
Lecture 1.

Introduction to Bayesian Monte Carlo

methods in WINBUGS
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Introduction to Bayesian Analysis and WinBUGS

Summary

1. Probability as a means of representing uncertainty

2. Bayesian direct probability statements about parameters

3. Probability distributions

4. Monte Carlo simulation

5. Implementation in WinBUGS (and DoodleBUGS) - Demo

6. Directed graphs for representing probability models

7. Examples
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Introduction to Bayesian Analysis and WinBUGS

How did it all start?

In 1763, Reverend Thomas Bayes of Tunbridge Wells wrote

In modern language, given r ∼ Binomial(θ, n), what is Pr(θ1 < θ < θ2|r, n)?
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Introduction to Bayesian Analysis and WinBUGS

Basic idea: Direct expression of uncertainty about
unknown parameters

eg ”There is an 89% probability that the absolute increase in major bleeds is less
than 10 percent with low-dose PLT transfusions” (Tinmouth et al, Transfusion,
2004)

% absolute increase in major bleeds

−50 −40 −30 −20 −10 0 10 20 30
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Introduction to Bayesian Analysis and WinBUGS

Why a direct probability distribution?

1. Tells us what we want: what are plausible values for the parameter of interest?

2. No P-values: just calculate relevant tail areas

3. No (difficult to interpret) confidence intervals: just report, say, central area
that contains 95% of distribution

4. Easy to make predictions (see later)

5. Fits naturally into decision analysis / cost-effectiveness analysis / project
prioritisation

6. There is a procedure for adapting the distribution in the light of additional
evidence: i.e. Bayes theorem allows us to learn from experience
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Introduction to Bayesian Analysis and WinBUGS

Inference on proportions

What is a reasonable form for a prior distribution for a proportion?

θ ∼ Beta[a, b] represents a beta distribution with properties:

p(θ|a, b) =
Γ(a + b)

Γ(a)Γ(b)
θa−1 (1 − θ)b−1; θ ∈ (0,1)

E(θ|a, b) =
a

a + b

V(θ|a, b) =
ab

(a + b)2(a + b + 1)
:

WinBUGS notation: theta ~ dbeta(a,b)
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Introduction to Bayesian Analysis and WinBUGS

Beta distribution

success rate
0.0 0.4 0.8

0
1

2
3

4
5

Beta(0.5,0.5)

success rate
0.0 0.4 0.8

0
1

2
3

4
5

Beta(1,1)

success rate
0.0 0.4 0.8

0
1

2
3

4
5

Beta(5,1)

success rate
0.0 0.4 0.8

0
1

2
3

4
5

Beta(5,5)

success rate
0.0 0.4 0.8

0
1

2
3

4
5

Beta(5,20)

success rate
0.0 0.4 0.8

0
4

8
12

Beta(50,200)

1-7



Introduction to Bayesian Analysis and WinBUGS

Gamma distribution
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Introduction to Bayesian Analysis and WinBUGS

The Gamma distribution

Flexible distribution for positive quantities. If Y ∼ Gamma[a, b]

p(y|a, b) =
ba

Γ(a)
ya−1 e−by; y ∈ (0,∞)

E(Y |a, b) =
a

b

V(Y |a, b) =
a

b2
.

• Gamma[1,b] distribution is exponential with mean 1/b

• Gamma[v
2
, 1
2
] is a Chi-squared χ2

v distribution on v degrees of freedom

• Y ∼ Gamma[0.001,0.001] means that p(y) ∝ 1/y, or that logY ≈ Uniform

• Used as conjugate prior distribution for inverse variances (precisions)

• Used as sampling distribution for skewed positive valued quantities (alterna-
tive to log normal likelihood) — MLE of mean is sample mean

• WinBUGS notation: y ~ dgamma(a,b)
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Introduction to Bayesian Analysis and WinBUGS

Example: Drug

• Consider a drug to be given for relief of chronic pain

• Experience with similar compounds has suggested that annual response rates
between 0.2 and 0.6 could be feasible

• Interpret this as a distribution with mean = 0.4, standard deviation 0.1

• A Beta[9.2,13.8] distribution has these properties
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Introduction to Bayesian Analysis and WinBUGS

0.0 0.2 0.4 0.6 0.8 1.0

probability of response

Beta[9.2, 13.8] prior distribution supporting response rates between 0.2 and 0.6,
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Introduction to Bayesian Analysis and WinBUGS

Making predictions

Before observing a quantity Y , can provide its predictive distribution by integrating
out unknown parameter

p(Y ) =

∫

p(Y |θ)p(θ)dθ.

Predictions are useful in e.g. cost-effectiveness models, design of studies, checking
whether observed data is compatible with expectations, and so on.
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Introduction to Bayesian Analysis and WinBUGS

If

θ ∼ Beta[a, b]
Yn ∼ Binomial(θ, n),

the exact predictive distribution for Yn is known as the Beta-Binomial. It has
the complex form

p(yn) =
Γ(a + b)

Γ(a)Γ(b)





n

yn





Γ(a + yn)Γ(b + n − yn)

Γ(a + b + n)
.

E(Yn) = n
a

a + b

If a = b = 1 (Uniform distribution), p(yn)is uniform over 0,1,...,n.

But in WinBUGS we can just write

theta ~ dbeta(a,b)
Y ~ dbin(theta,n)

and the integration is automatically carried out and does not require algebraic
cleverness.
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Introduction to Bayesian Analysis and WinBUGS
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(b) Predictive dist.

(a) is the Beta prior distribution

(b) is the predictive Beta-Binomial distribution of the number of successes Y in
the next 20 trials

From Beta-binomial distribution, can calculate P (Yn ≥ 15) = 0.015.
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Introduction to Bayesian Analysis and WinBUGS

Example: a Monte Carlo approach to estimating tail-areas of distributions

Suppose we want to know the probability of getting 8 or more heads when we
toss a fair coin 10 times.

An algebraic approach:

Pr(≥ 8 heads) =
10
∑

z=8

p

(

z|π =
1

2
, n = 10

)

=





10

8





(

1

2

)8 (
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)2

+
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)9 (
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= 0.0547.

A physical approach would be to repeatedly throw a set of 10 coins and count
the proportion of throws that there were 8 or more heads.
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Introduction to Bayesian Analysis and WinBUGS

A simulation approach uses a computer to toss the coins!

0 2 4 6 8 10
Number of heads

100 simulations

0 2 4 6 8 10
Number of heads

10,000 simulations

0 2 4 6 8 10
Number of heads

True distribution

Proportion with 8 or more ’heads’ in 10 tosses:

(a) After 100 ’throws’ (0.02); (b) after 10,000 throws (0.0577); (c) the true
Binomial distribution (0.0547)
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Introduction to Bayesian Analysis and WinBUGS

General Monte Carlo analysis - ‘forward sampling’

Used extensively in risk modelling - can think of as ’adding uncertainty’ to a
spreadsheet

• Suppose have logical function f containing uncertain parameters

• Can express our uncertainty as a prior distribution

• Simulate many values from this prior distribution

• Calculate f at the simulated values (‘iterations’)

• Obtain an empirical predictive distribution for f

• Sometimes termed probabilistic sensitivity analysis

• Can do in Excel add-ons such as @RISK or Crystal Ball.
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Introduction to Bayesian Analysis and WinBUGS

The BUGS program

Bayesian inference Using Gibbs Sampling

• Language for specifying complex Bayesian models

• Constructs object-oriented internal representation of the model

• Simulation from full conditionals using Gibbs sampling

• Current version (WinBUGS 1.4) runs in Windows

• ‘Classic’ BUGS available for UNIX but this is an old version

WinBUGS is freely available from http://www.mrc-bsu.cam.ac.uk/bugs

• Scripts enable WinBUGS 1.4 to run in batch mode or be called from other
software

• Interfaces developed for R, Excel, Splus, SAS, Matlab

• OpenBUGS site http://www.rni.helsinki.fi/openbugs provides an open source
version
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Introduction to Bayesian Analysis and WinBUGS

Running WinBUGS for Monte Carlo analysis (no
data)

1. Open Specification tool from Model menu.

2. Program responses are shown on bottom-left of screen.

3. Highlight model by double-click. Click on Check model.

4. Click on Compile.

5. Click on Gen Inits.

6. Open Update from Model menu, and Samples from Inference menu.

7. Type nodes to be monitored into Sample Monitor, and click set after each.

8. Type * into Sample Monitor, and click trace to see sampled values.

9. Click on Update to generate samples.

10. Type * into Sample Monitor, and click stats etc to see results on all monitored
nodes.
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Introduction to Bayesian Analysis and WinBUGS

Using WinBUGS for Monte Carlo

The model for the ’coin’ example is

Y ∼ Binomial(0.5,10)

and we want to know P (Y ≥ 8).

This model is represented in the BUGS language as

model{
Y ~ dbin(0.5,10)
P8 <- step(Y-7.5)
}

P8 is a step function which will take on the value 1 if Y -7.5 is ≥ 0, i.e. Y is 8 or
more, 0 if 7 or less.

Running this simulation for 100, 10000 and 1000000 iterations, and then taking
the empirical mean of P8, provided the previous estimated probabilities that Y will
be 8 or more.
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Introduction to Bayesian Analysis and WinBUGS

Some aspects of the BUGS language

• <- represents logical dependence, e.g. m <- a + b*x

• ~ represents stochastic dependence, e.g. r ~ dunif(a,b)

• Can use arrays and loops

for (i in 1:n){
r[i] ~ dbin(p[i],n[i])
p[i] ~ dunif(0,1)
}

• Some functions can appear on left-hand-side of an expression, e.g.

logit(p[i])<- a + b*x[i]
log(m[i]) <- c + d*y[i]

• mean(p[]) to take mean of whole array, mean(p[m:n]) to take mean of elements
m to n. Also for sum(p[]).

• dnorm(0,1)I(0,) means the prior will be restricted to the range (0,∞).
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Introduction to Bayesian Analysis and WinBUGS

Functions in the BUGS language

• p <- step(x-.7) = 1 if x ≥ 0.7, 0 otherwise. Hence monitoring p and recording
its mean will give the probability that x≥ 0.7.

