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∑
x∈C f(x)

Decoding the title of this talk

Variational and Sequential Inference over Combinatorial Spaces

Main motivations:
Computing a posterior 
distribution, counting 

Probabilistic inference The set C is discrete, has 
exponential size, and is 
‘complicated’

Next few slides: Examples 
of such problems (and 
definition later)



Familiar examples of inference problems 
over combinatorial spaces

Perfect bipartite matchings

C: set of bijection between A and B
x: one element in this set (right)
f(x) : multiply the the weight of each edge A B

A twist on the Traveling Salesman Problem

C: Hamiltonian circuits on a graph
x: one element in this set (right)
f(x) : multiply the the weight of each edge



Perhaps less familiar examples of inference 
problems over combinatorial spaces
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Counting linearizations of a partial orders P
Equivalently: number of ways to topologically 
sort a DAG (applications in ranking)

Counting plane partitions
Piling up cubes such that stacks are in 
increasing heights (applications in stat. mech.)

Counting Self Avoiding Walks (SAW)
Applications in modeling knot-theoretic 
properties of proteins



Two concrete problems in computational 
biology that motivated this work

Multiple Sequence Alignment (MSA)

UACUGAUCCUUAGCAUAUGCUUGCCAAAUUAAGCCAUGCAUCUAACGACGGCCGGUACAUGAAGAAUGGCUCAU

CCUGGUUGAUCCUGCCAGUAG.CAUAUGCUUGUCUCAAAGAUUAAGCCAUGCAUGUCUAAG

CCUGCCGGAGGCCAUUGCUAUUGGGAUUCGAUUUAGCCAUGCUAGUCGCACGAGUUUAGACUCGUGGCGAAUAGCU

AC T A Ca :

AC Gb :

TA C Cc : -

- - -

-
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Two concrete problems in computational 
biology that motivated this work

Phylogenetic tree inference

ca c
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UACUGAUCCUUAGCAUAUGCUUGCCAAAUUAAGCCAUGCAUCUAACGACGGCCGGUACAUGAAGAAUGGCUCAU

CCUGGUUGAUCCUGCCAGUAG.CAUAUGCUUGUCUCAAAGAUUAAGCCAUGCAUGUCUAAG

CCUGCCGGAGGCCAUUGCUAUUGGGAUUCGAUUUAGCCAUGCUAGUCGCACGAGUUUAGACUCGUGGCGAAUAGCU



Decoding the title of this talk

Variational and Sequential Inference over Combinatorial Spaces

Previous work: for inference in combinatorial spaces, mostly 
MCMC (Markov Chain Monte Carlo)
Variational methods: cast probabilistic inference problems as 
a constrained, convex optimization problem
Sequential methods: incrementally approximate complicated 
distributions by importance sampling and resampling
Both approaches have been very successful for inference in 
graphical models, but not in combinatorial space...



Outline: two frameworks for probabilistic 
inference over combinatorial spaces

 Variational inference by Measure Factorization 

 User’s guide
 Theoretical foundations
 Experiments on multiple sequence alignment

 Poset Sequential Monte Carlo

 User’s guide
 Theoretical foundations
 Experiments on phylogenetic tree inference



Variational inference over 
combinatorial spaces: a user’s guide

Large treewidth Combinatorial space S

Zθ =
∑

x

exp〈T (x), θ〉︸ ︷︷ ︸
fθ(x)

1[x ∈ S]

Setup: hard inference problem over an exponential family



Variational inference over 
combinatorial spaces: a user’s guide

Goal:

Assumption:
(‘Measure 
factorization’) 

Z =
∑

x∈S

f(x)

Zi =
∑

x∈Si

f(x)

S =
⋂

Si such that:

S1

S2

S

(intractable)

is tractable

Consequence: if you can find such decomposition, our 
framework gives a way to turn variational algorithms 
defined for graphical models into algorithms that can be 
used for combinatorial spaces



Advantages

Termination: most variational algorithms are guaranteed 
to converge in a finite number of steps (very small in 
practice)

Bounds: using a specific variational algorithm, we can 
guarantee that the estimated value for Z is an upper bound

Empirically: good accuracy on a range of problems



Examples of tractable measure factorizations

S

S1

S2

Perfect matching

A B

A B

A B

Functions



Examples of tractable measure factorizations

Traveling salesman

...

S

S
1

S
2



Examples of tractable measure factorizations

More advanced example: linearizations of partial orders



Examples of tractable measure factorizations

More advanced example: linearizations of partial orders
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‘Hasse diagram’



Examples of tractable measure factorizations

More advanced example: linearizations of partial orders
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Examples of tractable measure factorizations

More advanced example: linearizations of partial orders
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Under the hood

and [9, 10] for computing the permanent of a matrix—we are not aware of a general treatment of
variational inference in combinatorial spaces.

There has been work on applying variational algorithms to the problem of maximization over combi-
natorial spaces [11, 12, 13, 14], but maximization over combinatorial spaces is rather different than
summation. For example, in the bipartite matching example considered in both [13] and this paper,
there is a known polynomial algorithm for maximization, but not for summation. Our approach
is also related to agreement-based learning [15, 16], although agreement-based learning is defined
within the context of unsupervised learning using EM, while our framework is agnostic with respect
to parameter estimation.

The paper is organized as follows: in Section 2 we present the measure factorization framework; in
Section 3 we show examples of this framework applied to various combinatorial inference problems;
and in Section 4 we present empirical results.

2 Variational measure factorization

In this section, we present the variational measure factorization framework. At a high level, the first
step is to construct an equivalent but more convenient exponential family. This exponential family
will allow us to transform variational algorithms over graphical models into approximation algo-
rithms over combinatorial spaces. We first describe the techniques needed to do this transformation
in the case of a specific variational inference algorithm—loopy belief propagation—and then discuss
mean-field and tree-reweighted approximations.

To make the exposition more concrete, we use the running example of approximating the value and
gradient of the log-partition function of a Bipartite Matching model (BM) over KN,N , a well-known
#P problem [17]. Unless we mention otherwise, we will consider bipartite perfect matchings; non-
bipartite and non-perfect matchings are discussed in Section 3.1. The reader should keep in mind,
however, that our framework is applicable to a much broader class of combinatorial objects. We
develop several other examples in Section 3 and in Appendix B.

2.1 Setup

Since we are dealing with discrete-valued random variables X , we can assume without loss of
generality that the probability distribution for which we want to compute the partition function and
moments is a member of a regular exponential family with canonical parameters θ ∈ RJ :

P(X ∈ B) =
∑

x∈B

exp{〈φ(x), θ〉 −A(θ)}ν(x), A(θ) = log
∑

x∈X

exp{〈φ(x), θ〉}ν(x), (1)

for a J-dimensional sufficient statistic φ and base measure ν over F = 2X , both of which are
assumed (again, without loss of generality) to be indicator functions : φj , ν : X → {0, 1}. Here
X is a superset of both C and all of the Cis. The link between this setup and the general problem
of computing

∑
x∈C f(x) is the base measure ν, which is set to the indicator function over C:

ν(x) = 1[x ∈ C], where 1[·] is equal to one if its argument holds true, and zero otherwise.

