
Statistics in Environmental Research (BUC Workshop Series) II
Problem sheet

Website: http://www.stat.ubc.ca/~gavin/STEPIBookNewStyle/

In the first part of the lab sessions we will look at some very simple examples that will help you become
familiar with the R-INLA software. Initially we will look at two very simple non-spatial models that
many of you will have fitted before with other software packages. We will then look at simple temporal
and spatial GMRF models.

The aims of this session are to get a general understanding of how to implement simple models in
R-INLA, how to specify (unstructured) random effects, and how to fit simple GMRF models in time
and space, i.e. structured effects.

We will need the INLA package:

> library(INLA)

1. For this example we use the data set Seeds. Check the INLA help file for information on the data
set. The data set looks at the number of germinated seeds on each of 21 plates.

We are using a binomial model
ri ∼ Binomial(pi, ni),

where pi is the probability of germinating on plate i.

We will first fit a very simple model with two fixed effects and an interaction between them

logit(pi) = α0 + α1x1i + α2x2i + α12x1ix2i

and will then include a random effect to account for differences between plates

logit(pi) = α0 + α1x1i + α2x2i + α12x1ix2i + bi

We will see later that when we include spatial effects in a model the code we need for this is very
similar to the code for the simple random effect here.

(a) Only fixed effects

Load the data

> data(Seeds)

The response variable is r (we rename it as Y just to be consistent with the notation we use
later)
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> Y <- Seeds$r

There are two fixed effects x1 (seed type) and x2 (root extract), n gives the total number of
seeds on the plate (germinated plus not germinated)

> Z1 <- Seeds$x1

> Z2 <- Seeds$x2

> n <- Seeds$n

Specifying the simple formula is done in the same way as specifying a model for lm or glm

in R; we are considering a model with two main effects and an interaction here

> formula = Y ~ 1 + Z1 * Z2

The data are stored in the data frame data (again, renaming is not necessary here but we do
this for consistency with later examples):

> data = data.frame(Y, Z1, Z2, n)

We can now call INLA to fit the model (this should be very quick)

> result=inla(formula,data=data,family="binomial", Ntrials=n, verbose = TRUE,

control.compute=list(dic=TRUE))

With the option verbose = TRUE you get a lot of output while INLA is running. Set it to
FALSE if you find this annoying.

To see a summary of the results

> summary(result)

You can also plot the results:

> plot(result)

(b) Fixed and random effects

In order to include a random effect for differences between plates we have to include a variable
that indicates the plate

> plate=Seeds$plate

> data=data.frame(Y, Z1, Z2, n, plate)

The random effect is specified as a function of the plate index and as iid in the formula

> formula = Y ~ Z1*Z2+f(plate,model="iid")

We can now call INLA to fit the model with the same call as above

> result=inla(formula,data=data,family="binomial",Ntrials=n,

verbose = TRUE, control.compute=list(dic=TRUE))

Did including the random effect improve the model?
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2. A model with non-linear effects

For this example we use the data set trees available in R. This data set comprises the Volume,
Girth and Height of 31 felled cherry trees and there is an interest in predicting Volume from the
other two variables. However, the relationship between the variables might not be linear and
hence we fit smooth functions of the explanatory variables. This is done with a structured effect
in 1 dimension.

> data(trees)

The response variable is Volume (log transformed since it is rather skew)

> Y <- log(trees$Volume)

There are two explanatory variables Girth and Height

> Z1 <- trees$Girth

> Z2 <- trees$Height

We also need to choose prior values for the smooth functions. We choose the following for now
but will change these later

> prior.c=c(1,0.05)

> hyper=list(theta=list(param=prior.c))

We now need to specify in the formula that we are fitting a smooth function to the two explanatory
variables modelled as a one-dimensional CAR2 process (random walk 2).

> formula = Y ~ 1 + f(Z1, model = "rw2", hyper=hyper)

+ f(Z2, model = "rw2", hyper=hyper)

The data are stored in the data frame data again

> data=data.frame(Y, Z1, Z2)

We can now call INLA to fit the model; note that we now specify a normal outcome (family) and
hence do not specify Ntrials

> result=inla(formula,data=data,family="normal", verbose = TRUE,

control.compute=list(dic=TRUE))

To see a summary of the results

> summary(result)

> plot(result)
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Change the values of the prior to change the smoothness of the function and choose rw1 as an
alternative to rw2. How are these different?