• p <- equals(x,.7) = 1 if x = 0.7, 0 otherwise.

• tau <- 1/pow(s,2) sets τ = 1/s2.

• s <- 1/ sqrt(tau) sets s = 1/
√
τ .

• p[i,k] <- inprod(pi[], Lambda[i,,k]) sets pik =
∑

j πjΛijk. inprod2 may be
faster.

• See ’Model Specification/Logical nodes’ in manual for full syntax.

1-22



Introduction to Bayesian Analysis and WinBUGS

Some common Distributions

Expression Distribution Usage

dbin binomial r ~ dbin(p,n)

dnorm normal x ~ dnorm(mu,tau)

dpois Poisson r ~ dpois(lambda)

dunif uniform x ~ dunif(a,b)

dgamma gamma x ~ dgamma(a,b)

NB. The normal is parameterised in terms of its mean and precision = 1/ variance
= 1/sd2.

See ’Model Specification/The BUGS language: stochastic nodes/Distributions’
in manual for full syntax.

Functions cannot be used as arguments in distributions (you need to create
new nodes).
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Introduction to Bayesian Analysis and WinBUGS

Drug example: Monte Carlo predictions

Our prior distribution for proportion of responders in one year θ was Beta[9.2,13.8].

Consider situation before giving 20 patients the treatment. What is the chance
if getting 15 or more responders?

θ ∼ Beta[9.2,13.8] prior distribution

y ∼ Binomial[θ,20] sampling distribution

Pcrit = P (y ≥ 15) Probability of exceeding critical threshold

# In BUGS syntax:
model{
theta ~ dbeta(9.2,13.8) # prior distribution
y ~ dbin(theta,20) # sampling distribution
P.crit <- step(y-14.5) # =1 if y >= 15, 0 otherwise

}
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Introduction to Bayesian Analysis and WinBUGS

WinBUGS output and exact answers

node mean sd MC error 2.5% median 97.5% start sample

theta 0.4008 0.09999 9.415E-4 0.2174 0.3981 0.6044 1 10000
y 8.058 2.917 0.03035 3.0 8.0 14.0 1 10000
P.crit 0.0151 0.122 0.001275 0.0 0.0 0.0 1 10000

Note that the mean of the 0-1 indicator P.crit provides the estimated tail-area
probability.

Exact answers from closed-form analysis:

• θ: mean 0.4 and standard deviation 0.1

• y: mean 8 and standard deviation 2.93.

• Probability of at least 15: 0.015

These are independent samples, and so MC error = SD/
√

No.iterations.

Can achieve arbitrary accuracy by running the simulation for longer.
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Introduction to Bayesian Analysis and WinBUGS

WinBUGS output

Independent samples, and so no auto-correlation and no concern with conver-
gence.
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Introduction to Bayesian Analysis and WinBUGS

Graphical representation of models

• Doodle represents each quantity as a node in directed acyclic graph (DAG).

• Constants are placed in rectangles, random quantities in ovals

• Stochastic dependence is represented by a single arrow, and logical function
as double arrow

• WinBUGS allows models to be specified graphically and run directly from the
graphical interface

• Can write code from Doodles

• Good for explanation, but can be tricky to set up
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Introduction to Bayesian Analysis and WinBUGS

Script for running Drug Monte Carlo example

Run from Model/Script menu

display(’log’) # set up log file
check(’c:/bugscourse/drug-MC’) # check syntax of model
# data(’c:/bugscourse/drug-data’) # load data file if there is one
compile(1) # generate code for 1 simulations
# inits(1,’c:/bugscourse/drug-in1’) # load initial values if necessary
gen.inits() # generate initial values for all unknown quantities

# not given initial values

set(theta) # monitor the true response rate
set(y) # monitor the predicted number of successes
set(P.crit) # monitor whether a critical number of successes occur
trace(*) # watch some simulated values (although slows down simulation)
update(10000) # perform 10000 simulations
history(theta) # Trace plot of samples for theta
stats(*) # Calculate summary statistics for all monitored quantities
density(theta) # Plot distribution of theta
density(y) # Plot distribution of y
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Introduction to Bayesian Analysis and WinBUGS

Example: Power — uncertainty in a power calculation

• a randomised trial planned with n patients in each of two arms

• response with standard deviation σ = 1

• aimed to have Type 1 error 5% and 80% power

• to detect a true difference of θ = 0.5 in mean response between the groups

Necessary sample size per group is

n =
2σ2

θ2
(0.84 + 1.96)2 = 63

Alternatively, for fixed n, the power is

Power = Φ

(
√

nθ2

2σ2
− 1.96

)

.
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Introduction to Bayesian Analysis and WinBUGS

Suppose we wish to express uncertainty concerning both θ and σ, e.g.

θ ∼ N[0.5,0.12], σ ∼ N[1,0.32].

1. Simulate values of θ and σ from their prior distributions

2. Substitute them in the formulae

3. Obtain a predictive distribution over n or Power

prec.sigma <- 1/(0.3*0.3) # transform sd to precision=1/sd2
prec.theta <- 1/(0.1*0.1)
sigma ~ dnorm(1, prec.sigma)I(0,)
theta ~ dnorm(.5, prec.theta)I(0,)
n <- 2 * pow( (.84 +1.96) * sigma / theta , 2 )
power <- phi( sqrt(63/2)* theta /sigma -1.96 )
prob70 <-step(power-.7)
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Introduction to Bayesian Analysis and WinBUGS

Median 95% interval

n 62.5 9.3 to 247.2

Power (%) 80 29 to 100

For n= 63, the median power is 80%, and a trial of 63 patients per group could
be seriously underpowered. There is a 37% chance that the power is less than
70%.
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Introduction to conjugate Bayesian

inference
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Introduction to Bayesian Analysis and WinBUGS

What are Bayesian methods?

• Bayesian methods have been widely applied in many areas:

– medicine / epidemiology

– genetics

– ecology

– environmental sciences

– social and political sciences

– finance

– archaeology

– .....

• Motivations for adopting Bayesian approach vary:

– natural and coherent way of thinking about science and learning

– pragmatic choice that is suitable for the problem in hand
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Introduction to Bayesian Analysis and WinBUGS

Spiegelhalter et al (2004) define a Bayesian approach as

‘the explicit use of external evidence in the design, monitoring, analysis,
interpretation and reporting of a [scientific investigation]’

They argue that a Bayesian approach is:

• more flexible in adapting to each unique situation

• more efficient in using all available evidence

• more useful in providing relevant quantitative summaries

than traditional methods
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Introduction to Bayesian Analysis and WinBUGS

Example

A clinical trial is carried out to collect evidence about an unknown ‘treatment
effect’

Conventional analysis

• p-value for H0: treatment effect is zero

• Point estimate and CI as summaries of size of treatment effect

Aim is to learn what this trial tells us about the treatment effect

Bayesian analysis

• Asks: ‘how should this trial change our opinion about the treatment effect?’
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Introduction to Bayesian Analysis and WinBUGS

The Bayesian analyst needs to explicitly state

• a reasonable opinion concerning the plausibility of different values of the
treatment effect excluding the evidence from the trial (the prior distribution)

• the support for different values of the treatment effect based solely on data
from the trial (the likelihood),

and to combine these two sources to produce

• a final opinion about the treatment effect (the posterior distribution)

The final combination is done using Bayes theorem, which essentially weights
the likelihood from the trial with the relative plausibilities defined by the prior
distribution

One can view the Bayesian approach as a formalisation of the process of learning
from experience
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Introduction to Bayesian Analysis and WinBUGS

Posterior distribution forms basis for all inference — can be summarised to provide

• point and interval estimates of treatment effect

• point and interval estimates of any function of the parameters

• probability that treatment effect exceeds a clinically relevant value

• prediction of treatment effect in a new patient

• prior information for future trials

• inputs for decision making

• ....
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Introduction to Bayesian Analysis and WinBUGS

Bayes theorem and its link with Bayesian inference

Bayes’ theorem Provable from probability axioms

Let A and B be events, then

p(A|B) =
p(B|A)p(A)

p(B)
.

If Ai is a set of mutually exclusive and exhaustive events (i.e. p(
⋃

i Ai) =
∑

i p(Ai) =
1), then

p(Ai|B) =
p(B|Ai)p(Ai)

∑

j p(B|Aj)p(Aj)
.
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Introduction to Bayesian Analysis and WinBUGS

Example: use of Bayes theorem in diagnostic testing

• A new HIV test is claimed to have “95% sensitivity and 98% specificity”

• In a population with an HIV prevalence of 1/1000, what is the chance that
patient testing positive actually has HIV?

Let A be the event that patient is truly HIV positive, A be the event that they
are truly HIV negative.

Let B be the event that they test positive.

We want p(A|B).

“95% sensitivity” means that p(B|A) = .95.

“98% specificity” means that p(B|A) = .02.

Now Bayes theorem says

p(A|B) =
p(B|A)p(A)

p(B|A)p(A) + p(B|A)p(A)
.

Hence p(A|B) = .95×.001
.95×.001+.02×.999

= .045.

Thus over 95% of those testing positive will, in fact, not have HIV.
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Introduction to Bayesian Analysis and WinBUGS

• Our intuition is poor when processing probabilistic evidence

• The vital issue is how should this test result change our belief that patient is
HIV positive?

• The disease prevalence can be thought of as a ‘prior’ probability (p = 0.001)

• Observing a positive result causes us to modify this probability to p = 0.045.
This is our ‘posterior’ probability that patient is HIV positive.

• Bayes theorem applied to observables (as in diagnostic testing) is uncontro-
versial and established

• More controversial is the use of Bayes theorem in general statistical analyses,
where parameters are the unknown quantities, and their prior distribution
needs to be specified — this is Bayesian inference
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Introduction to Bayesian Analysis and WinBUGS

Bayesian inference

Makes fundamental distinction between

• Observable quantities x, i.e. the data

• Unknown quantities θ

θ can be statistical parameters, missing data, mismeasured data ...

