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Decoding the title of this talk

Variational and Sequential Inference over Combinatorial Spaces

: (. {E—

Probabilistic inference The set C Is discrete, has
exponential size, and Is
erc f(x) ‘complicated’
Main motivations: Next few slides: Examples
Computing a posterior of such problems (and
distribution, counting definition later)
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Familiar examples of inference problems
over combinatorial spaces

Perfect bipartite matchings

C: set of bijection b

etween 4 and B %
x: one element in this set (right)

f(x) : multiply the the weight of each edge 4«3

A twist on the Traveling Salesman Problem

C: Hamiltonian circ

x: one element in this set (right)

fix) : multiply the tr

Uits on a graph

e weight of each edge




Perhaps less familiar examples of inference
problems over combinatorial spaces

Counting linearizations of a partial orders P

Equivalently: number of ways to topologically
sort a DAG (applications in ranking)

Counting plane partitions
Piling up cubes such that stacks are In
increasing heights (applications in stat. mech.)

Counting Self Avoiding Walks (SAW) Jﬁ_ﬁﬁqgg
Applications in modeling knot-theoretic |

pelpegiod -
properties of proteins gﬁlﬁ{g




Two concrete problems in computational
biology that motivated this work

Multiple Sequence Alignment (MSA)




Two concrete problems in computational
biology that motivated this work

Phylogenetic tree inference
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Decoding the title of this talk

Variational and Sequential Inference over Combinatorial Spaces

A

" Previous work: for inference in combinatorial spaces, mostly
MCMC (Markov Chain Monte Carlo)

Variational methods: cast probabilistic inference problems as
a constrained, convex optimization problem

Sequential methods: incrementally approximate complicated
distributions by importance sampling and resampling

Both approaches have been very successful for inference Iin
. graphical models, but not in combinatorial space...

~




Outline: two frameworks for probabilistic
inference over combinatorial spaces

= Variational inference by Measure Factorization

= User’s guide
= Theoretical foundations
= EXxperiments on multiple sequence alignment

= Poset Sequential Monte Carlo

= User’s guide
= Theoretical foundations
= EXxperiments on phylogenetic tree inference



Variational inference over
combinatorial spaces: a user’s guide

Setup: hard inference problem over an exponential family

g = Z exp(T'(x),0) 1|z € 5]
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Variational inference over
combinatorial spaces: a user’s guide

Goal: 7 =" f(x) (nractable) '

rEeS

Assumption: 5 = ()5, such that
(‘Measure 52

factorization’) “i = D f(x) istractable
rEeS;

Consequence: if you can find such decomposition, our
framework gives a way to turn variational algorithms
defined for graphical models into algorithms that can be
used for combinatorial spaces



Advantages

Termination: most variational algorithms are guaranteed
to converge in a finite number of steps (very small in
practice)

Bounds: using a specific variational algorithm, we can
guarantee that the estimated value for Z is an upper bound

Empirically: good accuracy on a range of problems



Examples of tractable measure factorizations

Functions

Perfect matching

%s




Examples of tractable measure factorizations

Traveling salesman




Examples of tractable measure factorizations

More advanced example: linearizations of partial orders




Examples of tractable measure factorizations

More advanced example: linearizations of partial orders

‘Hasse diagram’



Examples of tractable measure factorizations

More advanced example: linearizations of partial orders

Linearization
of Posets

Forest cover

- 93

N Ul [ N

N Ul W N
H

[2H=] ~
NiIHul=r |w



Examples of tractable measure factorizations

More advanced example: linearizations of partial orders
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Under the hood

Background on exponential families:
- - Parameter
Sufficient statistic

| /

P(X,€ B) = » exp{(T(z),0) — A(B)}v(z).

A(6) =log Y exp{(T(x), 0)}u(x).

/ x € X \
Log partition function The base measure Is an indicator

over the combinatorial space C of
Interest



What do the sufficient statistic look like in the
combinatorial spaces we have seen?

