthernPhilippine) > n (Manobo) 0.07976 13.17836
(363) i (AtaTigwa) > o (ManoboAtad) 0.03723 66.54667
(364) i (AtaTigwa) > o (ManoboAtau) 0.03723 66.57068
(365) i (Central Manobo) > a (ManoboDiba) 0.12386 376411
(366) g (West Central Manobo) > h (Manobollia) 0.03983 13.28241
(367) a (South Manobo) > i (ManoboKala) 0.12673 7.79055
(368) i (South Manobo) > A (ManoboSara) 2.271e-04 58.20252
(369) o (AtaTigwa) > i (ManoboTigw) 0.03723 11.93633
(370) a (West Central Manobo) > i (ManoboWest) 0.13743 4.54113
(371) 1 (Mansakan) > T (Mansaka) 0.04611 18.44830
(372) o (CentralPhilippine) > u (Mansakan) 0.01883 21.46241
(373) a (Eastern AdmiraltyIslands) > e (Manus) 0.13652 475105
(374) v (Tahitic) > w (Maori) 0.00255 12.29480
(375) 1 (BorneoCoastBajaw) > w (Mapun) 0.03973 7.82813
(376) u (Maranaolranon) > o (Maranao) 0.00377 54.21909
(377) i (SouthernPhilippine) > e (Maranaolranon) 0.00422 7.67944
(378) Not enough data available for reliable sound change estimates

(379) Not enough data available for reliable sound change estimates

(380) Not enough data available for reliable sound change estimates

(381) Not enough data available for reliable sound change estimates

(382) s (East NewGeorgia) > c (Marovo) 0.00144 4.87889
(383) a (Marquesic) > e (Marquesan) 0.26245 10.48977
(384) f (Central East Nuclear Polynesian) > h (Marquesic) 0.05235 2.06222
(385) a (MicronesianProper) > e (Marshalles) 0.12251 42.07442
(386) i (South Babar) > e (MaselaSouthBabar) 0.04148 3.02753
(387) e (Northern NuclearBel) > i (Matukar) 0.04103 3.86380
(388) t (Willaumez) > f (Maututu) 0.00143 597137
(389) Not enough data available for reliable sound change estimates

(390) Not enough data available for reliable sound change estimates

(391) Not enough data available for reliable sound change estimates

(392) Not enough data available for reliable sound change estimates
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(393) Not enough data available for reliable sound change estimates

(394) e (Northern NuclearBel) > i (Megiar) 0.04103 3.96950
(395) b (Nuclear WestCentralPapuan) > P (Mekeo) 0.01057 10.53926
(396) e (Northwest) > a (MelanauKajang) 0.05269 4.10012
(397) a (MelanauKajang) > e (MelanauMuk) 0.05542 8.30760
(398) ] (LocalMalay) > n (Melayu) 0.17169 15.57376
(399) e (LocalMalay) > a (MelayuBrun) 0.10667 57.81798
(400)  Not enough data available for reliable sound change estimates

(401) T (Vitiaz) > 1 (Mengen) 0.09236 7.76084
(402) a (WestSanto) > e (Merei) 0.12570 4.40581
(403) u (East Barito) > o (MerinaMala) 0.00538 45.42570
(404) P (WesternOceanic) > b (MesoMelanesian) 0.06671 3.25436
(405) e (ProtoMalay) > i (MesoPhilippine) 0.00192 27.69856
(406) s (ProtoMicro) > t (MicronesianProper) 0.14436 10.32542
(407) e (Malayan) > a (Minangkaba) 0.09530 36.65853
(408) b (RajaAmpat) > P (Minyaifuin) 0.08190 5.44290
(409) T (KilivilaLouisiades) > 1 (Misima) 0.09569 2.85853
(410) u (Malayic) > o (Moken) 0.00621 18.67524
(“411) a (Ponapeic) > 2 (Mokilese) 0.00863 20.21510
(412) k (Bwaidoga) > ? (Molima) 0.02226 6.39306
(413) T (MonoUruava) > 1 (Mono) 0.18018 7.90990
(414) Not enough data available for reliable sound change estimates