→ parameters are treated as random variables

→ in the Bayesian framework, we make probability statements about model
parameters

! in the frequentist framework, parameters are fixed non-random quantities
and the probability statements concern the data
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Introduction to Bayesian Analysis and WinBUGS

As with any statistical analysis, we start by positing a model which specifies

p(x | θ)

This is the likelihood, which relates all variables into a ’full probability model’

From a Bayesian point of view

• θ is unknown so should have a probability distribution reflecting our uncer-
tainty about it before seeing the data
→ need to specify a prior distribution p(θ)

• x is known so we should condition on it
→ use Bayes theorem to obtain conditional probability distribution for unob-
served quantities of interest given the data:

p(θ | x) =
p(θ) p(x | θ)

∫

p(θ) p(x | θ) dθ
∝ p(θ) p(x | θ)

This is the posterior distribution

The prior distribution p(θ), expresses our uncertainty about θ before seeing the
data.

The posterior distribution p(θ | x), expresses our uncertainty about θ after seeing
the data.
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Introduction to Bayesian Analysis and WinBUGS

Inference on proportions using a continuous prior

Suppose we now observe r positive responses out of n patients.

Assuming patients are independent, with common unknown response rate θ, leads
to a binomial likelihood

p(r|n, θ) =





n

r



 θr(1 − θ)n−r ∝ θr(1 − θ)n−r

θ needs to be given a continuous prior distribution.

Suppose that, before taking account of the evidence from our trial, we believe all
values for θ are equally likely (is this plausible?) ⇒ θ ∼ Unif(0,1) i.e. p(θ) = 1

1−0
= 1

Posterior is then

p(θ|r, n) ∝ θr(1 − θ)(n−r) × 1

This has form of the kernel of a Beta(r+1, n-r+1) distribution (see lect 1), where

θ ∼ Beta(a, b) ≡
Γ(a + b)

Γ(a)Γ(b)
θa−1(1 − θ)b−1
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Introduction to Bayesian Analysis and WinBUGS

To represent external evidence that some response rates are more plausible than
others, it is mathematically convenient to use a Beta(a, b) prior distribution for θ

p(θ) ∝ θa−1(1 − θ)b−1

Combining this with the binomial likelihood gives a posterior distribution

p(θ | r, n) ∝ p(r | θ, n)p(θ)

∝ θr(1 − θ)n−rθa−1(1 − θ)b−1

= θr+a−1(1 − θ)n−r+b−1

∝ Beta(r + a, n − r + b)
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Introduction to Bayesian Analysis and WinBUGS

Comments

• When the prior and posterior come from the same family of distributions the
prior is said to be conjugate to the likelihood

– Occurs when prior and likelihood have the same ‘kernel’

• Recall from lecture 1 that a Beta(a, b) distribution has

mean = a/(a + b),
variance = ab/

[

(a + b)2(a + b + 1)
]

Hence posterior mean is E(θ|r, n) = (r + a)/(n + a + b)

• a and b are equivalent to observing a priori a − 1 successes in a + b − 2 trials
→ can be elicited

• With fixed a and b, as r and n increase, E(θ|r, n) → r/n (the MLE), and the
variance tends to zero

– This is a general phenomenon: as n increases, posterior distribution gets
more concentrated and the likelihood dominates the prior

• A Beta(1, 1) is equivalent to Uniform(0, 1)
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Introduction to Bayesian Analysis and WinBUGS

Example: Drug

• Recall example from lecture 1, where we consider early investigation of a new
drug

• Experience with similar compounds has suggested that response rates be-
tween 0.2 and 0.6 could be feasible

• We interpreted this as a distribution with mean = 0.4, standard deviation 0.1
and showed that a Beta(9.2,13.8) distribution has these properties

• Suppose we now treat n = 20 volunteers with the compound and observe
y = 15 positive responses

2-15



Introduction to Bayesian Analysis and WinBUGS

Probability or response
0.0 0.2 0.4 0.6 0.8 1.0

Beta(9.2, 13.8) prior distribution
supporting response rates
between 0.2 and 0.6

Probability or response
0.0 0.2 0.4 0.6 0.8 1.0

Likelihood arising from a
Binomial observation of 15
successes out of 20 cases

Probability or response
0.0 0.2 0.4 0.6 0.8 1.0

Parameters of the Beta
 distribution are updated to
(a+15, b+20-15) = (24.2, 18.8):
mean 24.2/(24.2+18.8) = 0.56
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Introduction to Bayesian Analysis and WinBUGS

Probability or response
0.0 0.2 0.4 0.6 0.8 1.0

(a)

0 10 20 30 40
Number of sucesses

0 10 20 30 40

(b)

(a) Beta posterior distribution after having observed 15 successes in 20 trials

(b) predictive Beta-Binomial distribution of the number of successes ỹ40 in the
next 40 trials with mean 22.5 and standard deviation 4.3

Suppose we would consider continuing a development program if the drug man-
aged to achieve at least a further 25 successes out of these 40 future trials

From Beta-binomial distribution, can calculate P (ỹ40 ≥ 25) = 0.329
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Introduction to Bayesian Analysis and WinBUGS

Drug (continued): learning about parameters from
data using Markov chain Monte-Carlo (MCMC) meth-
ods in WInBUGS

• Using MCMC (e.g. in WinBUGS), no need to explicitly specify posterior

• Can just specify the prior and likelihood separately

• WinBUGS contains algorithms to evaluate the posterior given (almost) arbi-
trary specification of prior and likelihood

– posterior doesn’t need to be closed form

– but can (usually) recognise conjugacy when it exists
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Introduction to Bayesian Analysis and WinBUGS

The drug model can be written

θ ∼ Beta[a, b] prior distribution

y ∼ Binomial[θ, m] sampling distribution

ypred ∼ Binomial[θ, n] predictive distribution

Pcrit = P (ypred ≥ ncrit) Probability of exceeding critical threshold

# In BUGS syntax:

# Model description ’
model {

theta ~ dbeta(a,b) # prior distribution
y ~ dbin(theta,m) # sampling distribution
y.pred ~ dbin(theta,n) # predictive distribution
P.crit <- step(y.pred-ncrit+0.5) # =1 if y.pred >= ncrit, 0 otherwise

}
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Graphical representation of models

Note that adding data to a model is simply extending the graph.
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Data files

Data can be written after the model description, or held in a separate .txt or .odc
file

list( a = 9.2, # parameters of prior distribution
b = 13.8,
y = 15, # number of successes
m = 20, # number of trials
n = 40, # future number of trials
ncrit = 25) # critical value of future successes

Alternatively, in this simple example, we could have put all data and constants
into model description:

model{
theta ~ dbeta(9.2,13.8) # prior distribution
y ~ dbin(theta,20) # sampling distribution
y.pred ~ dbin(theta,40) # predictive distribution
P.crit <- step(y.pred-24.5) # =1 if y.pred >= ncrit, 0 otherwise

y <- 15
}
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The WinBUGS data formats

WinBUGS accepts data files in:

1. Rectangular format (easy to cut and paste from spreadsheets)

n[] r[]
47 0
148 18
...
360 24
END

2. S-Plus format:

list(N=12,n = c(47,148,119,810,211,196,
148,215,207,97,256,360),

r = c(0,18,8,46,8,13,9,31,14,8,29,24))

Generally need a ‘list’ to give size of datasets etc.
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Initial values

• WinBUGS can automatically generate initial values for the MCMC analysis
using gen inits

• Fine if have informative prior information

• If have fairly ‘vague’ priors, better to provide reasonable values in an initial-
values list

Initial values list can be after model description or in a separate file

list(theta=0.1)
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Running WinBUGS for MCMC analysis (single chain)

1. Open Specification tool from Model menu.

2. Program responses are shown on bottom-left of screen.

3. Highlight model by double-click. Click on Check model.

4. Highlight start of data. Click on Load data.

5. Click on Compile.

6. Highlight start of initial values. Click on Load inits.

7. Click on Gen Inits if more initial values needed.

8. Open Update from Model menu.

9. Click on Update to burn in.

10. Open Samples from Inference menu.

11. Type nodes to be monitored into Sample Monitor, and click set after each.

12. Perform more updates.

13. Type * into Sample Monitor, and click stats etc to see results on all monitored
nodes.
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WinBUGS output
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WinBUGS output and exact answers

node mean sd MC error 2.5% median 97.5% start sample
theta 0.5633 0.07458 4.292E-4 0.4139 0.5647 0.7051 1001 30000
y.pred 22.52 4.278 0.02356 14.0 23.0 31.0 1001 30000
P.crit 0.3273 0.4692 0.002631 0.0 0.0 1.0 1001 30000

Exact answers from conjugate analysis

• θ: mean 0.563 and standard deviation 0.075

• Y pred: mean 22.51 and standard deviation 4.31.

• Probability of at least 25: 0.329

MCMC results are within Monte Carlo error of the true values

2-26



Introduction to Bayesian Analysis and WinBUGS

Bayesian inference using the Normal distribution

Known variance, unknown mean

Suppose we have a sample of Normal data xi ∼ N(θ,σ2) (i = 1, ..., n).