Bipartite - 1[ailinkedto b1] 7 [ G1a 1]
matchings 1[a1 linked to bs] 012
1{a1 linked to bs3] 01,3

A<—B

—~ Vv

Rich sufficient statistic co_ndition: for all J—dim_ens_ional
vector s, there is at most one configuration x with 7(x) = s



Important property

The gradient of the log partition function is equal to the
moments:
VA(H) — ‘L[T(Xg)]

The hessian of the log partition function is equal to the
covariance matrix:

H(A(0)) = Var[T(Xe)].

Consequence: A4 is a convex function



Connection with measure factorizations

Inference on the original problem;

S1
X ~ exp {(T(x),é’) - A(e)} [[1lzes:

Inference on a single factor i:

X, ~ exp {(T(x), g) — Ai(e)} 1z € ;] S

Tractable assumption: can compute (e.g. using DP)
VA (0) =E[T(X;)]

—ZT exp{ ),9>—Ai(9)}1[$65fi}




Example of an algorithm derived using our
framework: Measure Factorization Belief Prop.

e )
BPMF(0, Ay, ..., Ar) Form a set of transformed
¢ =0 parameters
2: for_z)z L2,...,I'do 1 (one for each factor)
3: & =0+ Zi’:z”;éi 67(;'_ ) I /
) (1) (1) A
4 ¢ = logit (VAz' (57: )) —& <(Compute moments for
5: end for each factor using the
6: return = logistic ( @ Z-C(-T)
- return f1 = logistic i &4 new transformed
parameters




How did we get to this algorithm?

Plan:

= Review of the variational framework for
graphical models

= How to cast combinatorial problems into
something that fits this framework



Representation of convex functions

\/ W 7

SSRK

Standard / pointwise  Encoded by intercepts of
encoding the supporting tangents



Connexion: Legendre-Fenchel transformation

An operator (a function that takes a function and
transforms it into another function) denoted by *

f*(y) :== sup {(y,z) — f(z)},

x € dom(f)

Warning: for pedagogical reasons, assume for now that /

IS univariate, twice differentiable and strictly convex (can
be made more general!!)



Intuition

Suppose | give you a tangent/supporting plane. Encoding
a convex function can be done by giving the intercept c,

y (y I) — Cq




Why this particular ‘encoding’?

Theorem:
When fis convex (and lower semi-continuous): f** = f

Consequence: the log partition function satisfies 4™ = A4

What we will do with this: First, apply the definition of
Fenchel dual to the function 4%, getting:

A(0) = sup{(0, ) — A"(p) : p € A},
|
A(6) This is just the domain of 4™



Done?

Convex function are easy to optimize, right?

A(0) = sup{(0,n) — A" (p) - p € A7},

Problem: there are exponentially many constraints here



Constraints: realizable moments

Suppose | give you a J-dimensional vector ¢ and | claim it
s the moment of a distribution for some parameters 6
(which | don't give you 6, but the sufficient statistics are
known)

|.e. claim there Is a @ such that;
n = E[T(Xp)]

What could you check?



Sufficient statistic for graphical models

Ixi1=+] 1 Oi1,+
1{x1,1=-] 01,1,-
1{x12 =] 01.2,+

T(x) = E

One node

1[x191 — —|_9 xlaz — —|_] 91919+;192?+

Pairs of nodes | 1[x1,1 =+, x12="-]| |O11+12-




Constraints: realizable moments

Suppose | give you a J-dimensional vector ¢ and | claim it
s the moment of a distribution for some parameters 6
(which | don't give you 6, but the sufficient statistics are
known)

| | i ,Ll1,1,+_
|.e. claim there Is a 8 such that: i,
i = E[T(Xo)] U124+
What could you check? '
P11+ = Z H1,1,451,2,2 HLLL2
xe{+,—} etc. MU1.1,+;1,2,-




Constraints: realizable moments

Theorem: for trees, u Is a realizable moment if and only if
pairwise marginalization conditions are met

In cyclic graphs, higher order marginalization constraints
needed!