(415) Not enough data available for reliable sound change estimates

(416) I ic > n (MonoUruava) 0.07198 4.50934
(417) t (CenderawasihBay) > ? (Mor) 0.00191 7.90698
(418) a (Sulawesi) > o (Mori) 0.06991 15.10951
(419) d (ProtoChuuk) > t (Mortlockes) 0.10821 17.95820
(420) v (EastVanuatu) > w (Mota) 0.04447 4.78867
(421) v (SinagoroKeapara) > h (Motu) 0.01870 13.39891
(422) T (Bibling) > X (Mouk) 3.176e-05 16.89672
(423) u (Sulawesi) > o (MunaButon) 0.04575 3.73293
(424) i} (Western Munic) > n (MunaKatobu) 2.731e-04 6.02727
(425) d (UlatInai) > T (MurnatenAl) 0.00181 5.95393
(426) T (ProtoOcean) > 1 (Mussau) 0.16171 3.95147
(427) a (EastVanuatu) > € (Mwotlap) 0.01111 27.83527
(428) T (EndeLio) > z (Nage) 0.02129 1.96583
(429) i (MalekulaCoastal) > e (Nahavaq) 0.05885 9.63004
(430) n (Willaumez) > 1 (NakanaiBil) 0.00412 1.02690
(431) a (LavongaiNalik) > E} (Nalik) 0.00211 12.96772
(432) u (Central Vanuatu) > i (Namakir) 0.18127 21.52549
(433) a (MalekulaCentral) > e (Naman) 0.13582 33.25250
(434) b (MalekulaCoastal) > P (Nati) 0.01049 19.54611
(435) T (SoutheastIslands) > 1 (Nauna) 0.10938 5.60587
(436) a (ProtoMicro) > e (Nauru) 0.13661 5.67814
(437) Not enough data available for reliable sound change estimates

(438) s (NehanNorthBougainville) > h (Nehan) 0.05608 13.16549
(439) ] (Nehan) > n (NehanHape) 0.11803 18.93949
(440) a (. > o (NehanNorthBougainville) 0.16106 4.34745
(441) e (Northern NewCaledonian) > a (Nelemwa) 0.13215 10.43158
(442) o (Utupua) > 3 (Nembao) 0.01621 4.98208
(443) a (LoyaltyIslands) > e (Nengone) 0.20861 5.30862
(444) m (Vanuatu) > n (Nese) 0.35703 18.91500
(445) a (MalekulaCentral) > e (Neveei) 0.13582 34.11813
(446) e (LoyaltyIslands) > a (NewCaledonian) 0.20861 1.71479
(447) k ( dN 1 > g (NewGeorgia) 0.08381 5.00348
(448) e (MesoMelanesian) > i (Newlreland) 0.06281 3.31247
(449) w (BimaSumba) > v (Ngadha) 4.053e-05 14.09575
(450) i (Aru) > e (NgaiborSAr) 0.02299 6.77784
(451) f (NorthNewGuinea) > w (NgeroVitiaz) 0.01667 3.53470
(452) Not enough data available for reliable sound change estimates

