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Sampling from the full conditional of the overall mean parameter, βp

The regression coefficient βp is assumed to have a normal hyper-prior distri-
bution

p(βp)∼ N(mβ ,sβ )

The full conditional distribution of βp can be written as

p(βp|θ..,m..,n..,Σu,y...) ∝

S

∏
s=1

T

∏
t=1

p(yst p|wt p,msp,nsp,βp,σ
2
usp)× p(βp)

where p(yspt |θt p,msp,nsp,βp,σ
2
usp) ∼ N(θt p + msp + Ispnsp + βp,σ

2
usp) for

s = 1, ...S, t = 1, ..,P and p = 1, ...,P.

As a result the full conditionals distribution of βp is

βp ∼ N(µβp ,sβp)

where

sβp =
1

∑
S
s=1

T
σ2

usp

and µβ =
T

∑
t=1

∑
S
s=1(yst p−θt p−msp− Isp(ns))

σ2
usp

sβp

0.0.1 Sampling from the full conditional of the measurement error variance
σ2

usp

The hyper-prior for the precision of the measurement error, σ−2
usp is a Gamma

distribution, parameterisations can found in equation 3.2.

p(σ−2
usp )∼ Gam(au,bu)

therefore the full conditional can be written as

p(σ−2
usp |θ..,m..,n..,β.,y...) ∝

S

∏
s=1

T

∏
t=1

p(yst p|θt p,msp,nsp,βp,σ
2
usp)× p(σ−2

usp )

σ
−2
usp ∼ Gam

(
au +

T
2
,bu +

1
2

T

∑
t=1

(Yst p−βp−θt p−msp− Isp(ns))
2

)

0.0.2 Sampling from the full conditional of the covariance matrix of
temporal effects, Σw

p(Σw|θ..,α.) ∝
{

∏
T
t=2 MV NP(α.θ.(t−1),Σw)

}
× IWp(Qw,d)

∝ IW
(
Qw +∑

T
t=2(θ.t −α.θ.(t−1))(θ.t −α.θ.(t−1))

′,T −1+d
)

Thus an Inverse Wishart distribution is used to sample the temporal covariance
matrix.
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0.0.3 Sampling from the full conditional of the temporal effects, θ..

The prior distribution of θ.t is a multivariate normal distribution as described
in Section 4.1. The full conditional distributions for the temporal effects can
be written as

p(θ..|y...,β.,Σu,Σw,α.,m..,n..) ∝

∝
{

∏
S
s=1 ∏

T
t=1 MV NP(β.+θ.t +ms.+ Is.ns.,Σu)

}
×
{

∏
T
t=2 MV NP(α.θ.(t−1),Σw)

}
∝ exp

{
− 1

2 ∑
S
s=1 ∑

T
t=1(ys.t − (β .+θ.t +ms.+ Is.ns.))Σ

−1
u (ys.t − (β .+θ.t +ms.+ Is.ns.))

′}
×exp

{
− 1

2 ∑
T
t=2(θ.t −α.θ.(t−1))Σ

−1
w (θ.t −α.θ.(t−1))

′}
∝ MV NP(µθt ,Sθt ), where

Sθt =
(

Σ−1
u +α.Σ

−1
w α

′
.

)−1
for t = 1,(

Σ−1
u +Σ−1

w +α.Σ
−1
w α

′
.

)−1
for t = 2, ...,T −1,

(
Σ−1

u +Σ−1
w
)−1 for t = T,

µθt = Sθt

(
∑

S
s=1(ys.t − (β .+θ.t +ms.+ Is.ns.))Σ

−1
u +θ.(t+1)Σ

−1
w α.

)
for t =

1,
Sθt

(
∑

S
s=1(ys.t − (β .+θ.t +ms.+ Is.ns.))Σ

−1
u +(θ.(t−1)+θ.(t+1))Σ

−1
w α.

)
for t =

2, ...,T −1,
Sθt

(
∑

S
s=1(ys.t − (β .+θ.t +ms.+ Is.ns.))Σ

−1
u +θ.(t−1)Σ

−1
w α.