The goal is to approximate A(θ) and ∇A(θ) (recall that the j-th coordinate of the gradient, ∇jA, is
equal to the expectation of the sufficient statistic φj under the exponential family with base measure
ν [5]). We want to exploit situations where the base measure can be written as a product of I
measures ν(x) =

∏I
i=1 νi(x) such that each factor νi : X → {0, 1} induces a super-partition

function assumed to be tractable: Ai(θ) = log
∑

x∈X exp{〈φ(x),θ〉}νi(x). This computation is
typically done using dynamic programming (DP). We also assume that the gradient of the super-
partition functions is tractable, which is typical for DP formulations.

In the case of BM, the space X is a product of N2 binary alignment variables, x =
x1,1, x1,2, . . . , xN,N . In the Standard Bipartite Matching formulation (which we denote by SBM),
the sufficient statistic takes the form φj(x) = xm,n. The measure factorization we use to enforce
the matching property is ν = ν1ν2, where:

ν1(x) =
N∏

m=1

1[
N∑

n=1

xm,n ≤ 1], ν2(x) =
N∏

n=1

1[
N∑

m=1

xm,n ≤ 1]. (2)

2

and [9, 10] for computing the permanent of a matrix—we are not aware of a general treatment of
variational inference in combinatorial spaces.

There has been work on applying variational algorithms to the problem of maximization over combi-
natorial spaces [11, 12, 13, 14], but maximization over combinatorial spaces is rather different than
summation. For example, in the bipartite matching example considered in both [13] and this paper,
there is a known polynomial algorithm for maximization, but not for summation. Our approach
is also related to agreement-based learning [15, 16], although agreement-based learning is defined
within the context of unsupervised learning using EM, while our framework is agnostic with respect
to parameter estimation.

The paper is organized as follows: in Section 2 we present the measure factorization framework; in
Section 3 we show examples of this framework applied to various combinatorial inference problems;
and in Section 4 we present empirical results.

2 Variational measure factorization

In this section, we present the variational measure factorization framework. At a high level, the first
step is to construct an equivalent but more convenient exponential family. This exponential family
will allow us to transform variational algorithms over graphical models into approximation algo-
rithms over combinatorial spaces. We first describe the techniques needed to do this transformation
in the case of a specific variational inference algorithm—loopy belief propagation—and then discuss
mean-field and tree-reweighted approximations.

To make the exposition more concrete, we use the running example of approximating the value and
gradient of the log-partition function of a Bipartite Matching model (BM) over KN,N , a well-known
#P problem [17]. Unless we mention otherwise, we will consider bipartite perfect matchings; non-
bipartite and non-perfect matchings are discussed in Section 3.1. The reader should keep in mind,
however, that our framework is applicable to a much broader class of combinatorial objects. We
develop several other examples in Section 3 and in Appendix B.

2.1 Setup

Since we are dealing with discrete-valued random variables X , we can assume without loss of
generality that the probability distribution for which we want to compute the partition function and
moments is a member of a regular exponential family with canonical parameters θ ∈ RJ :

P(X ∈ B) =
∑

x∈B

exp{〈φ(x), θ〉 −A(θ)}ν(x), A(θ) = log
∑

x∈X

exp{〈φ(x), θ〉}ν(x), (1)

for a J-dimensional sufficient statistic φ and base measure ν over F = 2X , both of which are
assumed (again, without loss of generality) to be indicator functions : φj , ν : X → {0, 1}. Here
X is a superset of both C and all of the Cis. The link between this setup and the general problem
of computing

∑
x∈C f(x) is the base measure ν, which is set to the indicator function over C:

ν(x) = 1[x ∈ C], where 1[·] is equal to one if its argument holds true, and zero otherwise.

The goal is to approximate A(θ) and ∇A(θ) (recall that the j-th coordinate of the gradient, ∇jA, is
equal to the expectation of the sufficient statistic φj under the exponential family with base measure
ν [5]). We want to exploit situations where the base measure can be written as a product of I
measures ν(x) =

∏I
i=1 νi(x) such that each factor νi : X → {0, 1} induces a super-partition

function assumed to be tractable: Ai(θ) = log
∑

x∈X exp{〈φ(x),θ〉}νi(x). This computation is
typically done using dynamic programming (DP). We also assume that the gradient of the super-
partition functions is tractable, which is typical for DP formulations.

In the case of BM, the space X is a product of N2 binary alignment variables, x =
x1,1, x1,2, . . . , xN,N . In the Standard Bipartite Matching formulation (which we denote by SBM),
the sufficient statistic takes the form φj(x) = xm,n. The measure factorization we use to enforce
the matching property is ν = ν1ν2, where:

ν1(x) =
N∏

m=1

1[
N∑

n=1

xm,n ≤ 1], ν2(x) =
N∏

n=1

1[
N∑

m=1

xm,n ≤ 1]. (2)

2

Sufficient statistic Parameter

Log partition function The base measure is an indicator 
over the combinatorial space C of 

interest
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Background on exponential families:
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What do the sufficient statistic look like in the 
combinatorial spaces we have seen?

Bipartite 
matchings

T(x) = 

1[a1 linked to b1]

...
J

θ1,1

θ1,2

θ1,3

...
...A B

a1
a2
a3

b1
b2
b3

1[a1 linked to b2]
1[a1 linked to b3]

Rich sufficient statistic condition: for all J-dimensional 
vector s, there is at most one configuration x with T(x) = s



Important property

of this gain in accuracy, we present a new structure
mean field algorithm based on auxiliary exponential
families.

The notion of v- and b-acyclic subgraphs is different
that the notion of “overlapping cluster” used in the
work on structured mean field by Geiger et al. (2006).
Some v-acyclic graphs have overlapping clusters, some
do not; and moreover, the computational dichotomy
we establish here does not hold if the notion of v- and
b-acyclic subgraphs is replaced by that of overlapping
clusters. Note that other variational approximations
such as Expectation Propagation also have a subgraph
interpretation (Minka and Qi 2003). While this sub-
graph sometimes happens to be b-acyclic, there is no
special distinction between v- and b-acyclic graphical
approximations in the case of Bethe-energy variational
approximations. This is why we focus on mean field
approximations.

The paper is organized as follows. We present a ba-
sic introduction to structured mean field in Section 2.
We then discuss our analysis and algorithmic develop-
ments in Section 3. We present empirical results to
support our claims in Section 4 and we present our
conclusions in Section 5.

2 Background

In this section, we review the principles of mean field
approximation and set the notation. Our exposition
follows the general treatment of variational methods
presented in Wainwright and Jordan (2003) where the
Legendre-Fenchel transformation plays a central role.

2.1 Exponential families

We assume that the random variable under study, Xθ,
has a distribution in a regular exponential family P
in canonical form:

P(Xθ ∈ A) =
∫

A
exp{〈φ(x),θ〉 −A(θ)}ν( dx), (1)

A(θ) = log
∫

exp{〈φ(x),θ〉}ν( dx) (2)

for a sufficient statistics φ : X → Rd, base measure ν
and parameters θ ∈ Ω = {θ ∈ Rd : A(θ) < ∞}.