(453) s (Gela) > h (Nggela) 0.05008 17.07009
(454) b (Central Vanuatu) > P (Nguna) 0.06113 6.26520
(455) P (Sumatra) > f (Nias) 0.00205 8.90278
(456) f (NilaSerua) > h (Nila) 0.01125 4.39065
(457) t (TeunNilaSerua) > 1 (NilaSerua) 0.13648 1.88492
(458) u (Nehan) > W (Nissan) 0.02937 8.95963
(459) a (Tongic) > e (Niue) 0.18204 431952
(460) 1 (North Babar) > n (NorthBabar) 0.16784 6.84401
(461) r (ProtoCentr) > T (NorthBomberai) 0.02692 10.12083
(462) v (WesternOceanic) > P (NorthNewGuinea) 0.12924 8.71798
(463) a (Nuclear PapuanTip) > e (NorthF Mainl, Ei 0.27192 3.13375
(464) a (Northwest) > e (NorthSarawakan) 0.05269 5.44048
(465) e (Babar) > € (North Babar) 0.03978 1.27682
(466) b (Sulawesi) > W (North Minahasan) 0.05030 3.03447
(467) u (Vanuatu) > o (NortheastVanuatuBankslIslands) 0.06513 4.83269
(468) T (NorthernLuzon) > g (NorthernCordilleran) 0.01688 4.17784
(469) m (NorthernPhilippine) > n (NorthernLuzon) 0.15955 5.87812
(470) I (ProtoMalay) > n (NorthernPhilippine) 0.10751 18.96525
(471) o (NorthernCordilleran) > u (Northern Dumagat) 0.01648 1.25949
(472) 1 (EastFormosan) > n (Northern EastFormosan) 0.14981 5.83985
(473) P (Malaita) > b (Northern Malaita) 0.00727 4.99257
(474) a (NewCaledonian) > o (Northern NewCaledonian) 0.17212 3.00312
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(475) b (Bel) > P (Northern NuclearBel) 0.08564 2.04429
(476) ] (Sangiric) > n (Northern Sangiric) 0.10504 18.92173
477) q (ProtoMalay) > ? (Northwest) 0.04087 30.80231
(478) 1 (CentralCordilleran) > k (NuclearCordilleran) 0.14865 1.01516
(479) b (Timor) > f (NuclearTimor) 0.08459 2.80832
(480) 1 (PapuanTip) > n (Nuclear PapuanTip) 0.10099 4.22343
(481) ] (Polynesian) > n (Nuclear Polynesian) 0.01742 5.34206
(482) T (WestCentralPapuan) > 1 (Nuclear WestCentralPapuan) 0.13055 1.52585
(483) t (Ellicean) > d (Nukuoro) 3.974e-05 48.84748
(484) f (HuonGulf) > W (NumbamiSib) 0.03605 5.99986
(485) t (CenderawasihBay) > k (Numfor) 0.18043 10.67064
(486) f (Seram) > h (Nunusaku) 0.02050 9.64666
(487) a (LocalMalay) > Bl (Ogan) 0.00113 2290283
(488) 7 (Javanese) > n (OldJavanes) 0.12968 22.81888
(489) t (Central Vanuatu) > T (Orkon) 0.18595 20.59925
(490) B (Southern Malaita) > o (Oroha) 0.01151 1.99952
(491) T (EastVanuatu) > 1 (PaameseSou) 0.17094 18.23342
(492) s (Formosan) > t (Paiwan) 0.10317 11.06529
(493) a (ProtoMalay) > e (Palauan) 0.04499 11.70163
(494) i (Palawano) > EY (PalawanBat) 4.146e-04 36.88428
(495) i (MesoPhilippine) > u (Palawano) 0.02599 5.66511
(496) Not enough data available for reliable sound change estimates

(497) u (Pangasinic) > o (Pangasinan) 0.03899 25.70031
(498) Not enough data available for reliable sound change estimates

(499) a (WesternOceanic) > o (PapuanTip) 0.15356 3.56136
(500) I (SouthwestNewBritain) > n (Pasismanua) 0.09977 3.11319
(501) v (PatpatarTolai) > h (Patpatar) 0.00182 8.75307
(502) a (SouthN > e (PatpatarTolai) 0.15474 6.20403
(503) e (SeramStraits) > i (Paulohi) 0.18832 3.98409
(504) u (Formosan) > o (Pazeh) 2.254e-04 6.81642
(505) f (Tahitic) > h (Penrhyn) 0.02693 5.16875
(506) n (Wetar) > ) (Perai) 0.04788 4.13934
(507) u (Central Bisayan) > o (Peripheral Central Bisayan) 0.02827 1.93754
(508) e (PapuanTip) > a (Peripheral PapuanTip) 0.19334 3.54732
(509) q (ProtoMalay) > h (Pesisir) 0.07129 14.80076
(510) v (EastVanuatu) > f (PeteraraMa) 0.01242 17.18743
(511) a (ChamChru) > i (PhanRangCh) 0.00636 12.19166
(512)  Not enough data available for reliable sound change estimates