> prior.c=c(20,0.05)

> hyper=list(theta=list(param=prior.c))

> result=inla(formula,data=data,family="normal", verbose = TRUE,

control.compute=list(dic=TRUE))

> plot(result)

3. A simple temporal model

The previous data example was a bit small- and you might agree that it was not really necessary
to use the smooth effects for that particular example. We look at different example now which
uses almost the same code. It is data of giving a series of measurements (over time) of head
acceleration in a simulated motorcycle accident, used to test crash helmets.

> library(MASS)

> data(mcycle)

The response variable is accel

> Y <- mcycle$accel

The explanatory variable is times

> Z1 <- mcycle$times

The acceleration clearly doesnt change linearly over time

> plot(Z1, Y)

We again choose prior values for the temporal effect.

> prior.c=c(1,0.05)

> hyper=list(theta=list(param=prior.c))

We now need to specify in the formula that we are fitting a smooth function to the two explanatory
variables modelled as a CAR1 process (random walk 1).

> formula = Y ~ -1 + f(Z1, model = "rw2", hyper=hyper)

The data are stored in the data frame data again

> data=data.frame(Y, Z1)

4



We can now call INLA to fit the model.

> result=inla(formula,data=data,family="normal", verbose = TRUE,

control.compute=list(dic=TRUE))

> plot(result)

4. > require(lattice)

> require(INLA)

This spatial example uses data on the total Larynx cancer mortality in 544 districts of Germany
between 1986 and 1990.

This dataset is typical of many simple spatial examples and has the following properties:

• Data is given as the total number of counts in fixed areas across the spatial domain of interest.

• We know which areas neighbour each other.

• There is a covariate that is also spatial.

We will use the standard Poisson likelihood to model the counts

yi ∼ Po (Eie
ηi) ,

where Ei is the “population at risk” in region i. Using a different Ei in each region can help
account for spatial heterogeneity in the underlying population.

In this example, we will fit a collection of models to this data and compare them.

Load the data We begin by loading the data, the graph showing how the regions of Germany
are connected, and a function to help us plot.

> data(Germany)

> g = system.file("demodata/germany.graph", package="INLA")

> source(system.file("demodata/Bym-map.R", package="INLA"))

> summary(Germany)

The zeroth model: no space Here we will fit the model without spatial dependence

ηi = intercept + (covariate)i + (random effect)i

where the random effect is i.i.d. N(0, σ2).

The formula is then

> formula0 = Y ~ 1 + x + f(region, model="iid")

and INLA can be run by calling
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> result0 = inla(formula0, family="poisson", data=Germany, E=E)

However, as we are looking towards comparing multiple models, we need to tell R-INLA to compute
a few extra things. To do this, we need to use the control.compute argument in the inla call.

Important note: All of the control.xxx arguments take a list as their value. If you don’t give
them a list you’ll get an odd error!

To run the model and compute some model-checking diagnostics (DIC and CPO scores)

> result0 = inla(formula0,family="poisson",data=Germany,E=E,

control.compute= list(dic=TRUE, cpo = TRUE))

To compute the expected number of counts, we need to transform the marginals for ηi into
the marginals for exp(ηi). This can be done using inla.tmarginal, but a cheap and nasty
approximation is to just take the linear predictor and exponentiate it

> expected = Germany$E*exp(result0$summary.linear.predictor$mean)

• Look at the PIT plot. Is it ok?

• Compare the observed counts to the expected counts. (do a hist of Y/expected).

The first model The first model we will fit is a BYM model.

The simple code for fitting the model is

> formula1 = Y ~ 1+ f(region,model="bym",graph=g)

> result1 = inla(formula1,family="poisson",data=Germany,E=E)

However, as we are looking towards comparing multiple models, we need to tell R-INLA to compute
a few extra things. To do this, we need to use the control.compute argument in the inla call.

Important note: All of the control.xxx arguments take a list as their value. If you don’t give
them a list you’ll get an odd error!