Belief propagation

Main idea: even if there are cycles, use only pairwise
marginalization constraints (a relaxation of the optimization

problem)

It can be shown that optimizing this relaxed problem yields

the familiar BP algorithm (actually, the objective also needs to be
simplified a little bit)



Back to combinatorial spaces...

First step: we showed that under the rich sufficient statistic
condition, the following two distributions are equivalent:




Back to combinatorial spaces

Second step: pick a variational algorithm an look at the
messages sent in the equivalent bipartite graph




Back to combinatorial spaces

Third step: address one last problem...

Storing a single message M(x) would take exponential memory!
(Recall that x is an element of a large combinatorial space)




Representing the messages M(x)

Key idea: the messages M,—.(x) can be shown to belong to the
same exponential family the one associated to factor i

A e

30 st My_i(x) = exp {(T(),0) — 4,(0) } 1[z € 5

This Is what gets calculated in the pseudo-code shown earlier

BPMF, A,...., A7)

l: C,L.(’lj) =0
2: fort =1,2,...,7 do

3 &) =0+
4 ¢l =logit (Vi (")) - &



Experiments

Matching: comparing to RMS to true posterior in small
graphs, and reconstructing matchings from noisy
observations in large graphs (averaged over 100 runs)

Synthetic data: random bipartite graphs with edge
appearance probability p

Competitor: a fully polynomial randomized algorithm
(FPRAS) [Rasmussen]



Mean RMS
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Results

Performance on p=9/10

04 F

o
w

O
N
N

o
T

=== FPRAS

e BPMF

Performance as a
function of p
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Application to multiple sequence alignment

Model of alignment: k-partite transitive matchings with
ordering constraints

............. a: C A A C
b: C A G -
C: - A T C C




Application to multiple sequence alignment

Model of alignment: k-partite transitive matchings with
ordering constraints

......................................................................................................... c A T C a
O 5. /W X
v | -C
A ~ b C A
v ?/% ¢ e
.9% A C
° X X
b: C A
| e i




Too many factors!

Generalized setup:

S S C ﬂ S.
® = w
$2
Effect on the approximation: can be characterized as an
upper bound on the true partition function



Evaluation

Alignment: Sum of Pair (SP): Fraction of aligned
core block residues also aligned in the reference

S\ \\ 3

C A G

Dataset: BAIIBASE (manually annotated proteins alignments)
[Thomson et al., '99]



Results

Sum of Pairs score (SP)
BAIIBASE protein group BPMF-1 BPMF-2 BPMF-3 Clustal [24] ProbCons [25]

short, < 25% identity 0.68 0.74 0.76 0.71 0.72
short, 20% — 40% identity 0.94 0.95 0.95 0.89 0.92
short, > 35% identity 0.97 0.98 0.98 0.97 0.98
All 0.88 0.91 091 0.88 0.89
Competitors:

= Clustal (most commonly used alignment package)

Higgins et al,
" Probcons (a state-of-the-art system) Higgins et al, 53]
[Do et al, '05]

Current caveat: runs in cubic time



Outline: two frameworks for probabilistic
inference over combinatorial spaces

= Variational inference by Measure Factorization

= User’s guide
= Theoretical foundations
= EXxperiments on multiple sequence alignment

= Poset Sequential Monte Carlo

= User’s guide
= Theoretical foundations
= EXxperiments on phylogenetic tree inference



Background: Sequential Monte Carlo (SMC)

Standard SMC: An algorithm to sample sequences of length »

1. Initialize [...] :




Sequential Monte Carlo (SMC)

SMC : Approximation for 7T

1. Initialize [...] >
2. lterate :

.. Sample partial states

/
p; ~T1 X Qg




Sequential Monte Carlo (SMC)

SMC : Approximation for 7T

1. Initialize [...]

2. lterate :

.. Sample partial states

/
pP; ~|T1|X g

N




Sequential Monte Carlo (SMC)

SMC : Approximation for 7T

ad

1. Initialize [...]

2. lterate :

[ Sample partial states

/
p; ~ 71 X

N

q




Sequential Monte Carlo (SMC)