(513) v (EastFijianPolynesian) > f (Polynesian) 0.05871 17.52595
(514) a (Ponapeic) > e (Ponapean) 0.16942 10.52294
(515) a (PonapeicTrukic) > e (Ponapeic) 0.13099 19.78210
(516) t (MicronesianProper) > d (PonapeicTrukic) 0.04291 17.55398
(517) e (BimaSumba) > a (Pondok) 0.13262 6.53158
(518) B (TukangbesiBonerate) > [ (Popalia) 0.00989 10.98695
(519) e (CentralEastern) > Bl (ProtoCentr) 0.00248 3.97165
(520) o (PonapeicTrukic) > a (ProtoChuuk) 0.09341 2.83945
(521) I (ProtoAustr) > n (ProtoMalay) 0.13485 12.99231
(522) v (RemoteOceanic) > f (ProtoMicro) 0.04980 13.02087
(523) a (EasternMalayoPolynesian) > o (ProtoOcean) 0.09981 7.99270
(524) f (SamoicOutlier) > w (Pukapuka) 0.00204 8.90305
(525) a (NorthBomberai) > e (PulauArgun) 0.13318 12.93777
(526) u (ProtoChuuk) > 1 (PuloAnna) 8.595e-06 28.37331
(527) d (ProtoChuuk) > t (PuloAnnan) 0.10821 26.92081
(528) d (ProtoChuuk) > t (Puluwatese) 0.10821 32.33646
(529) u (KayanMurik) > o (PunanKelai) 0.00695 11.47865
(530) b (Formosan) > v (Puyuma) 0.02080 5.97573
(531) s (EastVanuatu) > h (Raga) 0.03550 19.03806
(532) T (CenderawasihBay) > 1 (RajaAmpat) 0.10632 10.89494
(533) f (East Nuclear Polynesian) > h (RapanuiEas) 0.05254 6.51440
(534) a (Tahitic) > e (Rarotongan) 0.23947 2.99725
(535) a (ProtoMalay) > B (RejangReja) 0.00259 33.94479
(536) i (CentralEasternOceanic) > a (RemoteOceanic) 0.30671 1.87121
(537) T (Futunic) > g (Rennellese) 0.01560 46.78448
(538) b (Choiseul) > o (Ririo) 0.01953 8.10758
(539) T (NorthNewGuinea) > z (Riwo) 0.01094 1.23968
(540) T (KisarRoma) > r (Roma) 0.00324 9.86839
(541) k (Nuclear WestCentralPapuan) > h (Roro) 0.04267 7.79458
(542) f (West NuclearTimor) > b (RotiTerman) 0.05510 4.89359
(543) t (WestFijianRotuman) > f (Rotuman) 0.07237 18.85436
(544) B (West NewGeorgia) > o (Roviana) 0.00573 6.86288
(545) u (Formosan) > o (Rukai) 2.254e-04 9.26163
(546) k (Tahitic) > ? (Rurutuan) 0.00737 41.17228
(547) u (Palawano) > o (SWPalawano) 7.014e-04 10.93716
(548) f (Southern Malaita) > h (Saa) 0.00833 23.36029
(549) Not enough data available for reliable sound change estimates

(550) 5 (Southern Malaita) > o (SaaSaaVill) 0.01151 2.00000
(551) B} (Southern Malaita) > o (SaaUkiNiMa) 0.01151 1.99961
(552) Not enough data available for reliable sound change estimates

(553) u (Tsouic) > o (Saaroa) 0.00593 29.89765
(554) a (Northwest) > o (Sabahan) 0.01254 7.65235
(555) d (ProtoChuuk) > t (SaipanCaro) 0.10821 30.24687
(556) u (Formosan) > o (Saisiat) 2.254e-04 32.49754
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(557) a (Vanuatu) > B (SakaoPortO) 1.415¢-05 7.37912
(558) v (Suauic) > h (Saliba) 0.01548 5.59439
(559) e (ProtoMalay) > a (SamaBajaw) 0.04499 11.37100
(560) a (SuluBorneo) > i (SamalSiasi) 0.03121 4.55207
(561) u (CentralLuzon) > o (SambalBoto) 0.03570 51.44942
(562) k (SamoicOutlier) > ? (Samoan) 7.913e-05 40.57180
(563) T (Nuclear Polynesian) > 1 (SamoicOutlier) 0.04761 2.52276
(564) Not enough data available for reliable sound change estimates