For now assume σ2 is known and θ has a Normal prior θ ∼ N(µ,σ2/n0)

Same standard deviation σ is used in the likelihood and the prior. Prior variance
is based on an ‘implicit’ sample size n0

Then straightforward to show that the posterior distribution is

θ|x ∼ N

(

n0µ + nx

n0 + n
,

σ2

n0 + n

)
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• As n0 tends to 0, the prior variance becomes larger and the distribution
becomes ‘flatter’, and in the limit the prior distribution becomes essentially
uniform over −∞,∞

• Posterior mean (n0µ + nx)/(n0 + n) is a weighted average of the prior mean
µ and parameter estimate x, weighted by their precisions (relative ‘sample
sizes’), and so is always a compromise between the two

• Posterior variance is based on an implicit sample size equivalent to the sum
of the prior ‘sample size’ n0 and the sample size of the data n

• As n → ∞, p(θ|x) → N(x,σ2/n) which does not depend on the prior

• Compare with frequentist setting, the MLE is θ̂ = x̄ with SE(θ̂) = σ/
√

n, and
sampling distribution

p(θ̂ | θ) = p(x̄|θ) = N(θ, σ2/n)
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Example: THM concentrations

• Regional water companies in the UK are required to take routine measure-
ments of trihalomethane (THM) concentrations in tap water samples for
regulatory purposes

• Samples are tested throughout the year in each water supply zone

• Suppose we want to estimate the average THM concentration in a particular
water zone, z

• Two independent measurements, xz1 and xz2 are taken and their mean, xz is
130 µg/l

• Suppose we know that the assay measurement error has a standard deviation
σ[e] = 5µg/l

• What should we estimate the mean THM concentration to be in this water
zone?

Let the mean THM conc. be denoted θz.

A standard analysis would use the sample mean xz = 130µg/l as an estimate of

θz, with standard error σ[e]/
√

n = 5/
√

2 = 3.5µg/l

A 95% confidence interval is xz ± 1.96 × σ[e]/
√

n, i.e. 123.1 to 136.9 µg/l.
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Suppose historical data on THM levels in other zones supplied from the same
source showed that the mean THM concentration was 120 µg/l with standard
deviation 10 µg/l

• suggests Normal(120,102) prior for θz

• if we express the prior standard deviation as σ[e]/
√

n0, we can solve to find

n0 = (σ[e]/10)2 = 0.25

• so our prior can be written as θz ∼ Normal(120,σ2
[e]/0.25)

Posterior for θz is then

p(θz|x) = Normal

(

0.25 × 120 + 2 × 130

0.25 + 2
,

52

0.25 + 2

)

= Normal(128.9, 3.332)

giving 95% interval for θz of 122.4 to 135.4µg/l
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80 100 120 140 160 180

mean THM concentration, ug/l (theta)

Prior
Likelihood
Posterior
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Prediction

Denoting the posterior mean and variance as µn = (n0µ + nx)/(n0 + n) and σ2
n =

σ2/(n0 + n), the predictive distribution for a new observation x̃ is

p(x̃|x) =

∫

p(x̃|x, θ)p(θ|x)dθ

which generally simplifies to

p(x̃|x) =

∫

p(x̃|θ)p(θ|x)dθ

which can be shown to give

p(x̃|x) ∼ N
(

µn,σ2
n + σ2

)

So the predictive distribution is centred around the posterior mean with variance
equal to sum of the posterior variance and the sample variance of x̃
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Example: THM concentration (continued)

• Suppose the water company will be fined if THM levels in the water supply
exceed 145µg/l

• Predictive distribution for THM concentration in a future sample taken from
the water zone is N(128.9,3.332 + 52) = N(128.9,36.1)

• Probability that THM concentration in future sample exceeds 145µg/l is

1 − Φ[(145 − 128.9)/
√

(36.1)] = 0.004

80 100 120 140 160 180

THM concentration, ug/l

Posterior

Predictive
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Bayesian inference using count data

Suppose we have an independent sample of counts x1, ..., xn which can be assumed
to follow a Poisson distribution with unknown mean µ:

p(x|µ) =
∏

i

µxie−µ

xi!

The kernel of the Poisson likelihood (as a function of µ) has the same form as
that of a Gamma(a, b) prior for µ:

p(µ) =
ba

Γ(a)
µa−1e−bµ

Note: A Gamma(a, b) density has mean a/b and variance a/b2
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This implies the following posterior

p(µ | x) ∝ p(µ) p(x | µ)

=
ba

Γ(a)
µa−1e−bµ

n
∏

i=1

e−µµxi

xi!

∝ µa+nx−1 e−(b+n)µ

= Gamma(a + nx, b + n).

The posterior is another (different) Gamma distribution.

The Gamma distribution is said to be the conjugate prior.

E(µ | x) =
a + nx

b + n
= x

(

n

n + b

)

+
a

b

(

1 −
n

n + b

)

So posterior mean is a compromise between the prior mean a/b and the MLE x
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Example: London bombings during WWII

• Data below are the number of flying bomb hits on London during World War
II in a 36 km2 area of South London

• Area was partitioned into 0.25 km2 grid squares and number of bombs falling
in each grid was counted

Hits, x 0 1 2 3 4 7

Number of areas, n 229 211 93 35 7 1

Total hits,
∑

i nixi = 537
Total number of areas,

∑

i ni = 576

• If the hits are random, a Poisson distribution with constant hit rate θ should
fit the data

• Can think of n = 576 observations from a Poisson distribution, with x =
537/576 = 0.93
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The ‘invariant’ Jeffreys prior (see later) for the mean θ of a Poisson distribution
is p(θ) ∝ 1/

√
θ, which is equivalent to an (improper) Gamma(0.5,0) distribution.

Therefore

p(θ|y) = Gamma(a + nx, b + n) = Gamma(537.5,576)

IE(θ|y) =
537.5

576
= 0.933; Var(θ|y) =

537.5

5762
= 0.0016

Note that these are almost exactly the same as the MLE and the square of the
SE(MLE)
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Summary

For all these examples, we see that

• the posterior mean is a compromise between the prior mean and the MLE

• the posterior s.d. is less than each of the prior s.d. and the s.e.(MLE)

‘A Bayesian is one who, vaguely expecting a horse and catching a glimpse
of a donkey, strongly concludes he has seen a mule’ (Senn, 1997)

As n → ∞,

• the posterior mean → the MLE

• the posterior s.d. → the s.e.(MLE)

• the posterior does not depend on the prior.

These observations are generally true, when the MLE exists and is unique
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Choosing prior distributions

When the posterior is in the same family as the prior then we have what is
known as conjugacy. This has the advantage that prior parameters can usually
be interpreted as a prior sample. Examples include:

Likelihood Parameter Prior Posterior

Normal mean Normal Normal

Normal precision Gamma Gamma

Binomial success prob. Beta Beta

Poisson rate or mean Gamma Gamma

• Conjugate prior distributions are mathematically convenient, but do not exist
for all likelihoods, and can be restrictive

• Computations for non-conjugate priors are harder, but possible using MCMC
(see next lecture)
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Calling WinBUGS from other software

• Scripts enable WinBUGS 1.4 to be called from other software

• Interfaces developed for R, Splus, SAS, Matlab

• See www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml

• Andrew Gelman’s bugs function for R is most developed - reads in data, writes
script, monitors output etc. Now packaged as R2WinBUGS.

• OpenBUGS site http://mathstat.helsinki.fi/openbugs/ provides an open source
version, including BRugs package which works from within R
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Further reading

Berry (1996) (Introductory text on Bayesian methods, with medical slant)

Lee (2004) (Good intro to Bayesian inference; more mathematical than Berry;
3rd edition contains WinBUGS examples)

Bernardo and Smith (1994) (Advanced text on Bayesian theory)

2-41



Lecture 3.

Introduction to MCMC

3-1



Introduction to Bayesian Analysis and WinBUGS

Why is computation important?

• Bayesian inference centres around the posterior distribution

p(θ|x) ∝ p(x|θ) × p(θ)

where θ is typically a large vector of parameters θ = {θ1, θ2, ...., θk}

• p(x|θ) and p(θ) will often be available in closed form, but p(θ|x) is usually
not analytically tractable, and we want to

– obtain marginal posterior p(θi|x) =
∫ ∫

...
∫

p(θ|x) dθ(−i) where θ(−i) de-
notes the vector of θ’s excluding θi

– calculate properties of p(θi|x), such as mean (=
∫

θip(θi|x)dθi), tail areas

(=
∫ ∞

T p(θi|x)dθi) etc.

→ numerical integration becomes vital
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Monte Carlo integration

We have already seen that Monte Carlo methods can be used to simulate values
from prior distributions and from closed form posterior distributions

If we had algorithms for sampling from arbitrary (typically high-dimensional) pos-
terior distributions, we could use Monte Carlo methods for Bayesian estimation:

• Suppose we can draw samples from the joint posterior distribution for θ, i.e.

(θ(1)
1 , ..., θ(1)

k ), (θ(2)
1 , ..., θ(2)

k ), ..., (θ(N)
1 , ..., θ(N)

k ) ∼ p(θ|x)

• Then

– θ(1)
1 , ..., θ(N)

1 are a sample from the marginal posterior p(θ1|x)

– E(g(θ1)) =
∫

g(θ1)p(θ1|x)dθ1 ≈ 1
N

∑N
i=1 g(θ(i)

1 )

→ this is Monte Carlo integration

→ theorems exist which prove convergence in limit as N → ∞ even if the sample
is dependent (crucial to the success of MCMC)
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How do we sample from the posterior?

• We want samples from joint posterior distribution p(θ|x)

• Independent sampling from p(θ|x) may be difficult

• BUT dependent sampling from a Markov chain with p(θ|x) as its stationary
(equilibrium) distribution is easier

• A sequence of random variables θ(0), θ(1), θ(2), ... forms a Markov chain if
θ(i+1) ∼ p(θ|θ(i)) i.e. conditional on the value of θ(i), θ(i+1) is independent
of θ(i−1), ..., θ(0)

• Several standard ‘recipes’ available for designing Markov chains with required
stationary distribution p(θ|x)

– Metropolis et al. (1953); generalised by Hastings (1970)

– Gibbs Sampling (see Geman and Geman (1984), Gelfand and Smith
(1990), Casella and George (1992)) is a special case of the Metropolis-
Hastings algorithm which generates a Markov chain by sampling from full
conditional distributions

– See Gilks, Richardson and Spiegelhalter (1996) for a full introduction and
many worked examples.
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Gibbs sampling

Let our vector of unknowns θ consist of k sub-components θ = (θ1, θ2, ..., θk)

1) Choose starting values θ(0)
1 , θ(0)

2 , ..., , θ(0)
k

2) Sample θ(1)
1 from p(θ1|θ(0)

2 , θ(0)
3 , ..., , θ(0)

k , x)

Sample θ(1)
2 from p(θ2|θ(1)

1 , θ(0)
3 , ..., , θ(0)

k , x)

.....

