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OUTLINE

Tuesday, February 23
I 10:00 - 10:30 Introduction
I 10:30 - 11:30 Scalable Spatial Modelling: Working with Big Data
I 11:30 - 12:00 Break
I 12:00 - 13:30 Scalable Spatial Modelling: Working with Big Data

(Contd.)
I 13:30 - 15:00 Lunch
I 15:00 - 17:00 Computer Labs
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OUTLINE

Wednesday, February 24
I 10:00 - 11:30 Regional / area based modelling
I 11:30 - 12:00 Break
I 12:00 - 13:30 Beyond space: modelling with multi-dimensional

responses
I 13:30 - 15:00 Lunch
I 15:00 - 17:00 Computer Labs
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THE NEED FOR SPATIO-TEMPORAL MODELLING

I Spatial epidemiology is the description and analysis of
geographical data, specifically health data in the form of counts
of mortality or morbidity and factors that may explain variations
in those counts over space.

I These may include demographic and environmental factors
together with genetic, and infectious risk factors.

I It has a long history dating back to the mid-1800s when John
Snow’s map of cholera cases in London in 1854 provided an
early example of geographical health analyses that aimed to
identify possible causes of outbreaks of infectious diseases.
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EXAMPLE: JOHN SNOW’S CHOLERA MAP

Figure: John Snow’s map of cholera cases in London 1854. Red circles indicate locations of cholera
cases and are scaled depending on the number of reported cholera cases.Purple taps indicate
locations of water pumps.
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THE NEED FOR SPATIO-TEMPORAL MODELLING AND

THE ROLE OF BIG DATA

I Advances in statistical methodology together with the increasing
availability of data recorded at very high spatial and temporal
resolution has lead to great advances in spatial and, more
recently, spatio–temporal epidemiology.

I These advances have been driven in part by increased awareness
of the potential effects of environmental hazards and potential
increases in the hazards themselves.
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THE NEED FOR SPATIO-TEMPORAL MODELLING AND

THE ROLE OF BIG DATA

I Over the past two decades, population predictions based on
conventional demographic methods have forecast that the
world’s population will rise to about 9 billion in 2050, and then
level off or decline.

I However, recent analyses using Bayesian methods have
provided compelling evidence that such projections may vastly
underestimate the world’s future population and instead of the
expected decline, population will continue to rise.

I Such an increase will greatly add to the anthropogenic
contributions of environmental contamination and will require
political, societal and economic solutions in order to adapt to
increased risks to human health and welfare.
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THE NEED FOR SPATIO-TEMPORAL MODELLING AND

THE ROLE OF BIG DATA

I In order to assess and manage these risks there is a requirement
for monitoring and modelling the associated environmental
processes that will lead to an increase in a wide variety of
adverse health outcomes.

I Addressing these issues will involve a multi-disciplinary
approach and it is imperative that the uncertainties that will be
associated with each of the components can be characterised and
incorporated into statistical models used for assessing health
risks.
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EXAMPLE: GLOBAL MODELLING OF PM2.5 USING

MULTIPLE DATA SOURCES

Figure: World map with ground monitor locations, coloured by the estimated level of PM2.5
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EXAMPLE: GLOBAL MODELLING OF PM2.5 USING

MULTIPLE DATA SOURCES

Figure: Global satellite remote sensing estimates of PM2.5 for 2014.



14/ 293

Introduction Scalable Bayesian Modelling Introduction to spatial statistics Areal/Regional Models Continuous spatial models Beyond spatial models Conclusions

EXAMPLE: GLOBAL MODELLING OF PM2.5 USING

MULTIPLE DATA SOURCES

Figure: Global chemical transport model estimates of PM2.5 for 2014.
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Scalable Bayesian Modelling
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INLA - INTEGRATED NESTED LAPLACE

APPROXIMATIONS

Outline
I Describe the class of models INLA can be applied to.
I Look at simple examples in R-INLA.
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TWO MAIN PARADIGMS FOR STATISTICAL ANALYSIS

I Let y denote a set of observations, distributed according to a
probability model π(y;θ).

I Based on the observations, we want to estimate θ.

The classical approach:
θ denotes parameters (unknown fixed numbers), estimated for
example by maximum likelihood.

The Bayesian approach:
θ denotes random variables, assigned a prior π(θ). Estimate θ based
on the posterior:

π(θ | y) =
π(y | θ)π(θ)

π(y)
∝ π(y | θ)π(θ).
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Example (Ski jumping records)
Assume a simple linear regression model with Gaussian observations
y = (y1, . . . , yn), where

E(yi) = α+ βxi, Var(yi) = τ−1, i = 1, . . . ,n
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THE BAYESIAN APPROACH

Assign priors to the parameters α, β and τ and calculate posteriors:
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REAL-WORLD DATASETS ARE USUALLY MUCH MORE

COMPLICATED!

Using a Bayesian framework:

I Build (hierarchical) models to account for potentially
complicated dependency structures in the data.

I Attribute uncertainty to model parameters and latent variables
using priors.

Two main challenges:

1. Need computationally efficient methods to calculate posteriors.
2. Select priors in a sensible way.
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MCMC: MARKOV CHAIN MONTE CARLO METHODS

Based on sampling. Construct Markov chains with the target
posterior as stationary distribution.

I Extensively used within Bayesian inference since the 1980’s.
I Flexible and general, sometimes the only thing we can do!
I Available for specific models using e.g. BUGS, JAGS, BayesX.
I In general, not straightforward to implement. Slow, convergence

issues, etc.
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INLA: INTEGRATED NESTED LAPLACE

APPROXIMATIONS

Introduced by Rue, Martino and Chopin (2009). Posteriors are
estimated using numerical approximations. No sampling needed!

I Unified framework for analysing a general class of statistical
models, named latent Gaussian models.

I Accurate and computationally superior to MCMC methods!
I Easily accessible using the R-interface R-INLA, see

www.r-inla.org.

Reference:
Rue, H., Martino, S. and Chopin, N. (2009). Approximate Bayesian inference for latent Gaussian
models by using integrated nested Laplace approximations (with discussion). Journal of the Royal
Statistical Society, Series B, 71, 319–392.

http://www.r-inla.org
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WHAT IS A LATENT GAUSSIAN MODEL?

Classical multiple linear regression model

The mean µ of an n-dimensional observational vector y is given by

µi = E(Yi) = α+

nβ∑
j=1

βjzji, i = 1, . . . ,n

where

α : Intercept
β : Linear effects of covariates z
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ACCOUNT FOR NON-GAUSSIAN OBSERVATIONS

Generalized linear model (GLM)

The mean µ is linked to the linear predictor ηi:

ηi = g(µi) = α+

nβ∑
j=1

βjzji, i = 1, . . . ,n

where g(.) is a link function and

α : Intercept
β : Linear effects of covariates z
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ACCOUNT FOR NON-LINEAR EFFECTS OF COVARIATES

Generalized additive model (GAM)

The mean µ is linked to the linear predictor ηi:

ηi = g(µi) = α+

nf∑
k=1

fk(cki), i = 1, . . . ,n

where g(.) is a link function and

α : Intercept
{fk(·)} : Non-linear smooth effects of covariates ck
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STRUCTURED ADDITIVE REGRESSION MODELS

GLM/GAM/GLMM/GAMM+++
The mean µ is linked to the linear predictor ηi:

ηi = g(µi) = α+

nβ∑
j=1

βjzji +

nf∑
k=1

fk(cki) + εi, i = 1, . . . ,n

where g(.) is a link function and

α : Intercept
β : Linear effects of covariates z

{fk(·)} : Non-linear smooth effects of covariates ck

ε : Iid random effects
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LATENT GAUSSIAN MODELS

I Collect all parameters (random variables) in the linear predictor
in a latent field

x = {α,β, {fk(·)},η}.
I A latent Gaussian model is obtained by assigning Gaussian

priors to all elements of x.
I Very flexible due to many different forms of the unknown

functions {fk(·)}:
I Include temporally and/or spatially indexed covariates.

I Hyperparameters account for variability and length/strength of
dependence.
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SOME EXAMPLES OF LATENT GAUSSIAN MODELS

I Generalized linear and additive (mixed) models
I Semiparametric regression
I Disease mapping
I Survival analysis
I Log-Gaussian Cox-processes
I Geostatistical models
I Spatial and spatio-temporal models
I Stochastic volatility
I Dynamic linear models
I State-space models
I +++
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UNIFIED FRAMEWORK: A THREE-STAGE

HIERARCHICAL MODEL

1. Observations: y

Assumed conditionally independent given x and θ1:

y | x,θ1 ∼
n∏

i=1

π(yi | xi,θ1).

2. Latent field: x

Assumed to be a GMRF with a sparse precision matrix Q(θ2):

x | θ2 ∼ N
(
µ(θ2),Q−1(θ2)

)
.