We will also use the notation Xµ where µ ∈ Rd to
denote a random variable with distribution in P such
that E[φ(Xµ)] = µ. Note that this is well defined
since φ is sufficient for θ.

We are interested in the case in which the distribu-
tion of X factors according to an undirected graph-
ical model on m vertices G = (V,E), i.e. X =
(X1, . . . , Xm), X = Xm. For simplicity of notation we

focus on the case in which the interactions are pairwise
and the base measure is discrete. However, the ideas
apply directly to the general exponential family—this
will be discussed in more detail in Section 3.

Let F = (V ×X )∪(E×X 2) be the index set for the co-
ordinates of φ (the potentials). If e = (a, b) ∈ E, then
it is understood that the following inclusion holds on
the induced sigma-algebra: σ(φe,·(X)) ⊇ σ(Xa, Xb).
Similarly, if v ∈ V , σ(φv,·(X)) ⊇ σ(Xa). We lose no
generality by requiring existence of potentials for all
vertices and edges, since we can always set their cor-
responding parameter to zero.

2.2 Convex duality

A simple but fundamental property of exponential
families is that the gradient and Hessian of the log
partition function have the following forms:

∇A(θ) = E[φ(Xθ)]
H(A(θ)) = Var[φ(Xθ)]. (3)

The second identity implies convexity, which we can
use in conjunction with the Legendre-Fenchel trans-
formation to establish an alternative form for A.

Definition 1 For an extended real-valued function f ,
the Legendre-Fenchel transformation is defined as:

f∗(x) = sup{〈x, y〉 − f(y) : y ∈ dom(f)}.

When f is convex and lower semi-continuous, f = f∗∗,
we can use convexity of A to obtain:

A(θ) = sup{〈θ,µ〉 −A∗(µ) : µ ∈ M }, (4)

where M = ∇A(Θ) is the set of realizable moments.

Formulation (4) is no more tractable than the defini-
tion of A in Equation (2): the term A∗(µ), which can
be shown to be equal to the negative of the entropy
−Hν(Xµ) (Wainwright and Jordan 2008) cannot be
computed efficiently for arbitrary µ. Hence, the objec-
tive function cannot be evaluated efficiently. On the
other hand, Equation (4) is a constrained optimization
problem that can be relaxed. Mean field methods can
be seen as a particular type of relaxation where the
sup is taken over a proper subset of M . In particu-
lar, the sup is taken over a subset of M for which the
objective function and its gradient can be evaluated
efficiently.

2.3 Graphical mean-field relaxations

In order to define this relaxation, the user needs to
provide a subset of the principal exponential family,

The gradient of the log partition function is equal to the 
moments:

The hessian of the log partition function is equal to the 
covariance matrix:

of this gain in accuracy, we present a new structure
mean field algorithm based on auxiliary exponential
families.

The notion of v- and b-acyclic subgraphs is different
that the notion of “overlapping cluster” used in the
work on structured mean field by Geiger et al. (2006).
Some v-acyclic graphs have overlapping clusters, some
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The paper is organized as follows. We present a ba-
sic introduction to structured mean field in Section 2.
We then discuss our analysis and algorithmic develop-
ments in Section 3. We present empirical results to
support our claims in Section 4 and we present our
conclusions in Section 5.

2 Background

In this section, we review the principles of mean field
approximation and set the notation. Our exposition
follows the general treatment of variational methods
presented in Wainwright and Jordan (2003) where the
Legendre-Fenchel transformation plays a central role.
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We assume that the random variable under study, Xθ,
has a distribution in a regular exponential family P
in canonical form:
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∫
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that E[φ(Xµ)] = µ. Note that this is well defined
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(X1, . . . , Xm), X = Xm. For simplicity of notation we
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and the base measure is discrete. However, the ideas
apply directly to the general exponential family—this
will be discussed in more detail in Section 3.

Let F = (V ×X )∪(E×X 2) be the index set for the co-
ordinates of φ (the potentials). If e = (a, b) ∈ E, then
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2.2 Convex duality
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families is that the gradient and Hessian of the log
partition function have the following forms:

∇A(θ) = E[φ(Xθ)]
H(A(θ)) = Var[φ(Xθ)]. (3)

The second identity implies convexity, which we can
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formation to establish an alternative form for A.

Definition 1 For an extended real-valued function f ,
the Legendre-Fenchel transformation is defined as:

f∗(x) = sup{〈x, y〉 − f(y) : y ∈ dom(f)}.

When f is convex and lower semi-continuous, f = f∗∗,
we can use convexity of A to obtain:

A(θ) = sup{〈θ,µ〉 −A∗(µ) : µ ∈ M }, (4)

where M = ∇A(Θ) is the set of realizable moments.

Formulation (4) is no more tractable than the defini-
tion of A in Equation (2): the term A∗(µ), which can
be shown to be equal to the negative of the entropy
−Hν(Xµ) (Wainwright and Jordan 2008) cannot be
computed efficiently for arbitrary µ. Hence, the objec-
tive function cannot be evaluated efficiently. On the
other hand, Equation (4) is a constrained optimization
problem that can be relaxed. Mean field methods can
be seen as a particular type of relaxation where the
sup is taken over a proper subset of M . In particu-
lar, the sup is taken over a subset of M for which the
objective function and its gradient can be evaluated
efficiently.

2.3 Graphical mean-field relaxations

In order to define this relaxation, the user needs to
provide a subset of the principal exponential family,

Consequence: A is a convex function
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Connection with measure factorizations

S1

S2

S
X ∼ exp

{
〈T (x), θ〉 −A(θ)

} ∏

i

1[x ∈ Si]

Xi ∼ exp
{
〈T (x), θ〉 −Ai(θ)

}
1[x ∈ Si]

Inference on the original problem:

Inference on a single factor i:

Tractable assumption: can compute (e.g. using DP)
∇Ai(θ) = E[T (Xi)]

=
∑

x

T (x) exp
{
〈T (x), θ〉 −Ai(θ)

}
1[x ∈ Si]



Example of an algorithm derived using our 
framework: Measure Factorization Belief Prop.

B
1

B
I

S
1

S
2

S
J

...

... ...

Ψj(s) = eθjs

Ψi(x) = νi(x)
(

Ψi,j(x, s) = 1[φj(x) = s]
ζi ξ̄i

...

... ... ...

BPMF(θ, A1, . . . , AI )
1: ζ(1)

i,j = 0
2: for t = 1, 2, . . . , T do
3: ξ̄

(t)
i = θ +

∑
i′:i′ !=i ζ(t−1)

i′

4: ζ(t)
i = logit

(
∇Ai

(
ξ̄
(t)
i

))
− ξ̄

(t)
i

5: end for
6: return µ̂ = logistic

(
θ +

∑
i ζ(T )

i

)

Figure 1: Left: the bipartite graphical model used for the MRF construction described in Section 2.2. Right:
pseudocode for the BPMF algorithm. See Section 2 and Appendix A.2 for the derivation.