Sample θ(1)
k from p(θk|θ(1)

1 , θ(1)
2 , ..., , θ(1)

k−1, x)

3) Repeat step 2 many 1000s of times
– eventually obtain sample from p(θ|x)

The conditional distributions are called ‘full conditionals’ as they condition on all
other parameters
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Gibbs sampling ctd.

Example with k = 2

θ1

θ2

p(θ)

θ(0)

θ(1)

θ(2)

• Sample θ(1)
1 from p(θ1|θ(0)

2 , x)

• Sample θ(1)
2 from p(θ2|θ(1)

1 , x)

• Sample θ(2)
1 from p(θ1|θ(1)

2 , x)

• ......

θ(n) forms a Markov chain with (eventually) a stationary distribution p(θ|x).
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Using MCMC methods

There are two main issues to consider

• Convergence (how quickly does the distribution of θ(t) approach p(θ|x)?)

• Efficiency (how well are functionals of p(θ|x) estimated from {θ(t)}?)
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Checking convergence

This is the users responsibility!

• Note: Convergence is to target distribution (the required posterior), not to
a single value.

• Once convergence reached, samples should look like a random scatter about
a stable mean value
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Convergence diagnosis

• How do we know we have reached convergence?

• i.e. How do we the know number of ‘burn-in’ iterations?

• Many ‘convergence diagnostics’ exist, but none foolproof

• CODA and BOA software contain large number of diagnostics

Gelman-Rubin-Brooks diagnostic

• A number of runs

• Widely differing starting points

• Convergence assessed by quantifying whether sequences are much further
apart than expected based on their internal variability

• Diagnostic uses components of variance of the multiple sequences
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Example: A dose-response model

Consider the following response rates for different doses of a drug

dose xi No. subjects ni No. responses ri

1.69 59 6

1.72 60 13

1.75 62 18

1.78 56 28

1.81 63 52

1.83 59 53

1.86 62 61

1.88 60 60

Fit a logistic curve with ‘centred’ covariate (xi − x):

ri ∼ Bin(pi, ni)

logit pi = α+ β(xi − x)
α ∼ N(0,10000)

β ∼ N(0,10000)
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Checking convergence with multiple runs

• Set up multiple initial value lists, e.g.
list(alpha=-100, beta=100)
list(alpha=100, beta=-100)

• Before clicking compile, set num of chains to 2

• Load both sets of initial values

• Monitor from the start of sampling

• Assess how much burn-in needed using the bgr statistic

Using the bgr statistic

• Green: width of 80% intervals of pooled chains: should be stable

• Blue: average width of 80% intervals for chains: should be stable

• Red: ratio of pooled/within: should be near 1

• Double-click on plot, then cntl + right click gives statistics

3-11



Introduction to Bayesian Analysis and WinBUGS

beta chains 1:2

iteration
1 2000 4000 6000

    0.0
  100.0
  200.0
  300.0
  400.0

beta chains 1:2

lag
0 20 40

   -1.0
   -0.5
    0.0
    0.5
    1.0

beta chains 1:2

iteration
1 2000 4000 6000

    0.0

    0.5

    1.0

beta chains 2:1

iteration
79507900785078007750

   20.0

   30.0

   40.0

   50.0

history

trace

bgr diagnostic

autocorrelation

node   mean   sd MC error 2.5%    median  97.5% start sample
alpha  0.7489 0.139  0.00138 0.4816 0.7468 1.026 1001 14000
beta   34.6   2.929  0.02639 29.11 34.53 40.51 1001 14000

Output  for ‘centred’ analysis
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Problems with convergence

Fit a logistic curve with ‘un-centred’ covariate x:

ri ∼ Bin(pi, ni)

logit pi = α+ βxi

α ∼ N(0,10000)

β ∼ N(0,10000)
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alpha chains 1:2

iteration
1 5000 10000 15000 20000

 -100.0
  -75.0
  -50.0
  -25.0
    0.0

   25.0

beta chains 1:2

iteration
1 5000 10000 15000 20000

  -20.0
    0.0

   20.0
   40.0
   60.0

History plots for ‘un-centred’ analysis

3-14



Introduction to Bayesian Analysis and WinBUGS

beta chains 1:2

iteration1 20000 40000 60000

    0.0

    1.0

    2.0

    3.0

    4.0

node  mean   sd MC error 2.5%   median 97.5% start sample
beta  33.97  2.955  0.1734 28.7   33.89 40.3 40001 40000

Drop first 40,000 iterations as burn-in

bgr output for ‘un-centred’ analysis
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beta
   25.0    35.0

alpha

  -80.0

  -70.0

  -60.0

  -50.0

  -40.0

beta
   20.0    30.0    40.0

alpha

    0.0

    0.5

    1.0

    1.5

beta chains 1:2 sample: 40000

   20.0    25.0    30.0    35.0    40.0

    0.0

   0.05

    0.1

   0.15
beta chains 1:2

lag
0 20 40

   -1.0
   -0.5
    0.0
    0.5
    1.0

autocorrelationposterior density

centred un-centred

bivariate posteriors

Output  for ‘un-centred’ analysis
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How many iterations after convergence?

• After convergence, further iterations are needed to obtain samples for pos-
terior inference.

• More iterations = more accurate posterior estimates.

• Efficiency of sample mean of θ as estimate of theoretical posterior expectation
E(θ) usually assessed by calculating Monte Carlo standard error (MC error)

• MC error = standard error of posterior sample mean as estimate of theoretical
expectation for given parameter

• MC error depends on

– true variance of posterior distribution

– posterior sample size (number of MCMC iterations)

– autocorrelation in MCMC sample

• Rule of thumb: want MC error < 1 − 5% of posterior SD
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Inference using posterior samples from MCMC runs

A powerful feature of the Bayesian approach is that all inference is based on the
joint posterior distribution

⇒ can address wide range of substantive questions by appropriate summaries of
the posterior

• Typically report either mean or median of the posterior samples for each
parameter of interest as a point estimate

• 2.5% and 97.5% percentiles of the posterior samples for each parameter give
a 95% posterior credible interval (interval within which the parameter lies
with probability 0.95)

node mean sd MC error 2.5% median 97.5% start sample
beta 34.60 2.929 0.0239 29.11 34.53 40.51 1001 14000

So point estimate of beta would be 34.60, with 95% credible interval (29.11,
40.51)
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Probability statements about parameters

• Classical inference cannot provide probability statements about parameters
(e.g. p-value is not Pr(H0 true), but probability of observing data as or more
extreme than we obtained, given that H0 is true)

• In Bayesian inference, it is simple to calculate e.g. Pr(θ > 1):

= Area under posterior distribution curve to the right of 1

= Proportion of values in posterior sample of θ which are > 1

theta

0.5 1.0 1.5 2.0 2.5 3.0

Shaded Area
=

Prob(theta>1)

Posterior Distribution of theta
• In WinBUGS use the step function:

p.theta <- step(theta - 1)

• For discrete parameters, may also be
interested in Pr(δ = δ0):
p.delta <- equals(delta, delta0)

• Posterior means of p.theta and p.delta
give the required probabilities
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Complex functions of parameters

• Classical inference about a function of the parameters g(θ) requires con-
struction of a specific estimator of g(θ). Obtaining appropriate error can be
difficult.

• Easy using MCMC: just calculate required function g(θ) as a logical node at
each iteration and summarise posterior samples of g(θ)

In dose-response example, suppose we want to estimate the ED95: that is the
dose that will provide 95% of maximum efficacy.

logit 0.95 = α+ β(ED95 − x)
ED95 = (logit 0.95 − α)/β + x

Simply add into model

ED95 <- (logit(0.95) - alpha)/beta + mean(x[])

node mean sd MC error 2.5% median 97.5% start sample
ED95 1.857 0.007716 8.514E-5 1.843 1.857 1.874 1001 10000
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How to rank if you must

• Recent trend in UK towards ranking ‘institutional’ performance e.g. schools,
hospitals

• Might also want to rank treatments, answer ‘which is the best‘ etc

• Rank of a point estimate is a highly unreliable summary statistic

⇒ Would like measure of uncertainty about rank

• Bayesian methods provide posterior interval estimates for ranks

• WinBUGS contains ‘built-in’ options for ranks:

– Rank option of Inference menu monitors the rank of the elements of a
specified vector

– rank(x[], i) returns the rank of the ith element of x

– equals(rank(x[],i),1) =1 if ith element is ranked lowest, 0 otherwise.
Mean is probability that ith element is ’best’ (if counting adverse events)

– ranked(x[], i) returns the value of the ith-ranked element of x
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Example of ranking: ‘Blocker’ trials

• 22 trials of beta-blockers used in WinBUGS manual to illustrate random-
effects meta-analysis.

• Consider just treatment arms: which trial has the lowest mortality rate?

• Assume independent ‘Jeffreys’ beta[0.5, 0.5] prior for each response rate.

for( i in 1 : Num) {
rt[i] ~ dbin(pt[i],nt[i])
pt[i] ~ dbeta(0.5,0.5) # Jeffreys prior
rnk[i] <- rank(pt[], i) # rank of i’th trial
prob.lowest[i] <- equals(rnk[i],1) # prob that i’th trial lowest
N[i]<-i # used for indexing plot

}
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box plot: pt

    0.0     0.1     0.2

Mortality rates and ranks
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caterpillar plot: rnk

    0.0    10.0    20.0
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Trial
    0.0    10.0    20.0

Prob of lowest mortality

    0.0

    0.5

    1.0

Ranking methods may be useful when

• comparing alternative treatments

• comparing subsets

• comparing response-rates, cost-effectiveness or any summary measure
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Further reading

Gelfand and Smith (1990) (key reference to use of Gibbs sampling for Bayesian
calculations)

Casella and George (1992) (Explanation of Gibbs sampling)

Brooks (1998) (tutorial paper on MCMC)

Spiegelhalter et al (1996) (Comprehensive coverage of practical aspects of MCMC)
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Bayesian regression models

Standard (and non standard) regression models can be easily formulated within a
Bayesian framework.