3. Hyperparameters: θ

= (θ1,θ2)
Precision parameters of the Gaussian priors:

θ ∼ π(θ).
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MODEL SUMMARY

The joint posterior for the latent field and hyperparameters:

π(x,θ | y) ∝ π(y | x,θ)π(x,θ)

∝
n∏

i=1

π(yi | xi,θ)π(x | θ)π(θ)

Remarks:

I m = dim(θ) is often quite small, like m ≤ 6.

I n = dim(x) is often large, typically n = 102 – 106.
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TARGET DENSITIES ARE GIVEN AS

HIGH-DIMENSIONAL INTEGRALS

We want to estimate:

I The marginals of all components of the latent field:

π(xi | y) =

∫ ∫
π(x,θ | y)dx−idθ

=

∫
π(xi | θ,y)π(θ | y)dθ, i = 1, . . . ,n.

I The marginals of all the hyperparameters:

π(θj | y) =

∫ ∫
π(x,θ | y)dxdθ−j

=

∫
π(θ | y)dθ−j, j = 1, . . .m.
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AN MCMC CASE-STUDY

I Study a seemingly trivial hierarchical model
I Latent temporal Gaussian, with
I Binary observations

I Develop a “standard” MCMC-algorithm for inference
I Auxiliary variables
I (Conjugate) single-site updates

I ..and study empirically its properties.
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AUXILIARY AIMS

I Give a “historical” development of the ideas in INLA
I Show how to make good proposal distributions for latent

Gaussian models
I Remind you not to make bad Gibbs samplers
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TOKYO RAINFALL DATA

Stage 1 Binomial data

yi ∼
{

Binomial(2, p(xi))

Binomial(1, p(xi))
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TOKYO RAINFALL DATA

Stage 2 Assume a smooth latent x,

x ∼ RW2(κ), logit(pi) = xi
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TOKYO RAINFALL DATA

Stage 3 Gamma(α, β)-prior on κ
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MODEL SUMMARY

π(x | κ) π(κ)
∏

i

π(yi | xi)

where
I x | κ is Gaussian (Markov) with dimension 366
I κ is Gamma
I yi|xi is Binomial with p(xi)
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CONSTRUCTION OF NICE FULL CONDITIONALS

A popular approach is to introduce auxiliary variables w, so that

x | the rest

is Gaussian.
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EXAMPLE: BINARY REGRESSION

GMRF x and Bernoulli data

yi ∼ B(g−1(xi))

g(p) = Φ(p) probit link

Equivalent representation using auxiliary variables w

εi
iid∼ N (0, 1)

wi = xi + εi

yi =

{
1 if wi > 0
0 otherwise.

for the probit-link.



40/ 293

Introduction Scalable Bayesian Modelling Introduction to spatial statistics Areal/Regional Models Continuous spatial models Beyond spatial models Conclusions

SINGLE-SITE GIBBS SAMPLING

Auxiliary variables can be introduced for the logit-link1, to achieve
this sampler:

I κ ∼ Γ(·, ·)
I for each i

I xi ∼ N (·, ·)
I for each i

I wi ∼ W(·)

It is fully automatic; no tuning!!!

1Held & Holmes (2006)
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RESULTS: HYPER-PARAMETER log(κ)
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RESULTS: HYPER-PARAMETER log(κ)
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RESULTS: LATENT NODE x10
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RESULTS: DENSITY FOR LATENT NODE x10
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DISCUSSION

Single-site sampler with auxiliary variables:
I Even long runs shows large variation
I “Long” range dependence
I Very slowly mixing

But:
I Easy to be “fooled” running shorter chains
I The variability can be underestimated.
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WHAT IS CAUSING THE PROBLEM?

Two issues
1. Slow mixing within the latent field x
2. Slow mixing between the latent field x and θ.

Blocking is the “usual” approach to resolve such issues, if possible.

Note: blocking mainly helps within the block only.
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STRATEGIES FOR BLOCKING

Slow mixing due to the latent field x only:
I Block x

Slow mixing due to the interaction between the latent field x and θ:
I Block (x,θ).

In most cases: if you can do one, you can do both.
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BLOCKING SCHEME I

I κ ∼ Γ(·, ·)
I x ∼ N (·, ·)
I w ∼ W(·) (conditional independent)



48/ 293

Introduction Scalable Bayesian Modelling Introduction to spatial statistics Areal/Regional Models Continuous spatial models Beyond spatial models Conclusions

RESULTS



48/ 293

Introduction Scalable Bayesian Modelling Introduction to spatial statistics Areal/Regional Models Continuous spatial models Beyond spatial models Conclusions

RESULTS
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BLOCKING SCHEME II

I Sample
I κ′ ∼ q(κ′;κ)
I x′ | κ′, y ∼ N (·, ·)

and then accept/reject (x′, κ′) jointly
I w ∼ W(·) (conditional independent)

Remarks
I If the normalising constant for x|· is available, then this is an

EASY FIX of scheme I.
I Usually makes a huge improvement
I Automatic “reparameterisation”
I Doubles the computational costs



50/ 293

Introduction Scalable Bayesian Modelling Introduction to spatial statistics Areal/Regional Models Continuous spatial models Beyond spatial models Conclusions

RESULTS
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REMOVING THE AUXILIARY VARIABLES

I The auxiliary variables makes the full conditional for x Gaussian
I If we do not use them, the full conditional for x looks like

π(x | . . .) ∝ exp

(
−1

2
xTQx +

∑
i

log(π(yi|xi))

)

≈ exp
(
−1

2
(x− µ)T(Q + diag(c))(x− µ)

)
= πG(x| . . .)

I The Gaussian approximation is constructed by matching the
I mode, and the
I curvature at the mode.
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IMPROVED ONE-BLOCK SCHEME

I κ′ ∼ q(·;κ)

I x′ ∼ πG(x | κ′,y)

I Accept/reject (x′, κ′) jointly

Note: πG(·) is indexed by κ′, hence we need to compute one for each
value of κ′.
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RESULTS
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INDEPENDENCE SAMPLER

We can construct an independence sampler, using πG(·).
The Laplace-approximation for κ|x:

π(κ | y) ∝ π(κ) π(x|κ) π(y|x)

π(x|κ,y)

≈ π(κ) π(x|κ) π(y|x)

πG(x|κ,y)

∣∣∣∣∣
x=mode(κ)

Hence, we do first
I Evaluate the Laplace-approximation at some “selected” points
I Build an interpolation log-spline
I Use this parametric model as π̃(κ|y)
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INDEPENDENCE SAMPLER

I κ′ ∼ π̃(κ|y)

I x′ ∼ πG(x|κ′,y)

I Accept/reject (κ′, x′) jointly

Note:
Corr(x(t + k), x(t)) ≈ (1− α)|k|

In this example, α = 0.83...
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RESULTS
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CAN WE IMPROVE THIS SAMPLER?

I Yes, if we are interested in the posterior marginals for κ and {xi}.
I The marginals for the Gaussian proposal πG(x| . . .), are know

analytically.
I Just use numerical integration!
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DETERMINISTIC INFERENCE

Posterior marginal for κ:
I Compute π̃(κ|y)

Posterior marginal for xi:
I Use numerical integration

π(xi | y) =

∫
π(xi | y, κ) π(κ | y) dκ

≈
∑

k

N (xi; µκk , σ
2(κk)) × π̃(κk | y) × ∆k
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RESULTS: MIXTURE OF GAUSSIANS
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RESULTS: IMPROVED....

Histogram of x

x

D
en

si
ty

0.1 0.2 0.3 0.4

0
2

4
6

8



61/ 293

Introduction Scalable Bayesian Modelling Introduction to spatial statistics Areal/Regional Models Continuous spatial models Beyond spatial models Conclusions

WHAT CAN BE LEARNED FROM THIS EXERCISE?

For a relative simple model, we have implemented
I single-site with auxiliary variables (looong time; hours)
I various forms for blocking (long time; many minutes)
I independence sampler (long time; many minutes)
I approximate inference (nearly instant; one second)
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WHAT CAN BE LEARNED FROM THIS EXERCISE? ...

Single-site Gibbs samplers don’t work for when there’s correlation.
This is completely unsurprising!
But they still get used. Which implies

I Most probably, the results would be not correct.
I They “accept” the long running-time.
I Trouble: such MCMC-schemes is not useful for routine analysis

of similar data.
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WHAT CAN BE LEARNED FROM THIS EXERCISE? ...

I In many cases, the situation is much worse in practice; this was a
very simple model.

I Single-site MCMC is still the default choice for the non-expert
user.

I Hierarchical models are popular, but they are difficult for
MCMC.