(565) h (Northern Sangiric) > T (SangilSara) 0.01859 10.57112
(566) q (Northern Sangiric) > ? (Sangir) 0.17663 33.66747
(567) ? (Northern Sangiric) > q (SangirTabu) 0.17663 5.11841
(568) a (Sulawesi) > e (Sangiric) 0.06360 9.41251
(569) 1 (SanCristobal) > T (SantaAna) 0.20803 20.89020
(570) K} (SanCristobal) > o (SantaCatal) 0.00562 1.99971
(571) B ( TrelandNorthwes ic) > h (Santalsabel) 0.01828 6.35726
(572) 1 (NehanNorthBougainville) > n (SaposaTinputz) 0.13005 8.23827
(573) a (Blaan) > u (SaranganiB) 0.10239 1.65720
(574) o (SarmiJayapuraBay) > a (Sarmi) 0.30507 3.74591
(575) 1 (NorthNewGuinea) > T (SarmiJayapuraBay) 0.09033 9.81639
(576) a (BaliSasak) > £l (Sasak) 0.07763 7.22450
(577) a (ProtoChuuk) > e (Satawalese) 0.11108 19.48892
(578) a (BimaSumba) > e (Savu) 0.13262 10.66529
(579) n (NorthNewGuinea) > b (Schouten) 0.12461 3.55253
(580) a (Atayalic) > u (Sediq) 0.15623 4.94540
(581) f (Western Admiraltylslands) > h (Seimat) 0.03838 5.52135
(582) u (NorthBomberai) > i (Sekar) 0.07251 14.57543
(583) b (SoutheastMaluku) > h (Selaru) 0.00154 5.27609
(584) Not enough data available for reliable sound change estimates

(585) £ (Pasismanua) > e (Sengseng) 0.00635 6.51904
(586) T (East CentralMaluku) > 1 (Seram) 0.17834 9.26050
(587) 1 (Nunusaku) > T (SeramStraits) 0.08036 17.65607
(588) e (MaselaSouthBabar) > € (Serili) 0.03391 27.97054
(589) f (NilaSerua) > w (Serua) 0.09929 771214
(590) ] (PatpatarTolai) > n (Siar) 0.11079 791352
(591) n (FloresLembata) > 1 (Sika) 0.12345 10.33270
(592) f (Ellicean) > h (Sikaiana) 0.01500 18.73830
(593) B (West NewGeorgia) > o (Simbo) 0.00573 3.68466
(594) a (CentralPapuan) > o (SinagoroKeapara) 0.25340 1.00322
(595) a (LandDayak) > o (Singhi) 0.01654 17.32791
(596) u (EastFormosan) > o (Siraya) 4.190e-04 8.28489
(597) ) (Choiseul) > o (Sisingga) 0.01953 13.70360
(598) Not enough data available for reliable sound change estimates

(599) T (BimaSumba) > z (Soa) 0.00401 6.96601
(600) a (Sarmi) > e (Sobei) 0.23073 10.06460
(601) k (CentralMaluku) > ? (Soboyo) 0.00549 7.46123
(602) a (NehanNorthBougainville) > e (Solos) 0.10574 4.14147
(603) Not enough data available for reliable sound change estimates