• Specify probability distribution (likelihood) for the data

• Specify form of relationship between response and explanatory variables

• Specify prior distributions for regression coefficients and any other unknown
(nuisance) parameters
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Some advantages of a Bayesian formulation in regression modelling include:

• Easy to include parameter restrictions and other relevant prior knowledge

• Easily extended to non-linear regression

• Easily ‘robustified’

• Easy to make inference about functions of regression parameters and/or pre-
dictions

• Easily extended to handle missing data and covariate measurement error
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Linear regression

Consider a simple linear regression with univariate Normal outcome yi and a vector
of covariates x1i, ..., xpi, i = 1, ..., n

yi = β0 +

p
∑

k=1

βkxki + εi

εi ∼ Normal(0,σ2)

An equivalent Bayesian formulation would typically specify

yi ∼ Normal(µi,σ
2)

µi = β0 +

p
∑

k=1

βkxki

(β0,β1, ...,βp,σ
2) ∼ Prior distributions

A typical choice of ‘vague’ prior distribution (see later for more details) that will
give numerical results similar to OLS or MLE is:

βk ∼ N(0,100000) k = 0, ..., p
1/σ2 ∼ Gamma(0.001,0.001)
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Example: New York Crime data

• 23 Precincts in New York City

• Response = THEFT: seasonally adjusted changes in larcenies (thefts) from a
27-week base period in 1966 to a 58-week experimental period in 1966-1967

• Predictors = MAN: % change in police manpower; DIST: district indicator
(1 Downtown, 2 Mid-town, 3 Up-town)

• Model specification:

THEFTi ∼ Normal(µi,σ
2) i = 1, ...,21

µi = α+ β × MANi + <effect of DIST>

1/σ2 ∼ Gamma(0.001,0.001)

α ∼ N(0,100000)

β ∼ N(0,100000)

Prior on coefficients for DIST effect
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Specifying categorical covariates using the BUGS language

DISTi is a 3-level categorical explanatory variable

Two alternative ways of specifying model in BUGS language

1. Create usual ’design matrix’ in data file:

MAN[] THEFT[] DIST2[] DIST3[]
-15.76 3.19 0 0 # district 1

0.98 -3.45 0 0
3.71 0.04 0 0

.......
-9.56 3.68 0 0
-2.06 8.63 1 0 # district 2
-0.76 10.82 1 0
-6.30 -0.50 1 0

.......
-2.82 -2.02 1 0

-16.19 0.94 0 1 # district 3
-11.00 4.42 0 1
......
-10.77 1.58 0 1
END
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BUGS model code is then

for (i in 1:N) {
THEFT[i] ~ dnorm(mu[i], tau)
mu[i] <- alpha + beta*MAN[i] + delta2*DIST2[i] + delta3*DIST3[i]

}
alpha ~ dnorm(0, 0.00001)
beta ~ dnorm(0, 0.00001)
delta2 ~ dnorm(0, 0.00001)
delta3 ~ dnorm(0, 0.00001)
tau ~ dgamma(0.001, 0.001)
sigma2 <- 1/tau

Note: BUGS parameterises normal in terms of mean and precision (1/variance)!!

Initial values file would be something like

list(alpha = 1, beta = -2, delta2 = -2, delta3 = 4, tau = 2)
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2. Alternatively, input explanatory variable as single vector coded by its level:

MAN[] THEFT[] DIST[]
-15.76 3.19 1

0.98 -3.45 1
3.71 0.04 1

.....
-9.56 3.68 1
-2.06 8.63 2
-0.76 10.82 2
-6.30 -0.50 2

.....
-2.82 -2.02 2

-16.19 0.94 3
-11.00 4.42 3
.....
-10.77 1.58 3
END
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Then use ’double indexing’ feature of BUGS language

for (i in 1:23) {
THEFT[i] ~ dnorm(mu[i], tau)
mu[i] <- alpha + beta*MAN[i] + delta[DIST[i]]

}
alpha ~ dnorm(0, 0.00001)
beta ~ dnorm(0, 0.00001)
delta[1] <- 0 # set coefficient for reference category to zero
delta[2] ~ dnorm(0, 0.00001)
delta[3] ~ dnorm(0, 0.00001)
tau ~ dgamma(0.001, 0.001)
sigma2 <- 1/tau

In initial values file, need to specify initial values for delta[2] and delta[3] but
not delta[1]. Use following syntax:

list(alpha = 1, beta = -2, delta = c(NA, -2, 4), tau = 2)

4-9



Introduction to Bayesian Analysis and WinBUGS

Raw data
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beta chains 1:2 sample: 10000

   -1.0    -0.5     0.0

    0.0
    1.0
    2.0
    3.0
    4.0

delta[2] chains 1:2 sample: 10000

  -20.0   -10.0     0.0    10.0

    0.0
   0.05
    0.1
   0.15

delta[3] chains 1:2 sample: 10000

  -20.0   -10.0     0.0    10.0

    0.0
   0.05
    0.1
   0.15

Change in theft rate per 1% increase in police manpower

Change in theft rate in Midtown relative to Downtown

Change in theft rate in Uptown relative to Downtown

Posterior mean -0.24
95% interval (-0.47, -0.01)

Posterior mean 0.6
95% interval (-5.1, 6.6)

Posterior mean -4.0
95% interval (-10.0, 2.1)
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• 95% intervals for DIST effect both include zero

→ drop DIST from model (see later for Bayesian model comparison criteria)

beta chains 1:2 sample: 10000

   -1.0    -0.5     0.0

    0.0
    1.0
    2.0
    3.0
    4.0

Change in theft rate per 1% increase in police manpower

Posterior mean -0.18
95% interval (-0.39, 0.04)

  -20.0     0.0    20.0    40.0

  -20.0

  -10.0

    0.0

   10.0

   20.0

% change in police manpower

ch
an

ge
 in

 th
ef

t r
at

e

Observed data
Fitted value, 
mu[i]
95% interval for 
mu[i]
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• Influential point corresponds to 20th Precinct

• During 2nd period, manpower assigned to this Precinct was experimentally
increased by about 40%

• No experimental increases in any other Precinct

→ Robustify model assuming t-distributed errors

for (i in 1:23) {
THEFT[i] ~ dt(mu[i], tau, 4) # robust likelihood (t on 4 df)
mu[i] <- alpha + beta*MAN[i]

}
alpha ~ dnorm(0, 0.00001)
beta ~ dnorm(0, 0.00001)
tau ~ dgamma(0.001, 0.001)
sigma2 <- 1/tau

dummy <- DIST[1] # ensures all variables in data file appear in model code
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  -20.0     0.0    20.0    40.0

  -20.0

  -10.0

    0.0

   10.0

   20.0

 

  -20.0     0.0    20.0    40.0

  -20.0

  -10.0

    0.0

   10.0

   20.0

Posterior mean -0.18
95% interval (-0.39, 0.04)

Posterior mean -0.13
95% interval (-0.36, 0.18)

beta chains 1:2 sample: 10000

   -1.0    -0.5     0.0

    0.0
    1.0
    2.0
    3.0
    4.0

beta chains 1:2 sample: 10000

   -1.0    -0.5     0.0

    0.0
    1.0
    2.0
    3.0
    4.0

Model with Normal errors

Model with Student t errors
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• Precinct 20 still quite influential

• Add additional covariate corresponding to a binary indicator for Precinct 20

– Equivalent to fitting separate (saturated) model to Precinct 20

for(i in 1:23) {
THEFT[i] ~ dt(mu[i], tau, 4) # robust likelihood (t on 4 df)
mu[i] <- alpha + beta*MAN[i] + delta*PREC20[i] # separate term for precinct 20

}
alpha ~ dnorm(0, 0.000001)
beta ~ dnorm(0, 0.000001)
delta ~ dnorm(0, 0.000001)
tau ~ dgamma(0.001, 0.001)
sigma2 <- 1/tau # residual error variance

dummy <- DIST[1] # ensures all variables in data file appear in model code

# Create indicator variable for precinct 20
# (alternatively, could add this variable to data file)
for(i in 1:13) { PREC20[i] <- 0 }
PREC20[14] <- 1
for(i in 15:23) { PREC20[i] <- 0 }
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model fit: mu

  -20.0     0.0    20.0    40.0

  -30.0

  -20.0

  -10.0

    0.0

   10.0

   20.0

beta chains 1:2 sample: 10000

   -1.0    -0.5     0.0     0.5

    0.0
    1.0
    2.0
    3.0 Posterior mean 0.18

95% interval (-0.16, 0.49)
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Specifying prior distributions

Why did we choose a N(0,100000) prior for each regression coefficient and a
Gamma(0.001,0.001) prior for the inverse of the error variance?