Perhaps the development of models is not in sync with the
development of inference? We cannot just wait for more powerful
computers...
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THE INTEGRATED NESTED LAPLACE APPROXIMATION

(INLA) I
Step I Explore π̃(θ|y)

I Locate the mode
I Use the Hessian to construct new variables
I Grid-search
I Can be case-specific
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THE INTEGRATED NESTED LAPLACE APPROXIMATION

(INLA) II

Step II For each θj

I For each i, evaluate the Laplace approximation for
selected values of xi

I Build a Skew-Normal or log-spline corrected
Gaussian

N (xi; µi, σ
2
i )× exp(spline)

to represent the conditional marginal density.
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THE INTEGRATED NESTED LAPLACE APPROXIMATION

(INLA) III

Step III Sum out θj

I For each i, sum out θ

π̃(xi | y) ∝
∑

j

π̃(xi | y,θj)× π̃(θj | y)

I Build a log-spline corrected Gaussian

N (xi; µi, σ
2
i )× exp(spline)

to represent π̃(xi | y).
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COMPUTING POSTERIOR MARGINALS FOR θj (I)

Main idea
I Use the integration-points and build an interpolant
I Use numerical integration on that interpolant
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COMPUTING POSTERIOR MARGINALS FOR θj (II)

Practical approach (high accuracy)
I Rerun using a fine integration grid
I Possibly with no rotation
I Just sum up at grid points, then interpolate
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COMPUTING POSTERIOR MARGINALS FOR θj (II)

Practical approach (lower accuracy)
I Use the Gaussian approximation at the mode θ∗

I ...BUT, adjust the standard deviation in each direction
I Then use numerical integration
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HOW CAN WE ASSESS THE ERROR IN THE

APPROXIMATIONS?

Tool 1: Compare a sequence of improved approximations
1. Gaussian approximation
2. Simplified Laplace
3. Laplace
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HOW CAN WE ASSESS THE ERROR IN THE

APPROXIMATIONS?

Tool 3: Estimate the “effective” number of parameters as defined in
the Deviance Information Criteria:

pD(θ) = D(x;θ)−D(x;θ)

and compare this with the number of observations.

Low ratio is good.

This criteria has theoretical justification.
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IMPORTANT OBSERVATION

If y|x,θ is Gaussian, the
“approximation” is exact.
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ANYONE CAN USE INLA!
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GETTING STARTED WITH R-INLA

I Installation (NB: Not on CRAN)
> install.packages("INLA",

repos="http://www.math.ntnu.no/inla/R/testing")

I Load package and upgrade:

> library(INLA)
> inla.upgrade(testing = TRUE)

I Help and examples at www.r-inla.org

http://www.r-inla.org
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BASIC STRUCTURE TO RUN A MODEL

I Define the formula, specifying non-linear functions using f(.),
including the latent model and priors for hyperparameters:

> formula = y ~ 1 + z
+ f(c, model = "...",

hyper = list(theta =
list(prior = "...", param = ...)))

I Call inla(.), where you specify the relevant likelihood
> inla(formula, data=data.frame(...), family = "...")
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IMPLEMENTED MODELS

Different likelihoods, latent models and (hyper)priors:

> names(inla.models()$likelihood)

> names(inla.models()$latent)

> names(inla.models()$prior)

Documentation (not complete):

> inla.doc("....")
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EXAMPLE: LOGISTIC REGRESSION, 2× 2 FACTORIAL

DESIGN

Example (Seeds)
Consider the proportion of seeds that germinates on each of 21 plates.
We have two seed types (x1) and two root extracts (x2).

> data(Seeds)
> head(Seeds)

r n x1 x2 plate
1 10 39 0 0 1
2 23 62 0 0 2
3 23 81 0 0 3
4 26 51 0 0 4
5 17 39 0 0 5
6 5 6 0 1 6
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SUMMARY DATA SET

Number of seeds that germinated in each group:

Seed types
x1 = 0 x1 = 1

Root extract
x2 = 0 99/272 49/123

x2 = 1 201/295 75/141
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STATISTICAL MODEL

I Assume that the number of seeds that germinate on plate i is
binomial

ri ∼ Binomial(ni, pi), i = 1, . . . , 21,

I Logistic regression model:

logit(pi) = log
(

pi

1− pi

)
= α+ β1x1i + β2x2i + β3x1ix2i + εi

where εi ∼ N(0, σ2
ε) are iid.

Aim:
Estimate the main effects, β1 and β2 and a possible interaction effect
β3.
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USING R-INLA

> formula = r ~ x1 + x2 + x1*x2 + f(plate, model="iid")
> result = inla(formula, data = Seeds,

family = "binomial",
Ntrials = n,
control.predictor =

list(compute = T, link=1),
control.compute = list(dic = T))

Default priors
Default prior for fixed effects is

β ∼ N(0, 1000).

Change using the control.fixed argument in the inla-call.
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OUTPUT
> summary(result)
Call:
"inla(formula = formula, family = \"binomial\", data = Seeds, Ntrials = n)"

Time used:
Pre-processing Running inla Post-processing Total

0.1354 0.0911 0.0347 0.2613

Fixed effects:
mean sd 0.025quant 0.5quant 0.975quant kld

(Intercept) -0.5581 0.1261 -0.8076 -0.5573 -0.3130 0e+00
x1 0.1461 0.2233 -0.2933 0.1467 0.5823 0e+00
x2 1.3206 0.1776 0.9748 1.3197 1.6716 1e-04
x1:x2 -0.7793 0.3066 -1.3799 -0.7796 -0.1774 0e+00

Random effects:
Name Model
plate IID model

Model hyperparameters:
mean sd 0.025quant 0.5quant 0.975quant

Precision for plate 18413.03 18280.63 1217.90 13003.76 66486.29

Expected number of effective parameters(std dev): 4.014(0.0114)
Number of equivalent replicates : 5.231

Marginal Likelihood: -72.07
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ESTIMATED GERMINATION PROBABILITIES

> result$summary.fitted.values$mean
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MORE IN THE PRACTICALS . . .

> plot(result)
> result$summary.fixed
> result$summary.random
> result$summay.linear.predictor
> result$summay.fitted.values
> result$marginals.fixed
> result$marginals.hyperpar
> result$marginals.linear.predictor
> result$marginals.fitted.values
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EXAMPLE: SEMIPARAMETRIC REGRESSION
Example (Annual global temperature anomalies)
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ESTIMATING A SMOOTH NON-LINEAR TREND

I Assume the model

yi = α+ f (xi) + εi, i = 1, . . . ,n,

where the errors are iid, εi ∼ N(0, σ2
ε).

I Want to estimate the true underlying curve f (·).
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R-CODE

I Define formula and run model

> formula = y ~ f(x, model = "rw2", hyper = ...)

> result = inla(formula, data = data.frame(y, x))

I The default prior for the hyperparameter of rw2:

hyper = list(prec =
list(prior = "loggamma",

param = c(1, 0.00005)))

http://www.math.ntnu.no/inla/r-inla.org/doc/latent/rw2.pdf
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OUTPUT

I > summary(result)
> plot(result)

I The mean effect of x:
> result$summary.random$x$mean

Note that this effect is constrained to sum to 0.

I Resulting fitted curve
> result$summary.fitted.values$mean
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ESTIMATED FIT USING THE DEFAULT PRIOR
Example (Annual global temperature anomalies)
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ESTIMATED FIT USING R-INLA COMPARED WITH

SMOOTH.SPLINE
Example (Annual global temperature anomalies)
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USING DIFFERENT PRIORS FOR THE PRECISION
Example (Annual global temperature anomalies)

1850 1900 1950 2000

-0
.5

0.
0

0.
5

Year

Te
m

pe
ra

tu
re

 a
no

m
al

y



93/ 293

Introduction Scalable Bayesian Modelling Introduction to spatial statistics Areal/Regional Models Continuous spatial models Beyond spatial models Conclusions

DEFAULT PRIOR CHOICES IN R-INLA ARE NOT

UNIVERSALLY GOOD

I Priors are an important part of Bayesian analysis
I There is no universally good way to specify priors for complex

models
I The default priors in INLA are slightly sensible, but they should

be used with caution
I We are in the process of incorporating a system of Penalised

Complexity priors that perform better under complex
hierarchical models.

Reference:
Daniel Simpson, Thiago Martins, Andrea Riebler, Geir-Arne Fuglstad, Håvard Rue, and Sigrunn
Sørbye,. Penalising model complexity: A principled practical approach to constructing priors.
ArXiv:1403.4630.
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SUMMARY

I INLA is used to analyse a broad class of statistical models,
named latent Gaussian models.

I Unified computational framework with three levels:

- Likelihood for the observations.
- Latent field, model dependency structures.
- Hyperparameters, tune smoothness.

I Efficient and accurate. Easily available using R-INLA.
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Introduction to spatial statistics
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STATISTICS IN SPACE!

