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Measurement error in exposures

In this section we consider measurement error in the exposure z

ik

rather than
ecological bias, whereas the next section will consider both jointly. For sim-
plicity so that ecological bias is not a problem we assume that each individual
within area k has the same exposures, namely z
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= z
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. However z
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is unknown
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) are available. Then
adopting a classical measurement error model we obtain the decomposition
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where the first element on the right-hand side is the disease model, the
second is the measurement error model (classical in this case) and the third is
the exposure model. As (z

k

) is constant across individuals the individual level
Bernoulli risk model can be aggregated to a Binomial model, meaning that a
measurement error model with log link is given by:
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Using Bayes theorem the conditional distribution z
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| ¯(2)
k

can be calculated
where ¯(2)

k

is the mean of the samples. It is given by z
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(2) )�1. Then as z
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is unknown we require a distribu-

tion for y
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rather than for y
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. The former is still a Binomial model
as the risk function for each individual within area k is the same (exposure is
constant). Therefore y
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Here the term (I�Q)µ
k

b
z

has no dependence on y

(2)
k

and can be absorbed
into the intercept term.
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