(604) 1 (Ambon) > T (SouAmanaTe) 0.03275 3.58352
(605) T (NorthernLuzon) > 1 (SouthCentralCordilleran) 0.03231 7.74272
(606) n (MaselaSouthBabar) > 1 (SouthEastB) 0.25859 6.79647
(607) a (Central Vanuatu) > e (SouthEfate) 0.06242 9.08441
(608) v (SouthHalmaheraWestNewGuinea) > P (SouthHalmahera) 0.04413 6.86021
(609) u (EasternMalayoPolynesian) > i (SouthHalmaheraWestNewGuinea) 0.15907 291215
(610) i (NewlIreland) > u [¢ IrelandNorthw 0.17058 3.74428
(611) u (Sulawesi) > o (SouthSulawesi) 0.04575 8.90368
(612) t (Babar) > k (South Babar) 0.08233 5.96986
(613) 1 (Bisayan) > y (South Bisayan) 0.06356 5.93967
(614) a (Manobo) > i (South Manobo) 0.09378 14.76928
(615) y (West Barito) > i (South West Barito) 0.00602 4.16231
(616) o (Eastern AdmiraltyIslands) > u (SoutheastIslands) 0.01939 2.52762
(617) r (ProtoCentr) > T (SoutheastMaluku) 0.02692 16.51716
(618) T (CentralEasternOceanic) > 1 (SoutheastSolomonic) 0.18698 6.93482
(619) t (SouthCentralCordilleran) > b (SouthernCordilleran) 0.17112 1.97141
(620) e (ProtoMalay) > i (SouthernPhilippine) 0.00192 17.69275
(621) 1 (Malaita) > n (Southern Malaita) 0.09412 3.02851
(622) o (South Babar) > u (SouthwestBabar) 0.05720 5.18676
(623) b (Timor) > w (SouthwestMaluku) 0.05085 6.39151
(624) i (Vitiaz) > u (SouthwestNewBritain) 0.23570 3.84871
(625) u (Atayalic) > o (SquligAtay) 0.00681 13.92923
(626) k (Suauic) > ? (Suau) 0.02509 20.06806
(627) T (Nuclear PapuanTip) > 1 (Suauic) 0.04206 7.42557
(628) i (Subanun) > o (SubanonSio) 0.03138 42.58704
(629) a (SouthernPhilippine) > i (Subanun) 0.05979 13.92604
(630) g (Subanun) > d (SubanunSin) 0.15626 6.97087
(631) e (ProtoMalay) > a (Sulawesi) 0.04499 11.63780
(632) u (SamaBajaw) > o (SuluBorneo) 0.02973 3.89781
(633) e (ProtoMalay) > o (Sumatra) 0.00512 23.81901
(634) ] (ProtoMalay) > n (Sunda) 0.10751 21.82474
(635) u (South Bisayan) > o (Surigaonon) 0.03947 24.45484
(636) a (Erromanga) > e (SyeErroman) 0.11628 12.15031
(637) t (SouthSulawesi) > ? (TaeSToraja) 0.06897 3.10286
(638) ] (Tboli) > n (Tagabili) 0.10214 23.38929
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Code Parent Child Functional load Number of occurrences
(639) u (CentralPhilippine) > o (TagalogAnt) 0.01883 10.16369
(640) k (Kalamian) > q (TagbanwaAb) 0.42879 5.41452
(641) q (Kalamian) > k (TagbanwaKa) 0.42879 17.73591
(642) u (Tahitic) > o (Tahiti) 0.19238 6.98869
(643) e (Tahitic) > a (TahitianMo) 0.23947 3.68949
(644) a (Tahitic) > e (Tahitianth) 0.23947 271372
(645) f (Central East Nuclear Polynesian) > h (Tahitic) 0.05235 6.11830
(646) v (SaposaTinputz) > f (Taiof) 0.04497 6.79178
(647) 1 (Ellicean) > T (Takuu) 0.01827 30.88407
(648) Not enough data available for reliable sound change estimates

(649) Not enough data available for reliable sound change estimates

(650) Not enough data available for reliable sound change estimates

(651)  Not enough data available for reliable sound change estimates

(652) h (Guadalcanal) > Y (TalisePole) 5.670e-05 1.97576
(653) f (Wetar) > h (Talur) 0.03346 6.74401
(654) e (Vanikoro) > a (Tanema) 0.28248 10.81075
(655) a (PatpatarTolai) > e (Tanga) 0.10990 12.52910
(656) e (Utupua) > u (Tanimbili) 0.10880 6.71919
(657) a (Vanuatu) > El (Tanna) 0.01056 13.80984
(658) T (Tanna) > 1 (TannaSouth) 0.05929 26.23479
(659) a (Vanuatu) > e (Tape) 0.08559 36.62961
(660) Not enough data available for reliable sound change estimates

(661) f (Sarmi) > P (Tarpia) 0.09285 4.76042
(662) o (ButuanTausug) > u (Tausuglolo) 0.03983 38.80244
(663)  Not enough data available for reliable sound change estimates