SMC : Approximation for 7T

1. Initialize [...] >
2. lterate :

.. Sample partial states

Di ~ T1 X @
ii. Compute weights
;) 1
v(p:) 4(pi — D)
iil. Normalize weights

w,; —




Advantages of SMC

Efficiency: gives a reasonable approximation very quickly
Scale: trivial to parallelize across cores or clusters

Can be combined with MCMC



Using SMC on combinatorial spaces:
user's guide

ldea: sample the combinatorial structure incrementally

Example: building phylogenetic trees incrementally



Sequential Monte Carlo (SMC)

1. Initialize [...] :




Sequential Monte Carlo (SMC)

ool

SMC : Approximation for 7T

code

1. Initialize [...] >
2. lterate :

.. Sample partial states

/
p; ~T1 X Qg




Sequential Monte Carlo (SMC)

SMC : Approximation for 7T

1. Initialize [...] >
2. lterate :

.. Sample partial states

T (X q

3 p; ~
J 2




Sequential Monte Carlo (SMC)

SMC : Approximation for 7T

b

P 2

&@N/J}/@A@

L.
Yo0d®

1. Initialize [...]

2. lterate :

.. Sample partial states

/
p; ~ 71 X

N

q




Sequential Monte Carlo (SMC)

SMC : Approximation for 7T

1. Initialize [...] >
2. lterate :

.. Sample partial states

Di ~ T1 X @
ii. Compute weights
;) 1
v(p:) 4(pi — D)
iil. Normalize weights

w,; —




|s that 1t?

There Is one issue that arise here (and was not a
problem in standard SMC)

Imagine all possible particles that can be proposed...



Proposal poset for
combinatorial spaces

SEaN2

N
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A

-

(A NBNC)

\_

~

A poset/DAG where

there Is an edge
x—y Iff y can be
proposed from x

J




Proposal poset for
combinatorial spaces
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Proposal poset for standard SMC

aa ab ac ba bb bc ca cb cC
a b c

N/

£



Correcting over-counting posets

Simply define a backward proposal density ¢. with support
on the reversed proposal poset

9 ¢

o4

Dy & © ¢

v

3% and use It to correct the

@{%ﬁj
®0

A

weights:

— y(}) q—(p;—Dpi)

7 ~(pi) q(pi—p7)



Theoretical guarantee

Theorem:
Poset SMC is consistent, I.e. for all bounded test
function f

N —00 4

lim » w;f(p;) = / f(p)m(dp) (as.)



Application to phylogenetic inference

Goal: comparison against MCMC

Competitor: standard MCMC sampler, 4 tempering chains,
shared sum-product implementation

Metric: symmetric clade difference of the Minimum Bayes
Risk reconstructed tree to the generating tree

Datapoints computed by increasing the number of particles
(for SMC) and the number of sampling steps (for MCMC)



Experiments: setup

Synthetic-small Synthetic-med  Real data

Source Generated from the model Subset of HGDP
Likelihood model Brownian motion on frequencies
Number of sites 100 11 511
Number of nodes 29 51 29
Number of leaves 13 20 13

See Sys bio paper for more experiments



Symmetric clade difference

Comparison with MCMC
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Symmetric clade difference

Comparison with MCMC
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Experiments on real data

Goal: show that the method scales to large number of sites

Number of particle (10,000) determined using synthetic
experiments, timing experiments with different numbers of
cores:

)]
o)
o
o
o

55000 [

45000 |

Wall clock time (ms)

1 2 3 4
Number of cores



Conclusion

= Variational inference by Measure Factorization

= Cons: Approximations are not incremental (yet), MSA
system is still too slow for broad usability

" Pros: Good accuracy, bounds  1g;chard et al. NIPS 2010]

= Poset Sequential Monte Carlo

= Cons: Memory intensive--MCMC eventually overperforms

= Pros: Quickly gets to a good guess, easy to parallelize,
makes a great combo with MCMC

[Bouchard et al. Sys bio 2012]
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