To run the model and compute some model-checking diagnostics (DIC and CPO scores)

> result1 = inla(formula1,family="poisson",data=Germany,E=E,

control.compute= list(dic=TRUE, cpo = TRUE))

Finally, formula1 has two components: an intercept and a spatial component. If you need the
marginal distributions for the sum, you need to ask INLA to compute them. This is controlled
using control.predictor.

Aside: If we were predicting (y[i] = NA), then we need to do one more thing in order to get the
predictions on the correct scale. In order for these marginal distributions to be on the correct
scale, we need to tell them the link function, which in this case is the exponential. A list of
link functions supported for each different likelihood can be found in the documentation (e.g.
inla.doc("poisson")). This is not relevant for this example!

6



> result1 = inla(formula1,family="poisson",data=Germany,E=E,

control.compute= list(dic=TRUE, cpo = TRUE),

control.predictor=list(compute=TRUE, link=1))

We can now plot the results. The log-risk can be plotted using Bym.map

> Bym.map(result1$summary.linear.predictor$mean)

For everything else, we can use INLA’s built in plot command.

> plot(result1, plot.random.effects=FALSE)

• Look at the PIT plot. What does that tell you about the model fit?

• Compare observed and expected.

The second model: A covariate If you look again at the Germany data, you can see that
we have another entry x, which is a spatially varying covariate that is a proxy for the number of
smokers in the region. Let’s add that to the model!

> formula2 = Y ~ 1 + x + f(region,model="bym",graph=g)

• Fit this model (result2 = inla(...)), computing the DIC and the PIT.

• Look at the PIT plot. Is it better or worse?

• Look at the DIC (result2$dic$dic). Is it better or worse?

• Compare observed and expected.

The third model: A non-linear covariate When modelling risk, it is often the case that the
covariate does not effect the risk in a linear manner. For example, a covariate may have almost
no effect on the risk until its value is above a certain level. To take this into account, let’s fit a
nonlinear covariate.

In INLA, this is done by replacing ... + x +... with a new random effect.

> formula3 = Y ~ 1 + f(x, model="rw2") + f(region,model="bym",graph=g)

• Fit this model (result3 = inla(...)), computing the DIC and the PIT.

• Look at the PIT plot. Is it better or worse?

• Look at the DIC (result3$dic$dic). Is it better or

• Compare observed and expected worse?

• Look at the plot of the random effect for covariate. Is it non-linear??

7



• What happens if you replace the rw2 model with an rw1 model? (call this formula4 and
result4)

The next four questions consider the data on hospital admissions for COPD. On the website you will
find the data on the shape file (englandlocalauthority.sph), data on details of the areas (englandlocalau-
thority.dbf ) along with the observed and expected numbers of hospital admissions (copdmortalityob-
served.csv, copdmortalityexpected.csv).

5. Fit a Poisson log-normal model with spatial effects to the data using the R package CARBayes.
Note, that the spatial effects come from the ICAR model, which requires a set of observed and
expected values together with an adjacency matrix. (The adjacency matrix can be created using
the spdep and shapefiles packages.) After fitting the model find the risks of hospital admission
for COPD.

6. In this question we will implement the Poisson log-normal model with spatial effects using R-
INLA. Use the data and the adjacency matrix from the previous exercise. The adjacency matrix
can be converted into a file in the INLA format using the code nb2INLA.

7. Analyse the data of hospital admissions in 2001 using the CARBayes package and R-INLA and
produce a map of the smoothed risks.

(a) Compare the results of the two approaches.

(b) Investigate the sensitivity of the results to the choice of priors for the variance terms.

8. Choose two other years to reproduce your analysis from the previous question. Is there any
evidence of any changes in the patterns of risk over time?

9. Recall the first question from the previous problem sheet (http://www.stat.ubc.ca/~gavin/
STEPIBookNewStyle/course/cimat/ProbSheet1/ProbSheet1.pdf). There the areas were con-
sidered independently, and so the estimates of risk may be largely influenced by the underlying
population of each area. Now estimate risks for each area using a suitable smoothing model
(e.g. CAR) to produce estimates that preserve the spatial structure of the underlying geography.
Compare the results of the smooth model with the independent model.

10. > require(lattice)

> require(INLA)

The data shows the difference in rainfall in 1962 from the long term average at 7352 sites across
the US. The data was used by Kaufman, Schervish and Nychka (2008) and is available at http:

//www.image.ucar.edu/Data/Taper/.