(664) a (Bilic) > b (Tboli) 0.01846 18.79298
(665) B} (Tboli) > o (TboliTagab) 0.02446 2.78683
(666) B (Vanikoro) > o (Teanu) 0.13019 24.94671
(667) 1 (SouthwestBabar) > n (TelaMasbua) 0.17076 14.35748
(668) s (SaposaTinputz) > h (Teop) 0.06456 11.64051
(669) i} (East NuclearTimor) > n (TetunTerik) 0.02632 3.88184
(670) t (TeunNilaSerua) > ? (Teun) 0.01477 8.79107
(671) e (SouthwestMaluku) > € (TeunNilaSerua) 0.00128 6.36734
(672) b (WesternPlains) > f (Thao) 0.01723 9.66201
(673) u (LavongaiNalik) > a (Tiang) 0.23417 7.41175
(674) a (LavongaiNalik) > o (Tigak) 0.10194 2.85222
(675) T (Futunic) > 1 (Tikopia) 0.05835 3.75175
(676) T (ProtoCentr) > T (Timor) 0.02692 17.70656
(677) e (Dayic) > o (TimugonMur) 0.00467 20.83722
(678) s (Northern Malaita) > o (Toambaita) 0.01236 5.00367
(679) k (Sumatra) > h (TobaBatak) 0.01209 10.18636
(680) s (SamoicOutlier) > h (Tokelau) 0.02620 9.71242
(681) g (Guadalcanal) > h (Tolo) 0.04461 9.43634
(682) a (Tongic) > o (Tongan) 0.28401 6.49634
(683) s (Polynesian) > h (Tongic) 0.04938 24.85227
(684) 1 (North Minahasan) > d (Tonsea) 0.05604 2.89546
(685) b (North Minahasan) > w (Tontemboan) 0.12446 9.61430
(686) n (MonoUruava) > 1 (Torau) 0.17242 4.80739
(687) a (Tsouic) > o (Tsou) 0.00357 26.52983
(688) d (Formosan) > c (Tsouic) 0.02777 7.43830
(689) n (Tahitic) > ] (Tuamotu) 0.00257 17.01166
(690) a (Wetar) > i (Tugun) 0.34504 3.34154
(691) a (MunaButon) > o (TukangbesiBonerate) 0.19256 6.52913
(692) a (LavongaiNalik) > e (TungagTung) 0.07781 8.41577
(693) u (Barito) > o (Tunjung) 0.00125 6.26453
(694) s (Ellicean) > h (Tuvalu) 0.01029 12.42513
(695) P (Are) > f (Ubir) 0.00167 1.99937
(696)  Not enough data available for reliable sound change estimates

(697) P (Aru) > f (UjirNAru) 0.01141 10.59153
(698) h (Nunusaku) > b (UlatInai) 0.07007 6.57134
(699) o (Erromanga) > e (Ura) 0.05761 9.45115
(700) 1 (MonoUruava) > T (Uruava) 0.18018 8.71608
(701) a (EasternOuterlslands) > o (Utupua) 0.19429 6.30089
(702) s (SamoicOutlier) > h (UveaEast) 0.02620 28.16233
(703) T (Futunic) > 1 (UveaWest) 0.05835 27.69390
(704) T (Futunic) > 1 (VaeakauTau) 0.05835 41.42212
(705) u (Choiseul) > o (Vaghua) 3.654¢-05 19.13794
(706)  Not enough data available for reliable sound change estimates

(707) a (EasternOuterlslands) > e (Vanikoro) 0.33088 4.43031
(708) o (Vanikoro) > e (Vano) 0.10677 4.13392
(709) o (RemoteOceanic) > u (Vanuatu) 0.11711 14.34763
(710) o (Choiseul) > o (Varisi) 0.01953 6.43868
(711) Not enough data available for reliable sound change estimates

(712) T (SinagoroKeapara) > 1 (Vilirupu) 0.17037 8.15153
(713) a (NgeroVitiaz) > e (Vitiaz) 0.13267 4.47748
(714) B (MesoMelanesian) > d (Vitu) 0.02619 6.27238
(715) t (HuonGulf) > r (Wampar) 0.06174 5.81284
(716) s (BimaSumba) > h (Wanukaka) 0.03743 14.17816
(717)  Not enough data available for reliable sound change estimates

