Spatio - Temporal Methods in Environmental Epidemiology: Supplementary Material for Chapter

7

Gavin Shaddick and James V Zidek

Measurement error in exposures

In this section we consider measurement error in the exposure $\mathbf{z}_{i k}$ rather than ecological bias, whereas the next section will consider both jointly. For simplicity so that ecological bias is not a problem we assume that each individual within area k has the same exposures, namely $\mathbf{z}_{i k}=\mathbf{z}_{k}$. However \mathbf{z}_{k} is unknown and only M mis-measured estimates $\mathbf{w}_{k}\left(\mathbf{y}^{(\mathbf{2})}{ }_{k}, \ldots, \mathbf{y}^{(\mathbf{2})}{ }_{k^{M}}\right)$ are available. Then adopting a classical measurement error model we obtain the decomposition

$$
f\left(y_{k}^{(1)}, \mathbf{z}_{k}, \mathbf{y}^{(\mathbf{2})}{ }_{k} \mid \mathbf{x}_{k}\right)=f\left(y_{k}^{(1)} \mid \mathbf{z}_{k}, \mathbf{y}^{(\mathbf{2})}{ }_{k}, \mathbf{x}_{k}\right) f\left(\mathbf{y}^{(\mathbf{2})}{ }_{k} \mid \mathbf{z}_{k}, \mathbf{x}_{k}\right) f\left(\mathbf{z}_{k} \mid \mathbf{x}_{k}\right)
$$

where the first element on the right-hand side is the disease model, the second is the measurement error model (classical in this case) and the third is the exposure model. As $\left(\mathbf{z}_{k}\right)$ is constant across individuals the individual level Bernoulli risk model can be aggregated to a Binomial model, meaning that a measurement error model with log link is given by:

$$
\begin{aligned}
y_{k}^{(1)} \mid \mathbf{z}_{k} & \sim \operatorname{Binomial}\left(n_{k}, p_{k}\right) \\
\ln \left(p_{k}\right) & =\beta_{0}+\mathbf{z}_{k}^{T} \beta_{z}+\mathbf{x}_{k}^{T} \beta_{x}, \\
\mathbf{y}^{(\mathbf{2})^{i}} & \sim \mathrm{~N}\left(\mathbf{z}_{k}, \Sigma_{w}\right) \\
\mathbf{z}_{k} & \sim \mathrm{~N}\left(\mu_{k}, \Sigma_{z}\right)
\end{aligned}
$$

Using Bayes theorem the conditional distribution $\left.\mathbf{z}_{k}\right|^{(\overline{\mathbf{2}})_{k}}$ can be calculated where ${ }^{(\overline{\mathbf{2}})}{ }_{k}$ is the mean of the samples. It is given by $\left.\mathbf{z}_{k}\right|^{(\overline{\mathbf{2}})}{ }_{k} \sim \mathrm{~N}\left(\mathbf{m}_{k}, V_{k}\right)$, where

$$
\begin{aligned}
\mathbf{m}_{k} & =(I-Q) \mu_{k}+Q \overline{\mathbf{w}}_{k} \\
V_{k} & =(I-Q) \Sigma_{z}
\end{aligned}
$$

where $Q=\Sigma_{z}\left(\Sigma_{z}+\Sigma_{y^{(2)}}\right)^{-1}$. Then as \mathbf{z}_{k} is unknown we require a distribution for $y_{k}^{(1)} \mid \mathbf{w}_{k}$ rather than for $y_{k}^{(1)} \mid \mathbf{z}_{k}$. The former is still a Binomial model as the risk function for each individual within area k is the same (exposure is constant). Therefore $y_{k}^{(1)} \mid \mathbf{y}^{(\mathbf{2})}{ }_{k} \sim \operatorname{Binomial}\left(n_{k}, p_{k}^{*}\right)$, where

$$
\begin{aligned}
\mathbb{E}\left[y_{k}^{(1)} \mid \mathbf{y}^{(\mathbf{2})}{ }_{k}\right] & =\mathbb{E}\left[\mathbb{E}\left[y_{k}^{(1)} \mid \mathbf{y}^{(\mathbf{2})}{ }_{k}, \mathbf{z}_{k}\right]\right] \\
& =\mathbb{E}\left[n_{k} p_{k} \mid \mathbf{y}^{(\mathbf{2})}{ }_{k}\right] \\
& =\mathbb{E}\left[n_{k} \exp \left(\beta_{0}+\mathbf{z}_{k}^{T} \beta_{z}+\mathbf{x}_{k}^{T} \beta_{x}\right)\right] \\
& =n_{k} \exp \left(\beta_{0}+\mathbf{z}_{k}^{T} \beta_{z}\right) \mathbb{E}\left[\mathbf{x}_{k}^{T} \beta_{x} \mid \mathbf{y}^{(\mathbf{2})}{ }_{k}\right] \\
& =n_{k} \exp \left(\beta_{0}+\mathbf{x}_{k}^{T} \beta_{x}\right) \exp \left((I-Q) \mu_{k} \beta_{z}+Q \overline{\mathbf{y}^{(\mathbf{2}}{ }_{k}}{ }_{k} \beta_{z}+\beta_{z}^{T}(I-Q) \Sigma_{z} \beta_{z}\right)
\end{aligned}
$$

Here the term $(I-Q) \mu_{k} \beta_{z}$ has no dependence on $\mathbf{y}^{(\mathbf{2})}{ }_{k}$ and can be absorbed into the intercept term.

References