We show in Appendix A.3 that A1 and A2 can be computed in time O(N2) for the SBM.

The last assumption we make is that given a vector s ∈ RJ , there is at most one possible configu-
ration x with φ(x) = s. We call this the rich sufficient statistic condition. Since we are concerned
in this framework with computing expectations, not with parameter estimation, this can be done
without loss of generality. For example, if the original exponential family is curved (e.g., by param-
eter tying), for the purpose of computing expectations one can always work in the over-complete
parameterization, and then project back to the coarse sufficient statistic for parameter estimation.

2.2 Markov random field reformulation

We start by constructing an equivalent but more convenient exponential family. This general con-
struction has an associated bipartite Markov Random Field (MRF) with structure KI,J , shown in
Figure 1. This new bipartite structure should not be confused with the bipartite graph from the
KN,N bipartite graph specific to the BM example: the former is part of the general theory, the latter
is specific to the bipartite matching example.

The bipartite MRF has I random variables in the first graph component, B1, . . . , BI , each having a
copy of X as its domain. In the second component, the graph has J random variables, S1, . . . , SJ ,
where Sj has a binary domain {0, 1}. The pairwise potential between an event {Bi = x} in the first
component and one {Sj = s} in the second is given by Ψi,j(x, s) = 1[φj(x) = s]. The following
one-node potentials are also included: Ψi(x) = νi(x) and Ψj(s) = eθjs.
The equivalence between the two formulations follows from the rich sufficient statistic condition,
which implies (for a full proof of the equivalence, see Appendix A.1):

∑

s1∈{0,1}

∑

s2∈{0,1}

· · ·
∑

sJ∈{0,1}

I∏

i=1

J∏

j=1

1[φj(xi) = sj ] =

{
1 if x1 = x2 = · · · = xI

0 otherwise. (3)

This transformation into an equivalent MRF reveals several possible variational approximations.
We show in the next section how loopy belief propagation [18] can be modified to tractably accom-
modate this transformed exponential family, even though some nodes in the graphical model—the
Bis—have a domain of exponential size. We then describe similar updates for mean field [19] and
tree-reweighted [20] variational algorithms. We will refer to these algorithms as BPMF (Belief Prop-
agation on Measure Factorizations), MFMF (Mean Field on Measure Factorizations) and TRWMF
(Tree-Reweighted updates on Measure Factorizations). In contrast to BPMF, MFMF is guaranteed
to converge2, and TRWBF is guaranteed to provide an upper bound on the partition function.3

2.3 Implicit message representation

The variables Bi have a domain of exponential size, hence if we applied belief propagation updates
naively, the messages going from Bi to Sj would require summing over an exponential number of
terms, and messages going from Sj to Bi would require an exponential amount of storage. To avoid
summing explicitly over exponentially many terms, we adapt an idea from [7] and exploit the fact

2Although we did not have convergence issues with BPMF in our experiments.
3Surprisingly, MFMF does not provide a lower bound (see Appendix A.6).

3

Form a set of transformed 
parameters 

(one for each factor)

Compute moments for 
each factor using the 

new transformed 
parameters



How did we get to this algorithm?

Plan:

 Review of the variational framework for 
graphical models

 How to cast combinatorial problems into 
something that fits this framework



Representation of convex functions

How to construct a variational formulation for A?

• Key concept: convex duality (recall A is convex. . . )

• Two equivalent ways to specify convex functions

Standard / pointwise 
encoding

Encoded by intercepts of 
the supporting tangents



Connexion: Legendre-Fenchel transformation 

An operator (a function that takes a function and 
transforms it into another function) denoted by *

Warning: for pedagogical reasons, assume for now that f 
is univariate, twice differentiable and strictly convex (can 
be made more general!!) 

Convex Duality

• The convex conjugate of f : Rd → R ∪ {+∞}, denoted f∗ makes this
equivalence explicit:

f∗(y) := sup
x∈Rd

{
〈y, x〉 − f(x)

}
,

• set f∗(x) = +∞ for unbounded values: f∗ : Rd → R ∪ {+∞}.

of this gain in accuracy, we present a new structure
mean field algorithm based on auxiliary exponential
families.

The notion of v- and b-acyclic subgraphs is different
that the notion of “overlapping cluster” used in the
work on structured mean field by Geiger et al. (2006).
Some v-acyclic graphs have overlapping clusters, some
do not; and moreover, the computational dichotomy
we establish here does not hold if the notion of v- and
b-acyclic subgraphs is replaced by that of overlapping
clusters. Note that other variational approximations
such as Expectation Propagation also have a subgraph
interpretation (Minka and Qi 2003). While this sub-
graph sometimes happens to be b-acyclic, there is no
special distinction between v- and b-acyclic graphical
approximations in the case of Bethe-energy variational
approximations. This is why we focus on mean field
approximations.

The paper is organized as follows. We present a ba-
sic introduction to structured mean field in Section 2.
We then discuss our analysis and algorithmic develop-
ments in Section 3. We present empirical results to
support our claims in Section 4 and we present our
conclusions in Section 5.

2 Background

In this section, we review the principles of mean field
approximation and set the notation. Our exposition
follows the general treatment of variational methods
presented in Wainwright and Jordan (2003) where the
Legendre-Fenchel transformation plays a central role.

2.1 Exponential families

We assume that the random variable under study, Xθ,
has a distribution in a regular exponential family P
in canonical form:

P(Xθ ∈ A) =
∫

A
exp{〈φ(x),θ〉 −A(θ)}ν( dx), (1)

A(θ) = log
∫

exp{〈φ(x),θ〉}ν( dx) (2)

for a sufficient statistics φ : X → Rd, base measure ν
and parameters θ ∈ Ω = {θ ∈ Rd : A(θ) < ∞}.

We will also use the notation Xµ where µ ∈ Rd to
denote a random variable with distribution in P such
that E[φ(Xµ)] = µ. Note that this is well defined
since φ is sufficient for θ.

We are interested in the case in which the distribu-
tion of X factors according to an undirected graph-
ical model on m vertices G = (V,E), i.e. X =
(X1, . . . , Xm), X = Xm. For simplicity of notation we

focus on the case in which the interactions are pairwise
and the base measure is discrete. However, the ideas
apply directly to the general exponential family—this
will be discussed in more detail in Section 3.

Let F = (V ×X )∪(E×X 2) be the index set for the co-
ordinates of φ (the potentials). If e = (a, b) ∈ E, then
it is understood that the following inclusion holds on
the induced sigma-algebra: σ(φe,·(X)) ⊇ σ(Xa, Xb).
Similarly, if v ∈ V , σ(φv,·(X)) ⊇ σ(Xa). We lose no
generality by requiring existence of potentials for all
vertices and edges, since we can always set their cor-
responding parameter to zero.

2.2 Convex duality

A simple but fundamental property of exponential
families is that the gradient and Hessian of the log
partition function have the following forms:

∇A(θ) = E[φ(Xθ)]
H(A(θ)) = Var[φ(Xθ)]. (3)

The second identity implies convexity, which we can
use in conjunction with the Legendre-Fenchel trans-
formation to establish an alternative form for A.