)
fort = T,

0.0.4 Sampling from the full conditional of the α. parameter

The αp parameters, p = 1,2, ...,P, have Uniform distributions as their priors
and will not have a full conditional of closed form. In such cases, a Metropolis–
with–Gibbs algorithm can be used with proposed value of αp accepted with
probability

c = min

[
1,

p(θp.|α ′p,Σw)

p(θp.|αc
p,Σw)

]
where α ′p is the proposed value and αc

p the current value of αp for p =
1, ...,P. As proposed value, α ′p, a random value from the prior distribution,
Uni f (−1,1), is used.

0.0.5 Sampling from the full conditional distribution of the spatial
parameters for the background process, σ−2

mp ,φmp

There are two parameters that controls the spatial process of the data, σ2
mp is

the between site spatial variance and the parameter φmp controls the strength
of the correlation between the sites.
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The hyper-prior for the between site precision, σ−2
mp is a Gamma distribution

p(σ−2
mp )∼ Gam(amp,bmp)

p(σ−2
mp |m.p) ∝ p(m.p|σ2

mp,φmp)× p(σ−2
mp )

where p(m.|σ2
m,φm) ∼MV NS(0S,σ

2
mΣm). As a result the full conditional dis-

tribution is

σ
−2
mp ∼ Gam

(
amp +

S
2
,bmp +

1
2

m.pΣmpm
′
.p

)
The parameter φmp does not the have full conditional distribution available in

closed form, so the Metropolis-Hasting algorithm is used with proposed values
from the range (aφ ,bφ ), since the prior distribution of φmp is Uni f (aφ ,bφ ). The
proposed values of φmp is accepted with probability

c = min

[
1,

p(m.p|φ ′mp,σ
2
mp)

p(m.p|φ c
mp,σ

2
mp)

]

where φ ′mp is the proposed value and φ c
mp the current value of φmp.

0.0.6 Sampling from the full conditional distribution of spatial effects, m.p

The spatial effects have a zero mean multivariate normal distribution as a prior
distribution

p(m.p|σ2
mp,φmp)∼MV NS(0S,σ

2
mpΣmp)

The assumption that the spatial effects has zero mean prior distribution is
valid since we have the β parameter in the model. This prior distribution
is controlled by algorithms initial values that will be chosen for parameters
(σ2

mp,φmp).

The full conditional distribution of m.p can be written as

p(m.p|σ2
up,n.p,σ

2
mp,φmp,θ.p,y..p)∝

T

∏
t=1

S

∏
s=1

p(yst p|θt p,msp,β ,nsp,σ
2
up)× p(m.p|σ2

mp,φmp)

As a result the full conditional of m.p can be written in two forms, one for sin-
gle updating and one for block updating. The single updating full conditional
distribution is

msp ∼ N(µmsp ,smsp)
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where

smsp =
1

T σ
−2
up +σ

−2
mp

and µmsp =
T

∑
t=1

(yspt −βp− Ispnsp)σ
−2
up sms

The block updating posterior is given by

m.p ∼MV NS

(
T

∑
t=1

(y.t p−βp− Ispn.p))Σ−1
u sm,sm

)

where

sm =
(

T Σ
−1
u +

(
σ

2
mpΣmp

)−1
)−1

where Σu is a diagonal matrix.

0.0.6.1 Sampling from the full conditional distribution of the spatial
parameters for the additional process,σ−2

np ,φnp

The additional spatial process is independent from the background spatial pro-
cess but the posterior distributions of its two parameters have similar form, σ2

np
is the between site spatial variance of the specific group and the parameter φnp
controls the strength of the correlation between the sites.