Spatial data comes in essentially two different forms
I Point-referenced data

I GPS tracking
I Fixed measuring devices
I “High resolution” satelites

I Region-based data
I Census data
I Plot data
I Region-based counts
I Historical data
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LET’S THINK ABOUT DATA-GATHERING

A reasonably common way of getting spatial data is
I Break the area of interest up into smaller regions
I Get a team to survey the region

I Completely
I Partially

I NB: We are looking to build a joint statistical model for the
process on the entire regions. Hence un-surveyed regions are not
strictly “missing”, but rather part of the experimental design to
be imputed based on the model.

How do we model this statistically?
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NW ENGLAND
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HOW DO WE MODEL THIS?

Imagine we have animal counts in each region. We can model them
as Poisson

yi = Po (eηi) .

How do we model the linear predictor ηi?
I We could model the number of animals in each region

independently
I ηi ∼ N(intercept + (covariates)i, σ

2
i )

I Regional differences accounted through “random effect”
I But... what if the distribution is inhomogeneous?
I If there’s an area where the animal is rare, we’ll get lots of zero

counts
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HOW DO WE MODEL THIS?

Imagine we have animal counts in each region. We can model them
as Poisson

yi = Po (eηi) .

How do we model the linear predictor ηi?
I We could model some dependence across regions

I “Nearby regions” should have similar counts
I ηi = intercept + (covariates)i + ui
I Now the random effect ui ∼ N(0,Q−1) is correlated
I How should we do this?
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MODELLING SPATIAL SIMILARITY

The easiest model of spatial similarity is the Besag model, which says
that

xi − xj ∼ N(0, σ2)

if i and j are “neighbours”.

I This really does say nearby things are similar
I It says that the value at neighbouring sites is most probably not

more than 3σ apart
I We need to choose neighbours.



102/ 293

Introduction Scalable Bayesian Modelling Introduction to spatial statistics Areal/Regional Models Continuous spatial models Beyond spatial models Conclusions

EVERYBODY NEEDS GOOD NEIGHBOURS

How do we choose which points should be neighbours?

I Physical nearest points are often a good place to start
I Physical neighbours are not necessarily the best
I This is modelling, so you should consider your process
I Consider, for instance, the problem of Tromsø...
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A THEORY DIVERSION: THE MARKOV PROPERTY

Models based on neighbourhood have a name in statistics: they are
Markovian models

I Markovian models are specified entirely through
“neighbourhood structures”

I It is easier to than specifying a full covariance
I For a first example, let’s consider time
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EXAMPLE: AR(1) PROCESS

xt | xt−1 = φxt−1 + εt, t > 1, εt ∼ N (0, τ−1)

x1 ∼ N
(

0,
1

1− φ2

)

I The values at t is proportional to the value at t plus some extra
variability

I φ is the lag-one autocorrelation
I εt is the innovation noise
I τ is the precision of the innovation
I The distribution for x1 ensures the process is stationary.
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THE AR(1) PROCESS IN PICTURES

AR(1):
x1 x2 x3 x4 x5

I The circles represent the values of x at individual time points
I There is a line between them if they are conditionally dependent
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MARKOV IN SPACE!

x41

x31

x21

x11

x42

x32

x22

x12

x43

x33

x23

x13

x44

x34

x24

x14

I The model above is called a first order conditional autoregressive
model or a CAR(1) model.

I Every node is conditionally dependent on its four nearest
neighbours

I This is also called a First Order Random Walk or RW(1) model.



107/ 293

Introduction Scalable Bayesian Modelling Introduction to spatial statistics Areal/Regional Models Continuous spatial models Beyond spatial models Conclusions

(INFORMAL) DEFINITION OF A GMRF

I A GMRF is a Gaussian distribution where the non-zero elements
of the precision (inverse covariance) matrix are defined by the
graph structure.

I In the previous example the precision matrix is tridiagonal since
each variable is connected only to its predecessor and successor.

x1 x2 x3 x4 x5
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USES FOR THE SIMPLE 1-DIMENSIONAL PROCESSES IN

R-INLA

I The AR(1) process can be used for time simple time effects
I A random walk (RW) process for “smooth effects”

xi − xi−1 ∼ N(0, σ2)

I A second-order random walk (RW2) for even “smoother” effects

(xi − 2xi−1 + xi−2) ∼ N(0, σ2)
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RANDOM WALK

Can be used with a

formula = Y ~ ... + f(covariate, model="rw1")
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SECOND-ORDER RANDOM WALK

Can be used with a

formula = Y ~ ... + f(covariate, model="rw2")



111/ 293

Introduction Scalable Bayesian Modelling Introduction to spatial statistics Areal/Regional Models Continuous spatial models Beyond spatial models Conclusions

LARYNX CANCER RELATIVE RISK
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LARYNX CANCER RELATIVE RISK

Use a simple count model

yi ∼ Poisson(Eieνi),

where the log-relative risk νi is modelled as

νi = Covariates + Spatial + Noise.

In R-INLA

inla(formula = Y~...+f(region, model="besag",
graph.file=g),

family="poisson",...)
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THE MARKOV PROPERTY ON A GRAPH

Let x be a GMRF wrt G = (V, E).

The global Markov property:

xA ⊥ xB | xC

for all disjoint sets A, B and C where C separates A and B, and A and
B are non-empty.
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FULL GRAPH
Connecting all the neighbouring areas give the following graph
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SUB GRAPH

Let us focus on one small part of the graph
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BESAG MODEL

We apply a Besag model where each region conditionally has a
Gaussian distribution with mean equal to the average of the
neighbours and a precision proportional to the number of neighbours

x9|x−9 ∼ N
(

1
6

(x7 + x11 + x12 + x13 + x14 + x15),
1

6τ

)
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PRECISION MATRIX OF SUB GRAPH

The sub graph leads to a precision matrix with 21.6% non-zero
elements.
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PRECISION MATRIX OF FULL GRAPH

The full graph leads to a precision matrix with 0.1% non-zero
elements.
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INTRINSIC GMRFS

I The Besag model is not proper
I There are linear combinations of the variables that have infinite

variance or zero precision.
I This is not allowed in a proper distribution.
I In the Besag model it is caused by the fact that the conditional

distributions give no information about the “mean”.
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INTRINSIC GMRFS

I Distributions of this type (usually) become proper when one
introduces observations

I Identifiability issues: for a Besag model with an intercept in the
model introduce a constraint to stop the Besag from stealing the
effect of the intercept.

I R-INLA uses
∑

i xi = 0.
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IT TURNS OUT THE BESAG MODEL DOESN’T FIT VERY

WELL!

I The problem is that it only accounts for similarities between
regions

I But it doesn’t take into account that every region will have a little
bit of individual spice

I The solution is to add an i.i.d. random effect in each region (a
random intercept)

I This was the work of Besag, York and Mollié, so we call this the
BYM model.
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DISEASE MAPPING: THE BYM-MODEL

I Data yi ∼ Poisson(Eiexp(ηi))

I Log-relative risk
ηi = µ+ ui + vi + f (ci)

I Structured/spatial component u
I Unstructured component v
I f (c) is the non-linear effect of a

covariate c.
I Precisions τu and τv; smoothing

parameter τf

I Common to use independent
Gamma-priors
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COMPLICATED MODEL COMPONENTS

yi

ηi µ

uif (ci) vi

τuτf τv

λuλf λv

i = 1, . . . , n

Does this make sense?
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THINK OF THE VARIANCE

I The variance not explained by the covariate is modelled with ui
and vi

I This amount of variance we can have is controlled by the
independent precision parameters τu and τv

I This is ugly!
I It would be much easier to have one parameter controlling the

scale of the random effect, and another controlling its makeup
I This is implemented as the bym2 model in INLA
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DISEASE MAPPING (II)

Rewrite the model as

η =
1√
τ

(√
1− γv +

√
γu
)

I Marginal precisions τ .
I γ gives it interpretation: independence (γ = 0), maximal

dependence (γ = 1)]
I PC prior on γ depends on the graph!
I Parameters control different features. Use the PC priors (later!)

for τ and γ separately.
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BUILDING A BETTER BYM

yi

ηi τη

λη

µ

uif (ci) vi

ω1, ω2

λw

i = 1, . . . , n

This re-parameterisation in terms of "meaningful" parameters makes
it easier to set priors and leads to more stable inference.
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NEVER FORGET

Your model doesn’t fit!