Definition 1 For an extended real-valued function f ,
the Legendre-Fenchel transformation is defined as:

f∗(x) = sup{〈x, y〉 − f(y) : y ∈ dom(f)}.

When f is convex and lower semi-continuous, f = f∗∗,
we can use convexity of A to obtain:

A(θ) = sup{〈θ,µ〉 −A∗(µ) : µ ∈ M }, (4)

where M = ∇A(Θ) is the set of realizable moments.

Formulation (4) is no more tractable than the defini-
tion of A in Equation (2): the term A∗(µ), which can
be shown to be equal to the negative of the entropy
−Hν(Xµ) (Wainwright and Jordan 2008) cannot be
computed efficiently for arbitrary µ. Hence, the objec-
tive function cannot be evaluated efficiently. On the
other hand, Equation (4) is a constrained optimization
problem that can be relaxed. Mean field methods can
be seen as a particular type of relaxation where the
sup is taken over a proper subset of M . In particu-
lar, the sup is taken over a subset of M for which the
objective function and its gradient can be evaluated
efficiently.

2.3 Graphical mean-field relaxations

In order to define this relaxation, the user needs to
provide a subset of the principal exponential family,



Intuition
Geometric picture

• Warning: for pedagogical reasons, assume for now that f is univariate, twice
differentiable and strictly convex (can be made more general!!)

• “f acts on points, f∗ acts on tangents”

Suppose I give you a tangent/supporting plane.  Encoding 
a convex function can be done by giving the intercept ca



Why this particular ‘encoding’?

Theorem: 
When f is convex (and lower semi-continuous): f** = f 

Consequence: the log partition function satisfies A** = A

What we will do with this:  First, apply the definition of 
Fenchel dual to the function A*, getting:

of this gain in accuracy, we present a new structure
mean field algorithm based on auxiliary exponential
families.

The notion of v- and b-acyclic subgraphs is different
that the notion of “overlapping cluster” used in the
work on structured mean field by Geiger et al. (2006).
Some v-acyclic graphs have overlapping clusters, some
do not; and moreover, the computational dichotomy
we establish here does not hold if the notion of v- and
b-acyclic subgraphs is replaced by that of overlapping
clusters. Note that other variational approximations
such as Expectation Propagation also have a subgraph
interpretation (Minka and Qi 2003). While this sub-
graph sometimes happens to be b-acyclic, there is no
special distinction between v- and b-acyclic graphical
approximations in the case of Bethe-energy variational
approximations. This is why we focus on mean field
approximations.

The paper is organized as follows. We present a ba-
sic introduction to structured mean field in Section 2.
We then discuss our analysis and algorithmic develop-
ments in Section 3. We present empirical results to
support our claims in Section 4 and we present our
conclusions in Section 5.

2 Background

In this section, we review the principles of mean field
approximation and set the notation. Our exposition
follows the general treatment of variational methods
presented in Wainwright and Jordan (2003) where the
Legendre-Fenchel transformation plays a central role.

2.1 Exponential families

We assume that the random variable under study, Xθ,
has a distribution in a regular exponential family P
in canonical form:

P(Xθ ∈ A) =
∫

A
exp{〈φ(x),θ〉 −A(θ)}ν( dx), (1)

A(θ) = log
∫

exp{〈φ(x),θ〉}ν( dx) (2)

for a sufficient statistics φ : X → Rd, base measure ν
and parameters θ ∈ Ω = {θ ∈ Rd : A(θ) < ∞}.

We will also use the notation Xµ where µ ∈ Rd to
denote a random variable with distribution in P such
that E[φ(Xµ)] = µ. Note that this is well defined
since φ is sufficient for θ.

We are interested in the case in which the distribu-
tion of X factors according to an undirected graph-
ical model on m vertices G = (V,E), i.e. X =
(X1, . . . , Xm), X = Xm. For simplicity of notation we

focus on the case in which the interactions are pairwise
and the base measure is discrete. However, the ideas
apply directly to the general exponential family—this
will be discussed in more detail in Section 3.

Let F = (V ×X )∪(E×X 2) be the index set for the co-
ordinates of φ (the potentials). If e = (a, b) ∈ E, then
it is understood that the following inclusion holds on
the induced sigma-algebra: σ(φe,·(X)) ⊇ σ(Xa, Xb).
Similarly, if v ∈ V , σ(φv,·(X)) ⊇ σ(Xa). We lose no
generality by requiring existence of potentials for all
vertices and edges, since we can always set their cor-
responding parameter to zero.

2.2 Convex duality

A simple but fundamental property of exponential
families is that the gradient and Hessian of the log
partition function have the following forms:

∇A(θ) = E[φ(Xθ)]
H(A(θ)) = Var[φ(Xθ)]. (3)

The second identity implies convexity, which we can
use in conjunction with the Legendre-Fenchel trans-
formation to establish an alternative form for A.

Definition 1 For an extended real-valued function f ,
the Legendre-Fenchel transformation is defined as:

f∗(x) = sup{〈x, y〉 − f(y) : y ∈ dom(f)}.

When f is convex and lower semi-continuous, f = f∗∗,
we can use convexity of A to obtain:

A(θ) = sup{〈θ,µ〉 −A∗(µ) : µ ∈ M }, (4)

where M = ∇A(Θ) is the set of realizable moments.

Formulation (4) is no more tractable than the defini-
tion of A in Equation (2): the term A∗(µ), which can
be shown to be equal to the negative of the entropy
−Hν(Xµ) (Wainwright and Jordan 2008) cannot be
computed efficiently for arbitrary µ. Hence, the objec-
tive function cannot be evaluated efficiently. On the
other hand, Equation (4) is a constrained optimization
problem that can be relaxed. Mean field methods can
be seen as a particular type of relaxation where the
sup is taken over a proper subset of M . In particu-
lar, the sup is taken over a subset of M for which the
objective function and its gradient can be evaluated
efficiently.

2.3 Graphical mean-field relaxations

In order to define this relaxation, the user needs to
provide a subset of the principal exponential family,

This is just the domain of A* 

**

A(θ)

=



Done?

of this gain in accuracy, we present a new structure
mean field algorithm based on auxiliary exponential
families.

The notion of v- and b-acyclic subgraphs is different
that the notion of “overlapping cluster” used in the
work on structured mean field by Geiger et al. (2006).
Some v-acyclic graphs have overlapping clusters, some
do not; and moreover, the computational dichotomy
we establish here does not hold if the notion of v- and
b-acyclic subgraphs is replaced by that of overlapping
clusters. Note that other variational approximations
such as Expectation Propagation also have a subgraph
interpretation (Minka and Qi 2003). While this sub-
graph sometimes happens to be b-acyclic, there is no
special distinction between v- and b-acyclic graphical
approximations in the case of Bethe-energy variational
approximations. This is why we focus on mean field
approximations.

The paper is organized as follows. We present a ba-
sic introduction to structured mean field in Section 2.
We then discuss our analysis and algorithmic develop-
ments in Section 3. We present empirical results to
support our claims in Section 4 and we present our
conclusions in Section 5.