p(σ−2
np )∼ Gam(anp,bnp)

p(σ−2
np |n.p) ∝ p(n.p|σ2

np,φnp)× p(σ−2
np )

where p(n.p|σ2
np,φnp)∼MV NS∗(0S∗ ,σ

2
npΣnp). As a result the full conditional

distribution is

σ
−2
np ∼ Gam

(
anp +

S∗

2
,bnp +

1
2

n.pΣnpn
′
.p

)
The parameter φnp does not the have full conditional distribution available in

closed form, so the Metropolis-Hasting algorithm is used with proposed values
from the range (aφ ,bφ ), since the prior distribution of φnp is Uni f (aφ ,bφ ). The
proposed values of φnp is accepted with probability

c = min

[
1,

p(n.p|φ ′np,σ
2
np)

p(n.p|φ c
np,σ

2
np)

]

where φ ′np is the proposed value and φ c
np the current value of φnp.
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0.0.7 Sampling from the full conditional distribution of spatial effects, n.p

The spatial effects have a zero mean multivariate normal distribution as a prior
distribution

p(n.p|σ2
np,φnp)∼MV NS∗(0S∗ ,σ

2
npΣnp)

The assumption that the spatial effects has zero mean prior distribution is valid
since we have the βp parameter in the model which represents the overall mean
of this process. This prior distribution is controlled by algorithm initial values
that will be chosen for parameters (σ2

np,φnp).

The full conditional distribution of n.p can be written as

p(n.p|βp,σ
2
u ,m.pσ

2
np,φnp,θ.py..p)∝

T

∏
t=1

∏
s∈S∗

p(yst p|msp,βp,nsp,θt p,σ
2
u )× p(n.p|σ2

np,φnp)

As a result the posterior distribution of n.p can be written in two forms, one
for single updating and one for block updating. The single updating full con-
ditional distribution is

nsp ∼ N(µnsp ,snsp)

where

snsp =
1

T σ
−2
u +σ

−2
np

and µnsp = (yspt −βp−msp−θt p)σ
−2
up snsp

The block updating posterior is given by

n.p ∼MV NS∗

(
snp

T

∑
t=1

(yt.p−βp−m.p−θt p)Σ
−1
up ,s

′
np

)

where

snp =
(

T Σ
−1
up +

(
σ

2
npΣnp

)−1
)−1

where Σu is a diagonal matrix.

0.0.8 Implementation using WinBUGS

model {
# beginning of t loop

for (t in 2:(n-1)) {

for (poll in 1:4) {
for (site in 1:8) {
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# 4x8 ys
arise
from the
4
underlying
thetas ,

& 8 site
effects &

measurement
error

y.mat[t,poll ,site] ~ dnorm(
mean.poll.site[t,poll ,
site],tau.v[poll ,site])

mean.poll.
site[t,
poll ,site
] <-
theta[t,
poll] +m
.adj[poll
,site]

+ temp
.effect[t
,poll]

# end of site
loop

}

# all of the

underlying
thetas

are
averages
of the
two
neighbours

tmp.theta[t,
poll]<-
(theta[t
-1,poll
]+theta[
t+1,poll
])/2

for (
poll2

in

1:4)

{
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Sigma
.
p
.
like
[
t
,
poll
,
poll2
]

<

-

(
theta
[
t
,
poll
]-
theta
[
t
-1,
poll
])

*

(
theta
[
t
,
poll2
]-
theta
[
t
-1,
poll2
])

}

temp.effect[
t,poll]
<- (beta
.temp[
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poll]*
temp.adj
[t])

+(beta.
temp2[
poll]*
temp2.
adj[t])

# end of poll loop
}

theta[t ,1:4] ~ dmnorm(tmp.
theta[t,1:4], Sigma.p2
[1:4 ,1:4])

# temp effects
temp.adj[t]<-temp[t]-temp.bar
temp2.adj[t]<- temp2[t]-temp2.bar

# end of t loop
}

# Set up the priors for ’edges ’ of the underlying AR process
for theta
theta [1 ,1:4]~dmnorm(theta [2,1:4], Sigma.p[1:4 ,1:4])
theta[n ,1:4]~dmnorm(theta[n-1,1:4], Sigma.p[1:4 ,1:4])