“All models are wrong, some models are useful” — George Box
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BAYESIAN MODEL COMPARISON

I There is no gold standard
I It depends on what you want to do
I Basically two types

I Ones that look at the posterior probability of the data under the
model

I Ones that look at how model the data fits the data
I The best hope is to have a model that represents data that wasn’t

used to fit it...
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DEVIANCE INFORMATION CRITERIA

Based on the deviance

D(x;θ) = −2
∑

i

log(yi | xi,θ)

and
DIC = 2×Mean (D(x;θ))−D(Mean(x);θ∗)

This is quite easy to compute, but somewhat controversial
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BAYESIAN CROSS-VALIDATION

Easy to compute using the INLA-approach

π(yi | y−i) =

∫
θ

{∫
xi

π(yi | xi,θ) π(xi | y−i,θ) dxi

}
π(θ | y−i) dθ

where

π(xi | y−i,θ) ∝ π(xi|y,θ)

π(yi|xi,θ)

I If it is very small, this point may be an “outlier” under the model
I We can use this to define a score (bigger is better)

LCPO =
∑

i

log(π(y = yi|y−i))
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AUTOMATIC DETECTION OF “SURPRISING”
OBSERVATIONS

Compute
piti = Prob(ynew

i ≤ yi | y−i)

I piti shows how well the ith data point is predicted by the rest of
the data

I If the model is true and the response is continuous, these PIT
values are uniformly distributed

I We can use this to inspect the model fit
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GOOD AND BAD PIT PLOTS
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Areal/Regional Models
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DISEASE MAPPING

Disease mapping has a long history in epidemiology, and may be
defined as the estimation and presentation of summary measures of
health outcomes.

The aims of disease mapping include
I simple description – a visual summary of geographical risk.,
I hypothesis generation,
I allocation of health care resources, assessment of inequalities,

and
I estimation of background variability in underlying risk in order

to place epidemiological studies in context.
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DISEASE MAPPING

Aims:
I Provide estimates of risk by area to inform public health resource

allocation.
I Give clues to etiology via informal examination of maps with

exposure maps, components of spatial versus non-spatial
residual variability may also provide clues to source of
variability (e.g. environmental exposures usually have spatial
structure). The formal examination is carried out via spatial
regression.

I In general mapping is based on count data (which is more
routinely available) – may also be carried out with point data but
much less common (case-control studies are explicitly carried
out to examine an exposure of interest, and cannot inform on
risk without additional information).
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DISEASE MAPPING: EXAMPLE

I Study on Lung and Brain cancer in the North-West of England as
an illustration of smoothing techniques using hierarchical
models.

I Two tumors were chosen to contrast mapping techniques for
relatively non-rare (lung), and relatively rare (brain) cancers.

I The absence of information on smoking means that for lung
cancer in particular the analysis should be viewed as illustrative
only (since a large fraction of the residual variability would
disappear if smoking information were included).

I Residual spatial dependence is induced by missing variables that
are predictive of disease outcome (or data errors/model
misspecification).
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DISEASE MAPPING: EXAMPLE

Study details:
I Study period is 1981–1991. Incidence data by postcode, but the

analysis is carried out at the ward level
I 144 wards in the study region
I For brain cancer the median number of cases per ward over the

11 year period is 6 with a range of 0 to 17
I For lung the median number is 20 with range 0–60
I “Expected counts” were based on ward-level populations from

the 1991 census, by 5-year age bands and sex
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DISEASE MAPPING: EXAMPLE

I The following figures show the SIRs together with the smoothed
rates for lung and brain cancer, respectively.

I Notice that for lung the smoothed area-level relative risk
estimates are not dramatically different from the raw versions –
the large number of cases here mean that the raw SIRs are
relatively stable.

I For brain we see a much greater smoothing of the estimates as
compared to the raw relative risks
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DISEASE MAPPING: EXAMPLE

Figure: SIRs for (a) lung cancer, and (b) brain cancer.
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DISEASE MAPPING: EXAMPLE

Figure: Smoothed SIRs for lung cancer under (a) a conditional spatial model, and (b) a marginal
spatial model.
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DISEASE MAPPING: EXAMPLE

Figure: Smoothed SIRs for brain cancer under (a) a conditional spatial model, and (b) a marginal
spatial model.
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DISEASE MAPPING

There are difficulties with the mapping of raw estimates since, for
small areas and rare diseases in particular, these estimates will be
dominated by sampling variability.

For the model
Yi ∼ Poisson(Eiθi)

the MLE is
θ̂i = SMRi =

Yi

Ei

with variance
var(θ̂i) =

θi

Ei

so that areas with small Ei have high associated variance.
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DISEASE MAPPING: EXAMPLE

Next figure shows the SMRs for the Scottish lip cancer data, and
indicates a large spread with an increasing trend in the south-north
direction.

The variance of the estimate is var(SMRi) = SMRi/Ei, which will be
large if Ei is small.

For the Scottish data the expected numbers are highly variable. This
variability suggests that there is a good chance that the extreme SMRs
are based on small expected numbers (many of the large,
sparsely-populated rural areas in the north have high SMRs).

A plot of SMRs versus the estimated standard errors clearly
illustrates that the high SMRs have high associated standard error.
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DISEASE MAPPING: EXAMPLE
2007 Jon Wakefield, Biostat 578
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Figure 26: SMRs in 56 counties of Scotland.
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Figure: SMRs in 56 counties of Scotland.
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SMOOTHING MODELS

I Variability in expected numbers led to methods being developed
to smooth the SMRs using hierarchical/random effects models

I These models use the data from the totality of areas to provide
more reliable estimates in each of the constituent areas.
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POISSON-GAMMA MODEL WITHOUT COVARIATES

This two-stage model that offers analytic tractability and ease of
estimation.

Assume the first stage likelihood is given by

Yi|θi, β ∼ind Poisson (µEiθi) ,

where µ is the overall relative risk, and reflects differences between
the reference rates and the rates in the study region.

At the second stage the random effects θi are assigned a distribution.
We initially assume that across the map the deviations of the relative
risks from the mean, µ, are modelled by

θi|α ∼iid Ga(α, α),

a gamma distribution with mean 1, and variance 1/α.
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POISSON-GAMMA MODEL WITHOUT COVARIATES

The advantage of this Poisson-gamma formulation is that the
marginal distribution of Yi|µ, α (obtained by integrating out the
random effects θi), is negative binomial.

Marginally, the mean and variance are given, respectively, by

E[Yi|µ, α] = Eiµ

var(Yi|µ, α) = E[Yi|µ, α](1 + E[Yi|µ, α]/α),

so that the variance increases as a quadratic function of the mean,
and the scale parameter α can accommodate different levels of
“overdispersion”.

This form is substantively more reasonable than the naive Poisson
model; it is important to consider excess-Poisson variability resulting
from unmeasured confounders, data anomalies in numerator and
denominator, and model misspecification.
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POISSON-GAMMA MODEL WITH COVARIATES

With area-level covariates we have the model

Yi|θi,β ∼ind Poisson (µiEiθi) ,

where µi = µ(xi,β) describes a regression model in area-level
covariates xi. At the second stage the random effects θi are assigned a
distribution. We assume that across the map the deviations of the
relative risks from the mean, µi, are modelled by

θi|α ∼iid Ga(α, α),

a gamma distribution with mean 1, and variance 1/α.
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POISSON-LOGNORMAL MODEL

The Poisson-gamma model offers analytic tractability, but does not
easily allow the incorporation of spatial random effects.

A Poisson-lognormal non-spatial random effect model is given by:

Yi|β,Vi ∼ind Poisson(EiµieVi) Vi ∼iid N(0, σ2
v)

where Vi are area-specific random effects that capture the residual or
unexplained (log) relative risk of disease in area i, i = 1, ...,n.
Whereas in the Poisson-Gamma model we have θ ∼ Ga(α, α), here
we have θ = eVi ∼ LogNormal(0, σ2).
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REVIEW

I The aim is the provide stable relative risk estimates for area-level
data.

I We have assumed that the relative risks arise from a common
gamma/lognormal distribution, which allows smoothing
towards a common value.

I The Poisson-Gamma model offers a useful exploratory option.
For example, an empirical Bayes approach, estimates the
parameters of the negative binomial model (β and α) and then
combines the gamma distribution with the data to obtain the
empirical Bayes posterior distribution for the relative risks.

I Poisson-lognormal model does not give a marginal distribution
of known form, but does naturally lead to the addition of spatial
random effects.

I Poisson-lognormal marginal variance is of the same quadratic
form as the negative binomial.
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SPATIAL REGRESSION

Aims:
I Examination of the association between disease outcome and

explanatory variables, in a spatial setting
I Dependence is important but not the object of interest
I Conventional modeling approaches such as logistic regression

for point data, and loglinear models for count data may be used
though if there is significant residual variation methods must
acknowledge this in order to obtain appropriate standard errors.

I Also included in this enterprise is the examination of risk with
respect to a specific point or line putative source of pollution
which may change over time.

I For count data in particular, the disease mapping models we
describe may be extended to incorporate a regression
component.
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SPATIAL REGRESSION: EXAMPLE

Study about childhood asthma in Anchorage, Alaska. Study details:
I Data were collected on first grade children in Anchorage, with

questionnaires being sent to the parents of children in 13 school
districts

I Data on 905 children, with 885 aged 5–7 years. There were 804
children without asthma, the remainder being cases.