2 Background

In this section, we review the principles of mean field
approximation and set the notation. Our exposition
follows the general treatment of variational methods
presented in Wainwright and Jordan (2003) where the
Legendre-Fenchel transformation plays a central role.

2.1 Exponential families

We assume that the random variable under study, Xθ,
has a distribution in a regular exponential family P
in canonical form:

P(Xθ ∈ A) =
∫

A
exp{〈φ(x),θ〉 −A(θ)}ν( dx), (1)

A(θ) = log
∫

exp{〈φ(x),θ〉}ν( dx) (2)

for a sufficient statistics φ : X → Rd, base measure ν
and parameters θ ∈ Ω = {θ ∈ Rd : A(θ) < ∞}.

We will also use the notation Xµ where µ ∈ Rd to
denote a random variable with distribution in P such
that E[φ(Xµ)] = µ. Note that this is well defined
since φ is sufficient for θ.

We are interested in the case in which the distribu-
tion of X factors according to an undirected graph-
ical model on m vertices G = (V,E), i.e. X =
(X1, . . . , Xm), X = Xm. For simplicity of notation we

focus on the case in which the interactions are pairwise
and the base measure is discrete. However, the ideas
apply directly to the general exponential family—this
will be discussed in more detail in Section 3.

Let F = (V ×X )∪(E×X 2) be the index set for the co-
ordinates of φ (the potentials). If e = (a, b) ∈ E, then
it is understood that the following inclusion holds on
the induced sigma-algebra: σ(φe,·(X)) ⊇ σ(Xa, Xb).
Similarly, if v ∈ V , σ(φv,·(X)) ⊇ σ(Xa). We lose no
generality by requiring existence of potentials for all
vertices and edges, since we can always set their cor-
responding parameter to zero.

2.2 Convex duality

A simple but fundamental property of exponential
families is that the gradient and Hessian of the log
partition function have the following forms:

∇A(θ) = E[φ(Xθ)]
H(A(θ)) = Var[φ(Xθ)]. (3)

The second identity implies convexity, which we can
use in conjunction with the Legendre-Fenchel trans-
formation to establish an alternative form for A.

Definition 1 For an extended real-valued function f ,
the Legendre-Fenchel transformation is defined as:

f∗(x) = sup{〈x, y〉 − f(y) : y ∈ dom(f)}.

When f is convex and lower semi-continuous, f = f∗∗,
we can use convexity of A to obtain:

A(θ) = sup{〈θ,µ〉 −A∗(µ) : µ ∈ M }, (4)

where M = ∇A(Θ) is the set of realizable moments.

Formulation (4) is no more tractable than the defini-
tion of A in Equation (2): the term A∗(µ), which can
be shown to be equal to the negative of the entropy
−Hν(Xµ) (Wainwright and Jordan 2008) cannot be
computed efficiently for arbitrary µ. Hence, the objec-
tive function cannot be evaluated efficiently. On the
other hand, Equation (4) is a constrained optimization
problem that can be relaxed. Mean field methods can
be seen as a particular type of relaxation where the
sup is taken over a proper subset of M . In particu-
lar, the sup is taken over a subset of M for which the
objective function and its gradient can be evaluated
efficiently.

2.3 Graphical mean-field relaxations

In order to define this relaxation, the user needs to
provide a subset of the principal exponential family,

Convex function are easy to optimize, right?

Problem: there are exponentially many constraints here



Constraints: realizable moments

Suppose I give you a J-dimensional vector µ and I claim it 
is the moment of a distribution for some parameters θ 
(which I don’t give you θ, but the sufficient statistics are 
known)

µ = E[T(Xθ)]

I.e. claim there is a θ such that:

What could you check?



Sufficient statistic for graphical models

+
+

+

-
+

- -

-
+ T(x) = 

1[x1,1 = +]
1[x1,1 = -]
1[x1,2 = +]

1[x1,1 = +, x1,2 = +]
1[x1,1 = +, x1,2 = -]

...
...

One node

Pairs of nodes

J

θ1,1,+
θ1,1,-
θ1,2,+

θ1,1,+;1,2,+
θ1,1,+;1,2,-

...
...



Constraints: realizable moments

Suppose I give you a J-dimensional vector µ and I claim it 
is the moment of a distribution for some parameters θ 
(which I don’t give you θ, but the sufficient statistics are 
known)

µ = E[T(Xθ)]

I.e. claim there is a θ such that:

What could you check?

µ1,1,+
µ1,1,-
µ1,2,+

µ1,1,+;1,2,+
µ1,1,+;1,2,-

...
...

µ1,1,+ =
∑

x∈{+,−}

µ1,1,+;1,2,x

etc.



Constraints: realizable moments

Theorem: for trees, µ is a realizable moment if and only if 
pairwise marginalization conditions are met

In cyclic graphs, higher order marginalization constraints 
needed!



Belief propagation

Main idea: even if there are cycles, use only pairwise 
marginalization constraints (a relaxation of the optimization 
problem)

It can be shown that optimizing this relaxed problem yields 
the familiar BP algorithm (actually, the objective also needs to be 
simplified a little bit)



Back to combinatorial spaces...
First step: we showed that under the rich sufficient statistic 
condition, the following two distributions are equivalent:

X ∼ exp
{
〈T (x), θ〉 −A(θ)

} ∏

i

1[x ∈ Si]

Xi ∼ exp
{
〈T (x), θ〉 −Ai(θ)

}
1[x ∈ Si]

B
1

B
I

S
1

S
2

S
J

...

... ...

...

... ... ...Ψj(s) = eθjs

Ψi(x) = 1[x ∈ Si]

Ψi(x, s) = 1[Tj(x) = s]

X



Back to combinatorial spaces

Second step: pick a variational algorithm an look at the 
messages sent in the equivalent bipartite graph
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S
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S
J

...

... ...

...

... ... ...Ψj(s) = eθjs

Ψi(x) = 1[x ∈ Si]

Ψi(x, s) = 1[Tj(x) = s]

M
j→

i(
x
) m

i→
j (s)



Back to combinatorial spaces

Third step: address one last problem...

Storing a single message M(x) would take exponential memory!  
(Recall that x is an element of a large combinatorial space)
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S
J

...

... ...

...

... ... ...Ψj(s) = eθjs

Ψi(x) = 1[x ∈ Si]

Ψi(x, s) = 1[Tj(x) = s]

M
j→

i(
x
) m

i→
j (s)



Representing the messages M(x)

Key idea: the messages Mj→i(x) can be shown to belong to the 
same exponential family the one associated to factor i

Xi ∼ exp
{
〈T (x), θ〉 −Ai(θ)

}
1[x ∈ Si]∃θ̂ s.t. Mj→i(x) =

This is what gets calculated in the pseudo-code shown earlier
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S
1

S
2

S
J

...

... ...

Ψj(s) = eθjs

Ψi(x) = νi(x)
(

Ψi,j(x, s) = 1[φj(x) = s]
ζi ξ̄i

...

... ... ...