This is a standard setup, in which precipitation was measured at irregular locations across the
United States and we wish to have an interpolated rainfall covariate. For simplicity, we look
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across the whole year and consider only the deviation from the long running average precipitation
field. In doing this, we remove some of the less pleasant features of the dataset (nonstationarity,
non-Gaussian responses) and are left with something useful. From preliminary analysis, the
data appears to be Gaussian, have zero mean and be stationary. Therefore it satisfies all of
the assumptions of classical statistics and so we expect our models to work. Needless to say, many
new models and methods have been tested on this dataset!

The dataset used are a tree column data.frame simulated on the previous section and provided on
INLA package. It can be called by (change the data directory as appropriate!)

> load("/Users/daniesi/Dropbox/BYM/St_Andrews_course/rainfall.RData")

> head(rainfall)

> loc = cbind(rainfall$lon, rainfall$lat)

this is a data.frame where the two first columns are the coordinates and the third is the anomaly
at those locations. We have also stored the locations in the variable loc for future reference.

We consider the n observations yi on locations the si, i = 1, ..., n, and we define the model

yi|β0, xi, σ2e ∼ N(β0 + xi, σ
2
e)

x ∼ N(0, Q−1)
(1)

We consider that x is a realisation of an SPDE model with unknown range and precision param-
eters.

The mesh The first step is to build the mesh using inla.mesh.create.helper

> mesh= inla.mesh.create.helper(points.domain=cbind(rainfall$lon,rainfall$lat),

max.edge=c(2,100))

> plot(mesh)

• Play around with max.edge. What happens if we set it larger? What happens if we set it (a
little!) smaller?

The spde model With that mesh, we define the SPDE model using the function inla.spde2.matern()

> args(inla.spde2.matern)

> function (mesh, alpha = 2, param = NULL, constr = FALSE, extraconstr.int = NULL,

extraconstr = NULL, fractional.method = c("parsimonious",

"null"), B.tau = matrix(c(0, 1, 0), 1, 3), B.kappa = matrix(c(0,

0, 1), 1, 3), prior.variance.nominal = 1, prior.range.nominal = NULL,

prior.tau = NULL, prior.kappa = NULL, theta.prior.mean = NULL,

theta.prior.prec = 0.1)

NULL
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The principal arguments are the mesh object and the α parameter, related to the smoothness
parameter of the process.

A good default value is α = 2 and we use this value here

> spde <- inla.spde2.matern(mesh, alpha=2)

The A Matrix In order to link the observation locations to the mesh, we need to construct an
A matrix, which we can do as follows.

> A = inla.spde.make.A(mesh=mesh, loc =loc)

The formula We’re now ready to build up the model. Although this data is precipitation
anomaly (and therefore has mean zero), we will fit a mean. Our model will, therefore, be an
intercept + an SPDE model. This is implemented as

> formula = z ~ intercept + f(nodes, model = spde) - 1

We are using an explicit intercept rather than the default one on purpose. As these models get
more complicated the default intercept can lead to bad things.

The stack functions So we have the mesh, the model, the A matrix and the formula. We still
need to put all of these elements together. This can be done by hand (akin to Sigrunn’s examples),
but it get’s a bit messy. There is a group of functions in R-INLA that will help us.

The stack functions are very useful function that allow us to fit SPDE models. They are very
powerful and in the next few days we will show how these functions allow us to construct and
solve quite complex models in R-INLA. For now, the primary use of the stack functions is to avoid
indexing and logic errors when combining different model components.

The challenge here is that we have a linear predictor that looks like

η = β01 + Ax,

where β0 is the intercept, 1 is a vector of 1s the same size as the data, A is the A-matrix defined
above, and x are the vertex values of the SPDE model. The important thing is that A should
only apply to the SPDE model component and shouldn’t touch the intercept (or, if we have them,
any other covariates). In fact, applying A to the intercept of the covariates doesn’t make sense:
they are the wrong dimension.

The inla.stack function allow us to work with predictors that includes terms with different di-
mensions. The three main inla.stack() arguments are the data vectors list, a list of A-matrices
(each one related to one block effect) and the effects.