Choice of prior is, in principle, subjective

• it might be elicited from experts (see Spiegelhalter et al (2004), sections 5.2,
5.3)

• it might be more convincing to be based on historical data, e.g. a previous
study

→ assumed relevance is still a subjective judgement (see Spiegelhalter at al
(2004), section 5.4)

• there has been a long and complex search for various ‘non-informative’, ‘ref-
erence’ or ‘objective’ priors (Kass and Wasserman, 1996)
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‘Non-informative’ priors

• Better to refer to as ‘vague’, ‘diffuse’ or ‘minimally informative’ priors

• Prior is vague with respect to the likelihood

– prior mass is diffusely spread over range of parameter values that are
plausible, i.e. supported by the data (likelihood)

4-18



Introduction to Bayesian Analysis and WinBUGS

Uniform priors (Bayes 1763; Laplace, 1776)

Set p(θ) ∝ 1

• This is improper (
∫

p(θ)dθ -= 1)

• The posterior will still usually be proper

• Inference is based on the likelihood p(x | θ)

• It is not really objective, since a flat prior p(θ) ∝ 1 on θ does not correspond

to a flat prior on φ = g(θ), but to p(φ) ∝
∣

∣

∣

dθ
dφ

∣

∣

∣
where

∣

∣

∣

dθ
dφ

∣

∣

∣
is the Jacobian

– Note: Jacobian ensures area under curve (probability) in a specified inter-
val (θ1, θ2) is preserved under the transformation → same area in interval
(φ1 = g(θ1),φ2 = g(θ2))
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Proper approximations to Uniform(−∞,∞) prior:

• p(θ) = Uniform(a, b) where a and b specify an appropriately wide range,
e.g. Uniform(−1000,1000)

• p(θ) = N(0, V ) where V is an appropriately large value for the variance,
e.g. N(0,100000)

• Recall that WinBUGS parameterises Normal in terms of mean and precision,
so vague normal prior will be, e.g. theta ~ dnorm(0, 0.00001)
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Jeffreys’ invariance priors

Consider 1-to-1 transformation of θ : φ = g(θ), e.g. φ = 1 + θ3

Transformation of variables: p(θ) is equivalent to p(φ) = p(θ = g−1(φ))
∣

∣

∣

dθ
dφ

∣

∣

∣

Jeffreys proposed defining a non-informative prior for θ as p(θ) ∝ I(θ)1/2 where
I(θ) is Fisher information for θ

I(θ) = −IEX|θ

[

∂2 log p(X|θ)
∂θ2

]

= IEX|θ

[

(

∂ log p(X|θ)
∂θ

)2
]

• Fisher Information measures curvature of log likelihood

• High curvature occurs wherever small changes in parameter values are asso-
ciated with large changes in the likelihood

– Jeffreys’ prior gives more weight to these parameter values

– data provide strong information about parameter values in this region

– ensures data dominate prior everywhere

• Jeffreys’ prior is invariant to reparameterisation because

I(φ)1/2 = I(θ)1/2

∣

∣

∣

∣

dθ

dφ

∣

∣

∣

∣
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Examples of Jeffreys’ priors

• Normal case: unknown mean m, known variance v
Sample x1, . . . , xn from N(m, v)

log p(x|m) = −
∑ (xi − m)2

2v
+ C ⇒ I(m) = n/v

So Jeffreys’ prior for m is ∝ 1, i.e. the Uniform distribution

• Normal case: known mean m, unknown variance v, with s =
∑

(xi − m)2

log p(x|v) = −n/2 log v −
s

2v
⇒ I(v) =

n

2v2

So Jeffreys’ prior for v is ∝ v−1

This improper distribution is approximated by a Gamma(ε, ε) distribution with
ε → 0
Note: p(v) ∝ v−1 is equivalent to a uniform prior on log v
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Some recommendations

Distinguish

• primary parameters of interest in which one may want minimal influence of
priors

• secondary structure used for smoothing etc. in which informative priors may
be more acceptable

Prior best placed on interpretable parameters

Great caution needed in complex models that an apparently innocuous uniform
prior is not introducing substantial information

‘There is no such thing as a ‘noninformative’ prior. Even improper priors give
information: all possible values are equally likely’ (Fisher, 1996)
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Location parameters (e.g. means, regression coefficients)

• Uniform prior on a wide range, or a Normal prior with a large variance can
be used, e.g.

θ ∼ Unif(−100,100) theta ~ dunif(-100, 100)

θ ∼ Normal(0,100000) theta ~ dnorm(0, 0.00001)

Prior will be locally uniform over the region supported by the likelihood

– ! remember that WinBUGS parameterises the Normal in terms of mean and
precision so a vague Normal prior will have a small precision

– ! ‘wide’ range and ‘small’ precision depend on the scale of measurement
of θ
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Scale parameters

• Sample variance σ2: standard ‘reference’ (Jeffreys’) prior

p(σ2) ∝
1

σ2
∝ Gamma(0,0)

p(log(σ)) ∝ Uniform(−∞,∞)

• Note that Jeffreys’ prior on the inverse variance (precision), τ = σ−2 is also

p(τ) ∝
1

τ
∝ Gamma(0, 0)

which may be approximated by a ‘just proper’ prior

τ ∼ Gamma(ε, ε)

This is also the conjugate prior and so is widely used as a ‘vague’ proper prior
for the precision of a Normal likelihood

In BUGS language: tau ~ dgamma(0.001, 0.001)
or alternatively tau <- 1/exp(logsigma2); logsigma2 ~ dunif(-100, 100)

Sensitivity analysis plays a crucial role in assessing the impact of particular
prior distributions, whether elicited, derived from evidence, or reference, on the
conclusions of an analysis.
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Informative priors

• An informative prior expresses specific, definite information about a variable

• Example: a prior distribution for the temperature at noon tomorrow

– A reasonable approach is to make the prior a normal distribution with
mean equal to today’s noontime temperature, with variance equal to the
day-to-day variance of atmospheric temperature

• Posterior from one problem (today’s temperature) becomes the prior for an-
other problem (tomorrow’s temperature)

• Priors elicited from experts can be used to take account of domain-specific
knowledge, judgement, experience

• Priors can also be used to impose constraints on variables (e.g. based on
physical or assumed properties) and bound variables to plausible ranges
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Example: Trade union density

(Western and Jackman, 1994)

• Example of regression analysis in comparative research

• What explains cross-national variation in union density?

• Union density is defined as the percentage of the work force who belongs to
a trade union

• Competing theories:

– Wallerstein: union density depends on the size of the civilian labour force
(LabF)

– Stephens: union density depends on industrial concentration (IndC)

– Note: These two predictors correlate at -0.92.

4-27



Introduction to Bayesian Analysis and WinBUGS

• Data: n = 20 countries with a continuous history of democracy since World
War II

• Variables: Union density (Uden), (log) labour force size (LabF), industrial
concentration (IndC), left wing government (LeftG), measured in late 1970s

• Fit linear regression model to compare theories

Udeni ∼ N(µi,σ
2)

µi = b0 + b1(LeftGi − LeftG) + b2(LabFi − LabF) + b3(IndCi − IndC)

Vague priors:

1/σ2 ∼ Gamma(0.001,0.001)

b0 ∼ N(0,100000)

b1 ∼ N(0,100000)

b2 ∼ N(0,100000)

b3 ∼ N(0,100000)
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Trace plots, posterior estimates and MC error for regression coefficients

b3 chains 1:2

iteration
1001 2000 4000 6000

  -50.0
    0.0
   50.0
  100.0

b3 chains 1:2

iteration
1001 2000 4000 6000

  -50.0
    0.0
   50.0
  100.0

1.6720.612.1b3
0.344.18-4.14b2
.0020.080.27b1

5.1962.861.7b0

MC 
error

sdmean

0.6720.20.98b3
0.133.96-6.33b2
.0010.080.27b1

0.022.4854.0b0

MC 
error

sdmean

Without centering covariates

With centered covariates
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Posterior distribution of regression coefficients

LeftG LabF IndC

[1] [2]

[3]
box plot: b

  -40.0

  -20.0

    0.0

   20.0

   40.0
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Motivation for Bayesian approach with informative priors

• Because of small sample size and multicollinear variables, not able to adjudi-
cate between theories

• Data tend to favour Wallerstein (union density depends on labour force size),
but neither coefficient estimated very precisely

• Other historical data are available that could provide further relevant infor-
mation

• Incorporation of prior information provides additional structure to the data,
which helps to uniquely identify the two coefficients
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Wallerstein informative prior

• Believes in negative labour force effect

• Comparison of Sweden and Norway in 1950:

– doubling of labour force corresponds to 3.5-4% drop in union density

– on log scale, labour force effect size ≈ −3.5/ log(2) ≈ −5

• Confidence in direction of effect represented by prior SD giving 95% interval
that excludes 0

b2 ∼ N(−5,2.52)

• Vague prior assumed for IndC effect, b3 ∼ N(0,100000)
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Stephens informative prior

• Believes in positive industrial concentration effect

• Decline in industrial concentration in UK in 1980s:

– drop of 0.3 in industrial concentration corresponds to about 3% drop in
union density

– industrial concentration effect size ≈ 3/0.3 = 10

• Confidence in direction of effect represented by prior SD giving 95% interval
that excludes 0

b3 ∼ N(10,52)

• Vague prior assumed for IndC effect, b3 ∼ N(0,100000)
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Both Wallerstein and Stephens priors

• Both believe left-wing governments assist union growth

• Assuming 1 year of left-wing government increases union density by about
1% translates to effect size of 0.3

• Confidence in direction of effect represented by prior SD giving 95% interval
that excludes 0

b1 ∼ N(0.3,0.152)

• Vague prior b0 ∼ N(0,100000) assumed for intercept
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Posterior distribution of regression coefficients under different priors

box plot: b2

  -15.0

  -10.0

   -5.0

    0.0

    5.0

box plot: b3

  -50.0

    0.0

   50.0

Effect of Labour Force Size 
(Wallerstein hypothesis) 

Effect of Industrial Concentration 
(Stephens hypothesis) 

b2 (LabF): Vague       Info       Vague
b3 (IndC): Vague      Vague Info

b2 (LabF): Vague       Info       Vague
b3 (IndC):   Vague      Vague Info
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Comments

• Effects of LabF and IndC estimated more precisely

• Both sets of prior beliefs support inference that labour-force size decreases
union density

• Only Stephens prior supports conclusion that industrial concentration in-
creases union density

• Choice of prior is subjective – if no consensus, can we be satisfied that data
have been interpreted fairly?

– Sensitivity to priors (e.g. repeat analysis using priors with increasing
variance) — see Practical exercises

– Sensitivity to data (e.g. residuals, influence diagnostics) — see later
lecture
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Multivariate responses

• In many applications, it is common to collect data on a number of different
outcomes measured on the same units, e.g.