I The exposure of interest is exposure to pollution from traffic.
I Traffic counts were recorded at roads throughout the study

region and a 50m buffer was created at the nearest intersection to
the child’s residential address and within this buffer traffic
counts were aggregated (for confidentiality reasons the exact
residential locations were not asked for in the survey).
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AUTOREGRESSIVE ANALOG; THE CAR APPROACH

Space unlike time not ordered. Conditional autogressive approach
(CAR) is one way of emulating the AR model. Let:

I D = {s1, . . . , sm} be the lattice
I X(si, t) be a response of interest
I Xi be all responses but X(si, t)
I N(si) be si neighbourhood

The CAR model:

X(si, t) ∼ N
(
µi, σ

2
i
)
, for all i

with

E(X(si, t)|Xi) =
∑

sj∈N(si)

cijX(sj, t), Var(X(si, t)|Xi) = τ 2
i
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THE CAR APPROACH

Does CAR necessarily determine a joint distribution

[X(si, t), . . . ,X(sm, t)]?

Answer: Yes under reasonable conditions.
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CAR IN A PROCESS MODEL

The following hierarchical model induces a CAR structure.
I Measurement model:

Y(si, t) ∼ ind Poi(exp [X(si, t])

I Process model:

[X|β, τ 2, φ] = Gau(Zβ,Σ[τ 2, φ])

where Z represents site specific covariates or factors & Σ[τ 2, φ]
the CAR neighbourhood structure. ıParameter model: [β, τ 2, φ]
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DISEASE MAPPING: THE BYM-MODEL

I Data yi ∼ Poisson(Eiexp(ηi))

I Log-relative risk
ηi = µ+ ui + vi + z′β

I Structured/spatial component u
I Unstructured component v
I z are relevant covariates
I Precisions τu and τv

I Common to use independent
Gamma-priors

 

 

−0.63

−0.37

−0.1

0.17

0.44

0.71

0.98
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A JOINT MODEL

I Assume that = (U1, ...,Un) arise from a zero mean multivariate
normal distribution with variances var(Ui) = σ2

u and correlations
corr(Ui,Uj) = exp(−φdij) = ρdij where dij is the distance between
the centroids of areas i and j, and ρ > 0 is a parameter that
determines the extent of the correlation.

I This model is isotropic since it assumes that the correlation is the
same in all spatial directions. We refer to this as the joint model,
since we have specified the joint distribution for U.

I More generally the correlations can be modelled as
corr(Ui,Uj) = exp(−(φdij)

κ).



158/ 293

Introduction Scalable Bayesian Modelling Introduction to spatial statistics Areal/Regional Models Continuous spatial models Beyond spatial models Conclusions

THE ICAR MODEL

I A common model is to assign the spatial random effects an
intrinsic conditional autorgressive (ICAR) prior.

I Under this specification it is assumed that

Ui|Uj, j ∈ ∂i ∼ N
(

Ui,
ω2

u

mi

)
,

where ∂i is the set of neighbors of area i, mi is the number of
neighbours, and Ui is the mean of the spatial random effects of
these neighbors.

I The parameter ω2
u is a conditional variance and its magnitude

determines the amount of spatial variation.
I The variance parameters σ2

v and ω2
u are on different scales, σv is

on the log odds scale while ωu is on the log odds scale, conditional
on Uj, j ∈ ∂i; hence they are not comparable (in contrast to the
joint model in which σu is on the same scale as σv).
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I Notice that if ω2
u is “small” then although the residual is strongly

dependent on the neighboring value the overall contribution to
the residual relative risk is small.

I This is a little counterintuitive but stems from spatial models
having two aspects, strength of dependence and total amount of
spatial dependence, and in the ICAR model there is only a single
parameter which controls both aspects.

I In the joint model the strength is determined by ρ and the total
amount by σ2

u.
I A non-spatial random effect should always be included along

with the ICAR random effect since this model cannot take a
limiting form that allows non-spatial variability; in the joint
model with Ui only, this is achieved as ρ→ 0. If the majority of
the variability is non-spatial, inference for this model might
incorrectly suggest that spatial dependence was present.
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(b) Smoothed estimates

Figure 42: Raw and smoothed estimates in 56 counties of Scotland.

176

Figure: Raw and smoothed estimates in 56 counties of Scotland.
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MARKOV RANDOM FIELD (MRF)

As before time t is fixed &
I D = {s1, . . . , sm} be the lattice
I X(si, t) be a response of interest
I Xi be all responses but X(si, t)
I N(si) be si neighbourhood

MRF models:

[X(si, t)|{X(sj, t), sj ∈ N(si)}] for all i
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MARKOV RANDOM FIELD (MRF)

When do the local MRF models determine

[X(s1, t), . . . ,X(sm, t)]?

Hammersley - Clifford Theorem: Gives necessary and
sufficient conditions involving the Gibbs distributions.
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CONDITIONAL SPECIFICATION OF GMRFS

Consider the system of normal full conditionals that satisfies

E(xi | x−i) = −
n∑

j=1

βijxj

and
Prec(xi | x−i) = κi > 0.

Theorem
This full conditional specifies a multivariate Gaussian joint
distributions x ∼ N(0,Q−1) if and only if the matrix

Qij =

{
κiβij, i 6= j,
κi, i = j

is symmetric positive definite.
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MARKOV RANDOM FIELDS - EXAMPLE

Example: Crown die back in birch trees.

Features:
I Single timepoint, t.
I X(si, t) = probability a tree’s crown dies back in region i with

m(si, t) trees in it.
I Y(si, t) = # of trees with die back ∼ Bin(m(si, t),X(si, t).
I N(si) = all regions within 48 km of i. Conditional on N(si), X(si, t)

has beta distribution with parameters depending on responses in
neighbours.

I parsimonious model but unclear how to include time
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MARKOV RANDOM FIELDS: ASSESSMENT

PROS:
I elegant, simple mathematics + computational power
I may be useful component in hierarchical model

CONS:
I compatible joint distribution may not exist
I neighbours may be hard to specify
I a new site may not have neighbours for spatial prediction!
I conditional distributions may be hard to specify when “sites” are

regions
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NOTES ON AREAL DATA

Sometimes areal data can profitably be modelled as an aggregate of
individual data.

I Can reflect greater uncertainty due to variation within areas
I Was used to explore the ecological effect and develop model that

avoids it.
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PRIOR CHOICE

For regression parameters β = (β0, β1, ..., βJ), an improper prior

p(β) ∝ 1

may often be used, but in very circumstances such a choice may lead
to an improper posterior.

If there are a large numbers of covariates, or high dependence
amongst the elements of x, then more informative priors will be
beneficial.
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HOW DO WE SET A PRIOR ON A PRECISION?

I Lots of “expert guidance” from the literature
I Some of it is saying how to set priors on the precision
I Some of it is setting priors on the precision for a specific problem
I Conjugate priors, reference priors, weakly informative priors, ...
I When will it end?

We only want this effect to be in the model if it is required to fit the
data.

We don’t want a prior that the data has to drag towards “no effect”!
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BASIC INSTINCT

A base model
I We have a model component with distribution π(x | ξ)
I ξ is a flexibility parameter,
I ξ = 0 is indexes the base model
I The base model is the simplest model

Idea: Build a prior that has a mode at the base model. The posterior
only concentrates on ξ > 0 if the data requires the more complex
model.
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SOME EXAMPLES

Case Parameter ξ Base
Student-t ν (dof) ξ = 1/ν ξ = 0 (Gaussian)

IID τ (precision) ξ = 1/τ ξ = 0 (no random effect)

IGMRFs τ (precision) ξ = 1/τ ξ = 0 (const, linear, plane)

AR(1) ρ (correlation) ξ = ρ ξ = 0 (no dep. in time)

ξ = ρ ξ = 1 (no changes in time)

FGN H (Hurst param.) ξ = H ξ = 0.5 (White noise)

Correlation
matrix R ξ = R ξ = I (no correlation)
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THE PLEASURE PRINCIPLE

To build a prior that knows about the base model, the idea of
Penalised Complexity (PC) Priors is introduced:

I PC priors are an attempt to put together a set of principles that
lead to a unique prior

I You can interrogate / criticise / modify the principles
individually
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PRINCIPLE I: OCCAM’S RAZOR

Prefer simplicity over complexity

Consider the more complex model

π(x|ξ), ξ ≥ 0

with base model π(x|ξ = 0).
I The prior for ξ ≥ 0 should penalise the complexity introduced by
ξ

I The prior should be decaying with increasing measure by the
complexity (the mode should be at the base model)

A prior will cause overfitting/force complexity if, loosely speaking,

πξ(ξ = 0) = 0
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PRINCIPLE II: MEASURE OF COMPLEXITY

Use Kullback-Leibler discrepancy to measure the increased
complexity introduced by ξ > 0,

KLD(f‖g) =

∫
f (x) log

(
f (x)

g(x)

)
dx

for flexible model f and base model g.