BPMF(θ, A1, . . . , AI )
1: ζ(1)

i,j = 0
2: for t = 1, 2, . . . , T do
3: ξ̄

(t)
i = θ +

∑
i′:i′ !=i ζ(t−1)

i′

4: ζ(t)
i = logit

(
∇Ai

(
ξ̄
(t)
i

))
− ξ̄

(t)
i

5: end for
6: return µ̂ = logistic

(
θ +

∑
i ζ(T )

i

)

Figure 1: Left: the bipartite graphical model used for the MRF construction described in Section 2.2. Right:
pseudocode for the BPMF algorithm. See Section 2 and Appendix A.2 for the derivation.

We show in Appendix A.3 that A1 and A2 can be computed in time O(N2) for the SBM.

The last assumption we make is that given a vector s ∈ RJ , there is at most one possible configu-
ration x with φ(x) = s. We call this the rich sufficient statistic condition. Since we are concerned
in this framework with computing expectations, not with parameter estimation, this can be done
without loss of generality. For example, if the original exponential family is curved (e.g., by param-
eter tying), for the purpose of computing expectations one can always work in the over-complete
parameterization, and then project back to the coarse sufficient statistic for parameter estimation.

2.2 Markov random field reformulation

We start by constructing an equivalent but more convenient exponential family. This general con-
struction has an associated bipartite Markov Random Field (MRF) with structure KI,J , shown in
Figure 1. This new bipartite structure should not be confused with the bipartite graph from the
KN,N bipartite graph specific to the BM example: the former is part of the general theory, the latter
is specific to the bipartite matching example.

The bipartite MRF has I random variables in the first graph component, B1, . . . , BI , each having a
copy of X as its domain. In the second component, the graph has J random variables, S1, . . . , SJ ,
where Sj has a binary domain {0, 1}. The pairwise potential between an event {Bi = x} in the first
component and one {Sj = s} in the second is given by Ψi,j(x, s) = 1[φj(x) = s]. The following
one-node potentials are also included: Ψi(x) = νi(x) and Ψj(s) = eθjs.
The equivalence between the two formulations follows from the rich sufficient statistic condition,
which implies (for a full proof of the equivalence, see Appendix A.1):

∑

s1∈{0,1}

∑

s2∈{0,1}

· · ·
∑

sJ∈{0,1}

I∏

i=1

J∏

j=1

1[φj(xi) = sj ] =

{
1 if x1 = x2 = · · · = xI

0 otherwise. (3)

This transformation into an equivalent MRF reveals several possible variational approximations.
We show in the next section how loopy belief propagation [18] can be modified to tractably accom-
modate this transformed exponential family, even though some nodes in the graphical model—the
Bis—have a domain of exponential size. We then describe similar updates for mean field [19] and
tree-reweighted [20] variational algorithms. We will refer to these algorithms as BPMF (Belief Prop-
agation on Measure Factorizations), MFMF (Mean Field on Measure Factorizations) and TRWMF
(Tree-Reweighted updates on Measure Factorizations). In contrast to BPMF, MFMF is guaranteed
to converge2, and TRWBF is guaranteed to provide an upper bound on the partition function.3

2.3 Implicit message representation

The variables Bi have a domain of exponential size, hence if we applied belief propagation updates
naively, the messages going from Bi to Sj would require summing over an exponential number of
terms, and messages going from Sj to Bi would require an exponential amount of storage. To avoid
summing explicitly over exponentially many terms, we adapt an idea from [7] and exploit the fact

2Although we did not have convergence issues with BPMF in our experiments.
3Surprisingly, MFMF does not provide a lower bound (see Appendix A.6).

3

Xi ∼ exp
{
〈T (x), θ〉 −Ai(θ)

}
1[x ∈ Si]∃θ̂ s.t. Mj→i(x) = Xi ∼ exp

{
〈T (x), θ〉 −Ai(θ)

}
1[x ∈ Si]∃θ̂ s.t. Mj→i(x) =



Experiments

Matching: comparing to RMS to true posterior in small 
graphs, and reconstructing matchings from noisy 
observations in large graphs (averaged over 100 runs)

Synthetic data: random bipartite graphs with edge 
appearance probability p

Competitor: a fully polynomial randomized algorithm 
(FPRAS) [Rasmussen]
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Figure 3: Experiments discussed in Section 4.1 on two of the matching models discussed. (a) and (b) on SBM,
(c), on HBM.
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sages for one iteration can be computed in time O(T ).

3.3 Linearization of partial orders

A linearization of a partial order p over N objects is a total order t over the same objects such
that x ≤p y ⇒ x ≤t y. Counting the number of linearizations is a well-known #P problem [22].
Equivalently, the problem can be view as a matching between a DAG G = (V,E) and the integers
{1, 2, . . . , N} with the order constraints specified on the edges of the DAG.

To factorize the base measure, consider a collection of I directed forests on V , Gi = (V,Ei), i ∈ I
such that their union covers G: ∪iEi = E. See Figure 2(c) for an example. For a single forest Gi, a
straightforward generalization of the algorithm used to compute HBM’s super-partition can be used.
This generalization is simply to use sum-product with graphical model Gi instead of sum-product
on a chain as in HBM (see Appendix A.5 for details). Again, the state space of the node of the
graphical model is {1, 2, . . . , N}, but this time the edge potentials enforce the ordering constraints
of the current forest.

4 Experiments

4.1 Matchings

As a first experiment, we compared the approximation of SBM described in Section 2 to the Fully
Polynomial Randomized Approximation Scheme (FPRAS) described in [23]. We performed all our
experiments on 100 iid random bipartite graphs of size N , where each edge has iid appearance prob-
ability p, a random graph model that we denote by RB(N, p). In the first and second experiments, we
used RB(10, 0.9). In this case, exact computation is still possible, and we compared the mean Root
Mean Squared (RMS) of the estimated moments to the truth. In Figure 3(a), we plot this quantity as
a function of the time spent to compute the 100 approximations. In the variational approximation,
we measured performance at each iteration of BPMF, and in the sampling approach, we measured
performance after powers of two sampling rounds. The conclusion is that the variational approxi-
mation attains similar levels of error in at least one order of magnitude less time in the RB(10, 0.9)
regime.

Next, we show in Figure 3(b) the behavior of the algorithms as a function of p, where we also
added the mean field algorithm to the comparison. In each data point in the graph, the FPRAS was
run no less than one order of magnitude more time than the variational algorithms. Both variational
strategies outperform the FPRAS in low-density regimes, where mean field also slightly outperforms
BPMF. On the other hand, for high-density regimes, only BPMF outperforms the FPRAS, and mean
field has a bias compared to the other two methods.