(718) v (CenderawasihBay) > w (Waropen) 0.08865 4.74200
(719) T (GeserGorom) > 1 (Watubela) 0.17521 13.68799
(720) 1 (AreTaupota) > T (Wedau) 0.04316 3.56623
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Code Parent Child Functional load Number of occurrences
(721) i (BimaSumba) > e (WejewaTana) 0.04706 11.31057
(722) u (Seram) > v (Werinama) 3.739¢-05 7.78342
(723) t (CentralPapuan) > k (WestCentralPapuan) 0.13745 14.10036
(724) a (ProtoCentr) > o (WestDamar) 0.02891 9.89554
(725) f (CentralPacific) > h (WestFijianRotuman) 0.00402 4.95883
(726) k (NortheastVanuatuBanksIslands) > h (WestSanto) 0.01801 2.59859
(727) a (Barito) > e (West Barito) 0.06510 2.67923
(728) a (Central Manobo) > i (West Central Manobo) 0.12386 21.47034
(729) a (Manus) > e (West Manus) 0.16506 7.10396
(730) 5 (NewGeorgia) > 0 (West NewGeorgia) 0.00631 2.83443
(731) r (NuclearTimor) > 1 (West NuclearTimor) 0.14621 3.15074
(732) Not enough data available for reliable sound change estimates

(733) i (West Central Manobo) > e (WesternBuk) 4.647e-04 76.71920
(734) s (WestFijianRotuman) > c (WesternFij) 0.00926 4.99871
(735)  Not enough data available for reliable sound change estimates

(736) a (ProtoOcean) > e (WesternOceanic) 0.12139 2.58873
(737) d (Formosan) > s (WesternPlains) 0.04913 4.48311
(738) s (AdmiraltyIslands) > h (Western AdmiraltyIslands) 0.01688 4.34207
(739) a (MunaButon) > o (Western Munic) 0.19256 11.48592
(740) t (SouthwestMaluku) > k (Wetar) 0.09657 3.25493
(741) T (MesoMelanesian) > 1 (Willaumez) 0.14060 7.57978
(742) b (CentralWestern) > v (WindesiWan) 0.16193 3.04357
(743) ? (Manam) > k (Wogeo) 0.07162 8.86144
(744) k (ProtoChuuk) > g (Woleai) 0.00179 35.44518
(745) a (ProtoChuuk) > e (Woleaian) 0.11108 60.39379
(746) a (Sulawesi) > o (Wolio) 0.06991 8.71005
(747) w (Western Munic) > v (Wuna) 0.00508 2.73532
(748) t (Western Admiraltylslands) > ? (Wuvulu) 0.00203 11.89389
(749) a (HuonGulf) > e (Yabem) 0.13370 6.51629
(750) a (SamaBajaw) > e (Yakan) 0.04299 27.73964
(751) a (KeiTanimbar) > e (Yamdena) 0.18822 17.50706
(752) o (Bashiic) > u (Yami) 0.00368 5.79971
(753) a (ProtoOcean) > i (Yapese) 0.27352 4.64937
(754) a (Javanese) > e (Yogya) 0.08208 4.09979
(755) o (West ) > B} (ZabanaKia) 0.02351 13.69682
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Figure S.1: Percentage of words with varying levels of Levenshtein distance. Known Cognates (gold) were hand-
annotated by linguists, while Automatic Cognates were found by our system.

25



FijianBau
Téanu

uvcaLuo

Puyuma
Kavalan

r&m\I ) Yakan
s [CGm ————Bajo _

Figure S.2: Branch-specific, most frequent estimated changes. See Table S.5 for more information, cross-
referenced with the code in parenthesis attached to each branch.
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Figure S.3: Branch-specific, most frequent estimated changes. See Table S.5 for more information, cross-

referenced with the code in parenthesis attached to each branch.
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Figure S.4: Branch-specific, most frequent estimated changes. See Table S.5 for more information, cross-
referenced with the code in parenthesis attached to each branch.
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Figure S.5: Branch-specific, most frequent estimated changes. See Table S.5
referenced with the code in parenthesis attached to each branch.
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Figure S.6: Most common substitution errors, insertion errors, and deletion errors in the PAn reconstructions
produced by our system. In (A), the first phoneme in each pair (z, y) represents the reference phoneme, followed
by the incorrectly hypothesized one. In (B), each phoneme corresponds to a phoneme present in the automatic
reconstruction but not in the reference, and vice-versa in (C).
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