Gives a measure of the information lost when the base model is used
to approximate the more flexible models
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PRINCIPLE III: CONSTANT RATE PENALISATION

Define
d(ξ) =

√
2 KLD(ξ)

as the (uni-directional) “distance” from flexible-model to the base
model. Need the square-root to get the scale right.

Constant rate penalisation:

π(d) = λ exp (−λd) , λ > 0

with mode at d = 0

Invariance: OK
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PRINCIPLE IV: USER-DEFINED SCALING

The rate λ is determined from knowledge of the scale or some
interpretable property or impact, Q(ξ) of ξ:

Pr(Q(ξ) > U) = α

I Problem dependent: must be!!!
I Can make the prior more informative or weakly informative this

way
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THE PRECISION OF A GAUSSIAN

PC prior for the precision τ when τ =∞ defines the base model
I “random effects”/iid-model
I The smoothing parameter in spline models
I etc...

Result Let πτ (τ) be a prior for τ > 0 where E(τ) <∞, then πd(0) = 0
and the prior overfits.
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THE PRECISION CASE (II)

The resulting prior is a type-2 Gumbel

π(τ) =
λ

2
τ−3/2 exp

(
−λ/√τ

)
, E(τ) =∞,

Prob(σ > u) = α gives

λ = − ln(α)

u
Alternative interpretation

π(σ) = λ exp(−λσ)
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LINK WITH THE TRADITION

Other (good) priors for the precision are
I A half-Gaussian on the standard deviation. (lighter tail than the

PC prior)
I A half-Cauchy on the standard deviation. (heavier tail)
I A half-Student-t with more than 2 d.o.f. (heavier tail, similar risk

properties)

The important thing here is that they all have a maximum at the base
model. The tail behaviour is more “controversial”
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COMPARISON WITH A SIMILAR GAMMA-PRIOR

0 100 200 300 400 500

0
.0

0
0

0
.0

0
5

0
.0

1
0

0
.0

1
5

0
.0

2
0

0
.0

2
5

0
.0

3
0

Precision

D
e

n
s
it
y



179/ 293

Introduction Scalable Bayesian Modelling Introduction to spatial statistics Areal/Regional Models Continuous spatial models Beyond spatial models Conclusions

COMPARISON WITH A SIMILAR GAMMA-PRIOR

0.0 0.5 1.0 1.5 2.0

0
2

4
6

8

Distance

D
e

n
s
it
y



180/ 293

Introduction Scalable Bayesian Modelling Introduction to spatial statistics Areal/Regional Models Continuous spatial models Beyond spatial models Conclusions

PRIORS FOR THE BYM MODEL

I Data yi ∼ Poisson(Eiexp(ηi))

I Log-relative risk ηi = µ+ ui + vi + z′β
I Structured/spatial component u
I Unstructured component v
I z are relevant covariates
I Precisions τu and τv

I Assume a BYM model for vj + uj where vj
iid∼ N(0, τ−1

v ) and
u ∼ N(0, τ−1

u Q+) is a Besag model.
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THE STRUCTURED EFFECT

The structured difference in u between neighbouring regions is
N(0, τ−1

u ).

π(u) ∝ τ (n−1)/2
u exp

−τu

2

∑
i∼j

(ui − uj)
2

 . (1)

“i ∼ j” denotes the set of all unordered pairs of neighbours.

I This is the Besag model.
I It is rank deficient.
I How do we put a prior on τu?
I Big thing: It will depend on the graph!
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HOW TO SCALE?

I The precision is Qu = τuRu

I The marginal variance of ui is τ−1
u [R−1

u ]ii
I If we make the second term ≈ 1, then τu is a precision parameter

and our life is easier.
I Scale so that σ2

∗ = 1, where (f.ex)

σ2
∗ = exp

(
mean

(
log
(
diag

(
R−
))))

I If we know the null-space of R we can compute diag(R−) using
sparse matrix algebra.

This prior will then mean the same thing for every problem!

Correct scaling is implicit in the definition of the PC prior.
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BUILDING A BETTER BYM

Base model = 0→ iid→ dependence = more flexible model

Rewrite the model as

η =
1√
τ

(√
1− γv∗ +

√
γu∗

)
where ·∗ is a unit-variance standardised model.

I Marginal precisions τ .
I γ gives it interpretation: independence (γ = 0), maximal

dependence (γ = 1)]
I PC prior on γ (base model γ = 0) depends on the graph!
I Parameters control different features. Use the PC priors for τ and
γ separately.
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CONCLUSIONS

I The aim of the PC prior project is to make priors that can find
nothing when nothing is there

I The new BYM parameterisation gives a more interpretable way
to look at the structure of the random effect

I The PC priors for this model satisfy a basic principle: If
something important in your model changes, the
corresponding priors should also change
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OTHER APPLICATIONS

This example shows just a corner of the power of PC priors
I Splines
I Skew-Gaussian distributions
I Correlation matrices
I AR(p)
I Over-dispersion in Negative Binomials
I Hurst Parameters for fractional Brownian motion
I Degrees of freedom in a Student-t
I Parameters in Gaussian random fields (partially identifiable!)
I Non-stationary GRFs
I Correlated random effects
I Variances in multilevel models
I + + +
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Continuous spatial models
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LET’S TALK ABOUT COVARIATES

I There are two types of covariate:
I Covariates that are only available at the observation (age, sex,

species, etc).
I Covariates that “exist” everywhere (time, temperature,

precipitation, land use, etc.)
I The second of these is hard!
I We usually do not measure these everywhere!
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THE PERILS AND PECCADILLOES OF PRE-PROCESSING

So what do we do?
I We have an important covariate and we need it’s value

everywhere
I We measure it at a (relatively) small number of places
I We need to construct and interpolant

This is a statistical question, so let’s look at how to do it.
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WHY IS THIS A STATISTICAL QUESTION

I The reconstructed covariate is now “incorrect”
I So we need to be able to quantify the uncertainty
I Plugging in the interpolated covariate as if it was exact leads to

bias!

Tomorrow, we’ll talk about how to incorporate the uncertainty into
modelling, but for now let’s just focus on constructing a good
interpolant.
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SPATIAL INTERPOLANTS

(observed covariate)i = (true covariate at location i) + (error)i

I We treat the observed covariates as being measured with error
I The errors are usually assumed to be independent and

identically distributed (i.i.d.)
I Usually, we take them to be Gaussian
I If we think there may be outliers, we might use something else (e.g.

a Student-T distribution)
I The only change in R-INLAis in the family argument in the INLA

call
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SO HOW DOES THAT HELP US FILL IN THE COVARIATE?

(observed covariate)i = (true covariate at location i) + (error)i

or
yi = x(si) + εi

We need priors!
I We have chosen the error distribution to be εi ∼ N(0, σ2)

I A zero mean means that there is no systemic measurement error
I A common variance means that everything was measured the same

way
I Now we need a prior on the truth...
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GAUSSIAN RANDOM FIELDS

If we have a process that is occurring everywhere in space, it is
natural to try to model it using some sort of function.

I This is hard!
I We typically make our lives easier by making everything

Gaussian.
I What makes a function Gaussian?
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GAUSSIAN RANDOM FIELDS

If we are trying to model x(s) what sort of things do we need?
I We don’t ever observe a function everywhere.
I If x is a vector of observations of x(s) at different locations, we

want this to be normally distributed:

x = (x(s1), . . . , x(sp))T ∼ N(0,Σx(s1),...,x(sp))

I This is actually quite tricky: the covariance matrix Σ will need to
depend on the set of observation sites and always has to be
positive definite.

I It turns out you can actually do this by setting Σij = c(si, sj) for
some covariance function c(·, ·).

I Not every function will ensure that Σ is positive definite!
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A GOOD “FIRST MODEL”

Stationary random fields
A GRF is stationary if:

I has mean zero.
I the covariance between two points depends only on the distance

and direction between those points.
It is isotropic if the covariance only depends on the distance between
the points.

I Zero mean −→ remove the mean
I Stationarity is a mathematical assumption and may have no

bearing on reality
I But it makes lots of things easier.
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THE THREE TYPICAL PARAMETERS FOR A GRF

I The variance (or precision) parameter:
I This controls how wildly the function can deviate from its mean

I The range parameter
I This controls the range over which the correlation between x(s)

and x(s + h) is essentially zero
I Often the “range” parameter is some transformation of this

distance
I The smoothness parameter

I Controls how differentiable the field is.
I This essentially controls how similar nearby points are
I Often not jointly identifiable with the range

For isotropic random fields, these parameters are constant.
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PRACTICAL CONSIDERATIONS

There are some practical problems with GRF models
I Random functions are hard to specify
I Random functions are hard to compute with
I Random functions require too much memory

We need to make a practical compromise.
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PRACTICAL CONSIDERATIONS
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WHAT HAVE WE GIVEN UP?