The code looks like this
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> stack <- inla.stack(data=list(z=rainfall$z), A=list(1,A),

effects=list(intercept=rep(1,length(rainfall$z)),

nodes=1:spde$n.spde ))

There are some things to look at here. Every argument takes a list, which will be useful tomorrow
when we have more complicated models.

• We only have one source of data, so the data list only has one element.

• The formula has two parts (the intercept and the spde model) so the A argument and the
effects argument need to have two components.

• These need to be in the same order as the formula!

• If nothing interesting is happening (i.e. a term has no A-matrix), we can just put 1.

• The names in the data and effects lists must match the names in the formula!

Fitting the model Finally, we are ready to fit the model. In order to do this, we need two
more “stack” functions, which we can use to extract the information from the stack.

The first is inla.stack.data, which constructs an appropriate data.frame (actually a list) from
the information in the stack. This data.frame will look a lot like your original data, but everything
will be in the appropriate places and there will be a lot of NAs added in order to make sure INLA
is computing the correct thing.

The second function is inla.stack.A, which constructs an appropriate A-matrix from the infor-
mation in the stack. This A-matrix can then be given to INLA as part of the control.predictor

argument.

Note: If you should have and A-matrix and you don’t specify this argument, you will get a really
weird error message. (Something like “Error in eval(expr, envir, enclos) : object ’x’ not found”)

The code to run the model is then

> result <- inla(formula,

data=inla.stack.data(stack),

control.predictor=list(A=inla.stack.A(stack)))

An object from inla() function has a set of several results. These includes summaries, marginal
posterior densities of each parameter on the model: the regression parameters, each element of
the latent field and all the hyperparameters.

The summary of β0 is obtained by

> result$summary.fixed

The summary of 1/σ2e is obtained by
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> result$summary.hyperpar[1,]

A marginal distribution on inla() output is just two vector, where one represents the parameter
values and another the density. Any posterior marginal can be transformed. If we want the
posterior marginal for σe, the square root of the σ2e , we use

> post.se <- inla.tmarginal(function(x) sqrt(1/x),

result$marginals.hyperpar[[1]])

and now we are able to summarise this distribution

> inla.emarginal(function(x) x, post.se)

> inla.qmarginal(c(0.025, 0.5, 0.975), post.se)

> inla.hpdmarginal(0.95, post.se)

> inla.pmarginal(c(0.5, 0.7), post.se)

and, of course, we can visualise it.

The parameters of the latent field is parametrised as log(κ) and log(τ), where τ is the local variance
parameter. We have the posterior marginals for κ, σ2x and for the nominal range (the distance
that we have correlation equals 0.1). This can be done with the inla.spde2.result function

> result.field <- inla.spde2.result(result, ’nodes’, spde, do.transf=TRUE)

and we get the posterior mean of each of these parameters by

> inla.emarginal(function(x) x, result.field$marginals.kappa[[1]])

> inla.emarginal(function(x) x, result.field$marginals.variance.nominal[[1]])

> inla.emarginal(function(x) x, result.field$marginals.range.nominal[[1]])

also we can get other summary statistics, HPD interval and visualise it.

Plotting the field Finally, we can plot the field using the following code

require(maps) #install.packages(c("maps"))

require(maptools)

## If you don’t have these, just remove mm=map("usa") below

## Calculate mapping between triangulation vertices and grid points:

proj = inla.mesh.projector(mesh, dims=c(200,200))

## Construct greyscale palette function:
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my.grey.palette = function (n,...) { return (grey.colors(n,0.05,0.95,...))}

## Use it:

my.palette = my.grey.palette

## Construct map data appropriate for easy plotting:

levelplotmap = function(..., mm) {

panel.levelplot(...)

panel.lines(mm$x, mm$y, col="black")

}

#####################

## Plot results:

## Map resulting posterior mean field to a grid:

plotdata = inla.mesh.project(proj, result.field$summary.values$mean)

## Plot PM contours:

dev.new()

bbb = (levelplot(row.values=proj$x, column.values=proj$y, x=plotdata,

mm=map("usa"), panel=levelplotmap,

col.regions=my.palette,

xlim=range(proj$x), ylim=range(proj$y), aspect="iso",

contour=TRUE, cuts=11, labels=FALSE, pretty=TRUE,

xlab="Easting",ylab="Northing"))

print(bbb)
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