The third experiment concerns the augmented matching model, HBM. Here we compare two types
of factorization and investigate the scalability of the approaches to larger graphs. Factorization F1
is a simpler factorization of the form described in Section 3.1 for non-bipartite graphs. This ignores
the higher-order sufficient statistic coordinates, creating an outer approximation. Factorization F2,
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a function of the time spent to compute the 100 approximations. In the variational approximation,
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performance after powers of two sampling rounds. The conclusion is that the variational approxi-
mation attains similar levels of error in at least one order of magnitude less time in the RB(10, 0.9)
regime.
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added the mean field algorithm to the comparison. In each data point in the graph, the FPRAS was
run no less than one order of magnitude more time than the variational algorithms. Both variational
strategies outperform the FPRAS in low-density regimes, where mean field also slightly outperforms
BPMF. On the other hand, for high-density regimes, only BPMF outperforms the FPRAS, and mean
field has a bias compared to the other two methods.
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Too many factors!

Generalized setup:
S ⊂

⋂
SiS1

S2

S

Effect on the approximation: can be characterized as an 
upper bound on the true partition function



Evaluation

Alignment: Sum of Pair (SP):  Fraction of aligned 
core block residues also aligned in the reference

Ref: Tested:
AC T A C

AC G

AC T A C

AC G

1
2

Dataset: BAliBASE (manually annotated proteins alignments)
[Thomson et al., ’99]



Results
Sum of Pairs score (SP)

BAliBASE protein group BPMF-1 BPMF-2 BPMF-3 Clustal [24] ProbCons [25]

short, < 25% identity 0.68 0.74 0.76 0.71 0.72
short, 20% — 40% identity 0.94 0.95 0.95 0.89 0.92
short, > 35% identity 0.97 0.98 0.98 0.97 0.98
All 0.88 0.91 0.91 0.88 0.89

Table 1: Average SP scores in the ref1/test1 directory of BAliBASE. BPMF-i denotes the average SP of the
BPMF algorithm after i iterations of (parallel) message passing.

described in Section 3.1 specifically for HBM, is tighter. The experimental setup is based on a gen-
erative model over noisy observations of bipartite perfect matchings described in Appendix C.2. We
show in Figure 3(c) the results of a sequence of these experiments for different bipartite component
sizes N/2. This experiments demonstrates the scalability of sophisticated factorizations, and their
superiority over simpler ones.

4.2 Multiple sequence alignment

To assess the practical significance of this framework, we also apply it to BAliBASE [6], a standard
protein multiple sequence alignment benchmark. We compared our system to Clustal 2.0.12 [24],
the most popular multiple alignment tool, and ProbCons 1.12, a state-of-the-art system [25] that also
relies on enforcing transitivity constraints, but which is not derived via the optimization of an objec-
tive function. Our system uses a basic pair HMM [26] to score pairwise alignments. This scoring
function captures a proper subset of the biological knowledge exploited by Clustal and ProbCons.6
The advantage of our system over the other systems is the better optimization technique, based on
the measure factorization described in Section 3.2. We used a standard technique to transform the
pairwise alignment marginals into a single valid multiple sequence alignment (see Appendix C.3).
Our system outperformed both baselines after three BPMF parallel message passing iterations. The
algorithm converged in all protein groups, and performance was identical after more than three itera-
tions. Although the overall performance gain is not statistically significant according to a Wilcoxon
signed-rank test, the larger gains were obtained in the small identity subset, the “twilight zone”
where research on multiple sequence alignment has focused.

One caveat of this multiple alignment approach is its running time, which is cubic in the length of
the longest sequence, while most multiple sequence alignment approaches are quadratic. For exam-
ple, the running time for one iteration of BPMF in this experiment was 364.67s, but only 0.98s for
Clustal—this is why we have restricted the experiments to the short sequences section of BAliBASE.
Fortunately, several techniques are available to decrease the computational complexity of this algo-
rithm: the transitivity factors can be subsampled using a coarse pass, or along a phylogenetic tree;
and computation of the factors can be entirely parallelized. These improvements are orthogonal to
the main point of this paper, so we leave them for future work.

5 Conclusion

Computing the moments of discrete exponential families can be difficult for two reasons: the struc-
ture of the sufficient statistic that can create junction trees of high tree-width, and the structure of
the base measures that can induce an intractable combinatorial space. Most previous work on vari-
ational approximations has focused on the first difficulty; however, the second challenge also arises
frequently in machine learning. In this work, we have presented a framework that fills this gap.
It is based on an intuitive notion of measure factorization, which, as we have shown, applies to
a variety of combinatorial spaces. This notion enables variational algorithms to be adapted to the
combinatorial setting. Our experiments both on synthetic and naturally-occurring data demonstrate
the viability of the method compared to competing state-of-the-art algorithms.

6More precisely it captures long gap and hydrophobic core modeling.
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Competitors: 

 Clustal (most commonly used alignment package)
 Probcons (a state-of-the-art system) [Higgins et al, ’88]

[Do et al, ’05]

Current caveat: runs in cubic time



Outline: two frameworks for probabilistic 
inference over combinatorial spaces

 Variational inference by Measure Factorization 

 User’s guide
 Theoretical foundations
 Experiments on multiple sequence alignment

 Poset Sequential Monte Carlo

 User’s guide
 Theoretical foundations
 Experiments on phylogenetic tree inference
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Sequential Monte Carlo (SMC)
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Advantages of SMC

Efficiency: gives a reasonable approximation very quickly

Scale: trivial to parallelize across cores or clusters

Can be combined with MCMC



Using SMC on combinatorial spaces: 
user’s guide

Idea: sample the combinatorial structure incrementally

Example: building phylogenetic trees incrementally
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Is that it?

There is one issue that arise here (and was not a 
problem in standard SMC)

Imagine all possible particles that can be proposed...
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Proposal poset for standard SMC
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Correcting over-counting posets

Simply define a backward proposal density q- with support 
on the reversed proposal poset 
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and use it to correct the 
weights:



lim
N→∞

N∑

i=1

w̄if(pi) =
∫

f(p)π(dp)

Theoretical guarantee

Theorem: 
Poset SMC is consistent, i.e. for all bounded test 
function f

(a.s.)



Application to phylogenetic inference

Goal: comparison against MCMC

Competitor: standard MCMC sampler, 4 tempering chains, 
shared sum-product implementation

Metric: symmetric clade difference of the Minimum Bayes 
Risk reconstructed tree to the generating tree

Datapoints computed by increasing the number of particles 
(for SMC) and the number of sampling steps (for MCMC)



Experiments: setup

Synthetic-small Synthetic-med Real data

Source Generated from the modelGenerated from the model Subset of HGDP

Likelihood model Brownian motion on frequenciesBrownian motion on frequenciesBrownian motion on frequencies

Number of sites 100100 11 511

Number of nodes 25 51 25

Number of leaves 13 26 13

See Sys bio paper for more experiments



Comparison with MCMC
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Experiments on real data

Goal: show that the method scales to large number of sites
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Conclusion

 Variational inference by Measure Factorization 

 Cons: Approximations are not incremental (yet), MSA 
system is still too slow for broad usability

 Pros: Good accuracy, bounds

 Poset Sequential Monte Carlo

 Cons: Memory intensive--MCMC eventually overperforms
 Pros: Quickly gets to a good guess, easy to parallelize, 

makes a great combo with MCMC

[Bouchard et al. NIPS 2010]

[Bouchard et al. Sys bio 2012]
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