– sample survey, where respondents asked several different questions

– experiment with several different outcomes measured on each unit

• May wish to fit regression model to each response

– May have different covariates in each regression

– But errors may be correlated

– Might also wish to impose cross-equation parameter restrictions

→ Seemingly Unrelated Regressions (SUR) (Zellner, 1962)

Bayesian approach to SUR models → model vector of response for each unit as
multivariate normal (could also have robust version using multivariate t)

Possible to extend Bayesian SUR models to binary, categorical, count responses
using multivariate latent variable approach.
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Example: Analysis of compositional data

• Compositional data are vectors of proportions pi = (pi1, ..., piJ) representing
relative contributions of each of J categories to the whole, e.g.

– Proportion of income spent on different categories of expenditure

– Proportion of electorate voting for different political parties

– Relative abundance of different species in a habitat

– Chemical composition of a rock or soil sample

– Proportion of deaths from different causes in a population

• Regression models for compositional data must satisfy two constraints

0 ≤ pij ≤ 1
∑

j

pij = 1
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• Two main modelling strategies, treating vector of proportions as the data
(sufficient statistics)

– Model pi using a Dirichlet likelihood (multivariate generalisation of a beta
distribution)

∗ assumes the ratios of “compositions” (i.e. proportions) are independent

– Multivariate logistic normal model (Aitchison, 1986) — apply additive log
ratio (alr) transformation, yij = log(pij/piJ) and model yi as multivariate
normal

∗ allows dependence between ratios of proportions

∗ this can be thought of as a type of SUR model

• To allow for sampling variability in the observed counts (including zero counts),
model counts (rather than proportions) as multinomial (see later)
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Multivariate logistic normal model

Define

yij = log(pij/piJ)

the log ratios of proportions in each category relative to a reference category J

Note that piJ = 1 −
∑

j -=J pij, so

pij =
exp yij

1 +
∑

j -=J exp yij

Since yij are unconstrained, can model vector yi = {yij, j -= J} as multivariate
normal
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Example: British General Election 1992

• Data originally analysed by Katz and King (1999), and formulated as BUGS
example by Simon Jackman

• Data consist of vote proportions for Conservative (j=1), Labour (j=2) and
Lib-Dem (j=3) parties from 1992 General Election for each of 521 con-
stituencies

• Additive log ratio transformation applied to proportions, taking Lib-Dem vote
as reference category

• Covariates include lagged values of the log ratios from previous election, and
indicators of the incumbency status of each party’s candidate
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BUGS model code

for(i in 1:521){
y[i,1:2] ~ dmnorm(mu[i,], prec[ , ])
for(j in 1:2){

mu[i,j] <- beta[j,1]*x[i,1] + beta[j,2]*x[i,2] + beta[j,3]*x[i,3] +
beta[j,4]*x[i,4] + beta[j,5]*x[i,5] + beta[j,6]*x[i,6]

}
}

## priors for elements of precision matrix
prec[1:2,1:2] ~ dwish(R[,],k)
R[1,1] <- .01; R[1,2] <- 0; R[2,1] <- 0; R[2,2] <- .01; k <- 2

# convert precision to covariance matrix
sigma[1:2,1:2] <- inverse(prec[ , ])
rho <- sigma[1,2]/sqrt(sigma[1,1]*sigma[2,2]) # correlation

## Priors for regression coefficients
for(j in 1:2){

for(k in 1:6) {
beta[j,k] ~ dnorm(0, 0.000001)

}
}
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Priors on precision matrix of multivariate normal

The multivariate generalisation of the Gamma (or χ2) distribution is the Wishart
distribution, which arises in classical statistics as the distribution of the sum-of-
squares-and-products matrix in multivariate normal sampling.

The Wishart distribution Wp(k, R) for a symmetric positive definite p × p matrix
Ω has joint density function proportional to

|R|k/2|Ω|(k−p−1)/2 exp (−(1/2)tr(RΩ))

in terms of two parameters: a real scalar k > p − 1 and a symmetric positive
definite matrix R. The expectation of this distribution is

E[Ω] = kR−1

When the dimension p is 1, i.e. reverting back to univariate case, it is easy to
show that the Wishart distribution becomes the more familiar:

W1(k, R) ≡ Gamma(k/2, R/2) ≡ (χ2
k)/R

If we use the Wishart distrubution as a prior distribution for a precision matrix Ω
in sampling from Np(µ, Ω−1), we find, generalising the univariate case above, that
we get the same form for the posterior for Ω – another Wishart distribution.

In view of the result above for the expectation of the Wishart distribution, we
usually set (1/k)R to be a prior guess at the unknown true variance matrix. A
common choice is to take k = p.
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Note

• In BUGS language, you must specify the dimension of vectors or arrays on
the left hand side of multivariate distributions

• In above example, each row (observation) of the 521×2 matrix y is a vector
of length 2, hence y[i,1:2] ~ dmnorm.....

• Likewise, prec is a 2 × 2 matrix, hence prec[1:2, 1:2] ~ dwish.....

• You cannot specify the dimension to be a parameter (even if the value of
the parameter is specified elsewhere in the code or data file), e.g.

J <- 2
prec[1:J, 1:J] ~ dwish(R[,], k)

will give an error at compilation

• You do not need to specify the dimension of vectors or arrays on the right
hand side of distribution statements, e.g. dimension of R[,] is not specified
above (the dimension is implicit from dimension of left hand side)
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Interpretation of model parameters

• Interpretation of parameter estimates on a multivariate log-odds scale is dif-
ficult

• Using the inverse alr transformation, easy to recover estimates of expected
proportions or predicted counts in different categories

• Effect of covariates can be examined by calculating difference or ratio of
expected proportions for different values of the covariate

– Using MCMC, easy to obtain uncertainty intervals for such contrasts

• Example: effect of incumbency on expected proportion of votes for each
party

– For party j, calculate expected alr-transformed proportion for two values
of incumbency: (1) party j’s candidate is incumbent; (2) open seat (no
candidate is incumbent)

– Hold values of all other covariates constant, e.g. at their means

– Use inverse alr transformation to obtain expected proportions under each
incumbency value, and take difference
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BUGS code for calculating incumbency effects

for(j in 1:2){
# value of mu with Conservative incumbent and average values of other variables
mu.con[j] <- beta[j,1]*mean(x[,1]) + beta[j,2]*mean(x[,2]) +

beta[j,3]*mean(x[,3]) + beta[j,4]*1

# value of mu with Labour incumbent and average values of other variables
mu.lab[j] <- beta[j,1]*mean(x[,1]) + beta[j,2]*mean(x[,2]) +

beta[j,3]*mean(x[,3]) + beta[j,5]*1

# value of mu with open seat and average values of other variables
mu.open[j] <- beta[j,1]*mean(x[,1]) + beta[j,2]*mean(x[,2]) + beta[j,3]*mean(x[,3])

# expected proportions
exp.mu.con[j] <- exp(mu.con[j]); p.con[j] <- exp.mu.con[j]/(1 + sum(exp.mu.con[]))

exp.mu.lab[j] <- exp(mu.lab[j]); p.lab[j] <- exp.mu.lab[j]/(1 + sum(exp.mu.lab[]))

exp.mu.open[j] <- exp(mu.open[j]); p.open[j] <- exp.mu.open[j]/(1 + sum(exp.mu.open[]))
}

# difference in expected proportions due to incumbency
incumbency.con <- p.con[1] - p.open[1]
incumbency.lab <- p.lab[2] - p.open[2]
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Results

Posterior mean 95% CI

Expected vote (Cons), area 1 44.8% (44.2%, 45.4%)

Expected vote (Lab), area 1 46.1% (45.3%, 46.8%)

Expected vote (LibDem), area 1 9.1% (8.7%, 9.5%)

incumbency advantage (Cons) −0.06% (−0.75%, 0.70%)

incumbency advantage (Lab) −0.30% (−1.6%, 1.0%)

incumbency advantage (LibDem) 8.6% (5.1%, 12.3%)

ρ (correlation between log ratio 0.87 (0.85, 0.89)

for Cons:LibDem and Lab:LibDem)

Note: results for incumbency advantage agree with those in Tomz et al (2002)
but not with Katz and King, who analysed data from 10 consecutive elections
and used empirical Bayes shrinkage priors on the β coefficients across years
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Multivariate t likelihood

• Multivariate logistic normal for compositional data relies on assumption that
the log ratios are approximately multivariate normal

• Katz and King (1999) argue that this assumption is not appropriate for British
election data

– majority of constituencies tend to be more clustered, and a minority more
widely dispersed, than the multivariate normal implies

• K&K propose replacing multivariate normal by a heavier-tailed multivariate
student t distribution

• Multivariate t has 3 parameters: p-dimensional mean vector, p × p inverse
scale (precision) matrix and a scalar degrees of freedom parameter

• A Wishart prior can be used for the inverse scale matrix

• Degrees of freedom parameter can either be fixed, or assigned a prior distri-
bution

• Note: as degrees of freedom → ∞, t → Normal
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BUGS code for multivariate t likelihood

• Only need to change 2 lines of code

1. Likelihood:

## y[i,1:2] ~ dmnorm(mu[i,1:2], prec[ , ])
y[i,1:2] ~ dmt(mu[i,1:2], prec[ , ], nu)

2. Specify either fixed value for degrees of freedom, nu, or a suitable prior

## nu <- 4
nu ~ dunif(2, 250)
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Results

Normal Student t

Expected vote (Cons), area 1 44.8% (44.2%, 45.4%) 44.7% (44.2%, 45.2%)

Expected vote (Lab), area 1 46.1% (45.3%, 46.8%) 46.4% (45.7%, 47.0%)

Expected vote (LibDem), area 1 9.1% (8.7%, 9.5%) 8.8% (8.6%, 9.3%)

incumbency advantage (Cons) −0.06% (−0.75%, 0.70%) 0.00% (-0.65%, 0.60%)

incumbency advantage (Lab) −0.30% (−1.6%, 1.0%) −0.50% (−1.7%, 0.70%)

incumbency advantage (LibDem) 8.6% (5.1%, 12.3%) 2.3% (−2.0%, 8.3%)

ρ 0.87 (0.85, 0.89) 0.87 (0.85, 0.90)

ν – 4.5 (3.4, 5.9)

DIC −480 −1220

pD 14.5 11.8
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