# Set up the priors for the ’edges ’ of the y’s
for (poll in 1:4) {

for (site in 1:8) {
y.mat[1,poll ,site] ~ dnorm(theta[1,

poll],tau.v[poll ,site])
y.mat[n,poll ,site] ~ dnorm(theta[n,

poll],tau.v[poll ,site])
}

}

# Likelihoods for the ’edges ’

for (poll1 in 1:4) {
for (poll2 in 1:4) {

Sigma.p.like[1,poll1 ,poll2]<-
0

Sigma.p.like[n,poll1 ,poll2]<-
(theta[n,poll1]-theta[n
-1,poll1]) * (theta[n,
poll2]-theta[n-1,poll2 ])

}

}

For the parameters of the Wishart distribution, d was chosen to be equal to
four, the dimension of ΣP;



10

D was then chosen so that the diagonals of the expected value (D/d) represent
a 10% coefficient of variation. The off-diagonals were taken to be zero.
# Likelihoods for the Wishart parameter
# initial values of the priors
R[1,1] <- 0.2
R[1,2] <- 0.01
R[1,3] <- 0.01
R[1,4] <- 0.01

R[2,2] <- 0.2
R[2,1] <- 0.01
R[2,3] <- 0.01
R[2,4] <- 0.01

R[3,3] <- 0.2
R[3,1] <- 0.01
R[3,2] <- 0.01
R[3,4] <- 0.01

R[4,4] <- 0.2
R[4,1] <- 0.01
R[4,2] <- 0.01
R[4,3] <- 0.01

for (poll1 in 1:4) {
for (poll2 in 1:4) {

Rn[poll1 ,poll2] < - R[poll1 ,poll2] + sum(
Sigma.p.like [1:n,poll1 ,poll2])

}
}

K <-2
Kn <- K+ n

Sigma.p[1:4 ,1:4] ~ dwish(Rn[1:4 ,1:4] ,Kn)

# mutiply the precision by 2, as variance needs to be
divided by 2 (average of 2 thetas)

for (i in 1:4){
for (j in 1:4){

Sigma
.
p2
[
i
,
j
]

<-

Sigma
.
p
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[
i
,
j
]
*
2

}
}

# put in the inverse stuff here , for the sd matrix /
correlation

for (i in 1:4){
for (j in 1:4){

var.p
[
i
,
j
]

<-

inverse
(

Sigma
.
p
[,],
i
,
j
)

}
}

for (poll in 1:4) {
sigma.theta[poll] <- sqrt(var.p[poll ,poll])

for (poll2 in 1:4) {
corr.theta[poll ,poll2] <- var.p[poll

,poll2] / (sigma.theta[poll]*
sigma.theta[poll2 ])

}
}

# Set up the pollutant/site specific observation precisions
for (poll in 1:4) {

for (site in 1:8) {
tau.v[poll ,site] ~ dgamma (1 ,0.01)
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sigma.v[poll ,site] <-1/sqrt(tau.v[poll ,
site])

}
}

# Set up the priors for the site specific parameters
# set them up as spatial.exp prior , different for each

site
for (poll in 1:4) {
m[poll ,1:8] ~ spatial.exp(xcoords[],ycoords[],tau.m[poll],

phi1[poll],phi2)
}

for (poll in 1:4) {
sigma.m[poll] <- 1/sqrt(tau.m[poll])
}

# and to constrain the sums to be zero - CHECK for quicker
approach

for (poll in 1:4) {
for (site in 1:8) {
m.adj[poll ,site] <- m[poll ,site]-mean(m[poll ,1:8])
}
}

phi2 <- 1
for (poll in 1:4) {
phi1[poll]~ dunif (0.0026 ,0.115)
tau.m[poll] ~ dgamma (1 ,0.01)
}

# priors for temp
temp.bar <-mean(temp [])
temp2.bar <- mean(temp2 [])
for (poll in 1:4) {
beta.temp[poll] ~ dnorm (0 ,0.001)
beta.temp2[poll] ~ dnorm (0 ,0.001)
}

# Calculate the mean and sd of the thetas
for (poll in 1:4) {

mean.theta[poll] <- mean(theta [1:n,poll])
sd.theta[poll] <-sd(theta [1:n,poll])

}

# end of model
}
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