I Pros:
I Better computational properties
I It’s stable (i.e. hard to break)

I Cons:
I We lose information inside the triangles
I This will get taken into the “observation noise”
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MARKOV IN SPACE!

Intro B, W, M, & R SPDE/GMRF Example End CAR Matérn Markov Whittle

The continuous domain Markov property

S is a separating set for A and B : x(A) ⊥ x(B) | x(S)

A

S

B

Finn Lindgren - finn.lindgren@math.ntnu.no Matérn/SPDE/GMRF
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SPDE MODELS

We call spatial Markov models defined on a mesh SPDE models.

SPDE* models have 3 parts
I A mesh
I A range parameter κ
I A precision parameter τ

SPDE=Stochastic Partial Differential Equation
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THE MESH

Meshes can be created using two different functions:
I inla.mesh.create: The workhorse function. An interface to

the meshing code written by Finn Lindgren.
I inla.mesh.2d: A slightly more user friendly interface for

creating practical meshes (we will focus on this one).
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TYPICAL USE

mesh <- inla.mesh.2d(loc.domain=iceland,
max.edge=c(40,800),
offset=c(50,150),
min.angle=25)

Constrained refined Delaunay triangulation

mesh
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INLA.MESH.2D

inla.mesh.2d(loc = NULL,
loc.domain = NULL,
offset = NULL,
n = NULL,
boundary = NULL,
interior = NULL,
max.edge,
min.angle = NULL,
cutoff = 1e-12,
plot.delay = NULL)

This function contains a mesh with two regions: the interior mesh,
which is where the action happens; and the exterior mesh, which is
designed to alleviate the boundary effects.
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ARGUMENTS

I loc: Points to be included as vertices in the triangulation.
I loc.domain: Points not in the mesh, but that are used to define

the internal mesh section (taken as the convex hull of these
points).

I offset=c(a,b): Distance from the points to the inner (outer)
boundary. Negative numbers = relative distance.

I boundary: Prescribed boundary. (inla.mesh.segment type)
I max.edge = c(a,b): Maximum triangle edge length in the

inner (outer) segment.
I min.angle = c(a,b): Minimum angle for the inner and outer

segments (bigger angles are better, but harder to make)
I cutoff: Minimum distance between two distinct points.
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GOOD AND BAD MESHES
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BETWEEN THE MESH AND THE DATA

I So a good mesh probably doesn’t have vertices at the data
locations

I This means we need to have a way to get between values of the
field at the vertices and the value of the field at the data points

I The trick is that the SPDE model is linear on the triangles, so the
value of the field at any point is a weighted sum of the vertices of
the triangle the point is in.

I In maths speak, we are observing Ax rather than x
I We call A the "A-matrix" or the "observation matrix"
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MAKING OBSERVATION MATRICES IN INLA

When the observations don’t occur at mesh points, we need some
way to map between the latent field and the observation process.

I inla.spde.make.A constructs the matrix Aij = φj(si) that
maps a field defined on the mesh to the observation locations si.

I The function will also automatically deal with space-time
models and replicates.

I A related function (inla.mesh.projector) builds an A-matrix for
projecting onto a lattice. This is useful for plotting.
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THE INLA.SPDE.MAKE.A CALL

inla.spde.make.A(mesh = NULL,
loc = NULL,
index = NULL,
group = NULL,
repl = 1L,
n.mesh = NULL,
n.group = max(group),
n.repl = max(repl),
group.mesh = NULL,
group.method = c("nearest", "S0", "S1"),
weights = NULL)

I The first two arguments are needed.
I group is needed to build space-time models
I The other arguments are fairly advanced!
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OTHER MESH COMMANDS

I inla.mesh.segment: Constructs an object that can be given to
inla.mesh.create as a boundary or interior segment

I inla.mesh.boundary: Extracts a boundary segment from a
mesh.

I inla.mesh.project and inla.mesh.projector: Projects
results from a mesh to a lattice. Useful for plotting.

I inla.mesh.basis: Constructs a B-spline basis of a given
degree on a mesh.

I inla.mesh.query: Extracts information about the topology of
the mesh (advanced!)
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CONSTRUCTING SPDE MODELS

For historical reasons there are two different SPDE classes (spde1
and spde2)

I spde1 is the “classic” SPDE model!
I The spde2 class is more flexible and defines non-stationarity in a

more natural way.
I The primary difference between the two models is in the prior

specification.
I At some point there will probably be an spde3 class: We are

interested in backwards-compatability!
I For “stationary” models, these are fairly much the same (up to

prior specification)
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THE SPDE1 CALL

inla.spde.create(mesh,
model = c("matern", "imatern","matern.osc"),
param = NULL)

I “imatern” is the intrinsic model (κ2 = 0).
I “matern.osc” is an oscillating Matérn model.
I param is a list that contains alpha (1 or 2) and stuff about

non-stationarity.
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WHY DOES SPDE2 EXIST?

The problem with the spde1 comes when specifying
non-stationarity.

I Suppose we want to model τ(s) =
∑k

i=1 θ
τ
i bi(s) for some basis

functions {bi(s)}. (Similar for κ2(s))
I The spde1 model put i.i.d. log-normal priors on the θi.
I This is not a good idea: what if we want a smooth effect—should

have a spline prior...
I We also penalise the (log) variance directly:

log(σ2) = const.− 2 log(κ)− 2 log(τ)

I spde2 fixes this by putting a multivariate normal prior on

log(τ ) = Bτθ, log(κ2) = Bκθ

with the same θ ∼ N(µ,Q−1).
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I spde2 fixes this by putting a multivariate normal prior on

log(τ ) = Bτθ, log(κ2) = Bκθ

with the same θ ∼ N(µ,Q−1).
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THE SPDE2 CALL

inla.spde2.matern(mesh,
alpha = 2,
B.tau = matrix(c(0,1,0),1,3),
B.kappa = matrix(c(0,0,1),1,3),
prior.variance.nominal = 1,
prior.range.nominal = NULL,
prior.tau = NULL,
prior.kappa = NULL,
theta.prior.mean = NULL,
theta.prior.prec = NULL,

fractional.method = c("parsimonious", "null"))
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ARGUMENTS

I mesh: An inla.mesh object. (Necessary)
I alpha =2: The smoothness. Exact fields if it’s an integer,

approximate fields for non-integer α
I B.tau: The matrix Bτ use to define non-stationary τ(s)
I B.kappa: As above, but for κ2(s)
I prior.variance.nominal, prior.range.nominal: Helps

the automatic prior know the scale of the variance and the range
I prior.tau, prior.kappa: Prior specification for τ and κ2.

(not often used)
I theta.prior.mean, theta.prior.prec: Mean vector and

precision matrix for θ prior.
I fractional.method: Method for constructing fractional α

approximation
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A FEW MORE USEFUL COMMANDS

I inla.spde.precision(spde,tau=...,kappa2=...)—
computes precision matrix. Less straightforward for spde2
models

I inla.qsample(n,Q,...)—Computes a sample and various
other quantities needed for MCMC for precision matrix Q

I inla.qreordering—Computes a fill-in reducing reordering.
I inla.qsovle—Solve a linear system
I inla.qinv(Q)—Calculates the elements of the inverse

corresponding to the non-zero elements of Q. Needed for
computing derivatives of Gaussian likelihoods.
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USEFUL FEATURES

I replicate and group
I more than one “family”
I copy
I linear combinations
I A matrix in the linear predictor
I values
I remote computing
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FEATURE: REPLICATE

“replicate” generates iid replicates from the same f()-model with the
same hyperparameters.

If x | θ ∼ AR(1), then nrep=3, makes

x = (x1, x2, x3)

with mutually independent xi’s from AR(1) with the same θ
Arguments

f(..., replicate = r [, nrep = nr ])

where replicate are integers 1, 2, . . . , etc
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EXAMPLE: REPLICATE

n=100
# x1 and x2 are the same ar1 process with
# different intercepts
x1 = arima.sim(n, model=list(ar=0.9)) + 1
x2 = arima.sim(n, model=list(ar=0.9)) - 1

y1 = rpois(n,exp(x1)) #poisson obs
y2 = rpois(n,exp(x2))
y = c(y1,y2)

i = rep(1:n,2) #indexing!
r = rep(1:2,each=n) #replicate no.
intercept = as.factor(r) #2 intercepts

formula = y ~ f(i, model="ar1", replicate=r) + intercept -1
result = inla(formula, family = "poisson",

data = data.frame(y, i, r, intercept))
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NAS IN INLA

What do NAs do?
I In the covariates, an NA is treated as a zero.
I In the random effect, NAs indicate that the effect does not

contribute to the likelihood
I In the data, an NA indicates a location for prediction.
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FEATURE: COPY

This feature fixes a limitation in the formula-formulation of the model

The model

formula = y ~ f(i, ...) + ...

Only allow ONE element from each sub-model, to contribute to the
linear predictor for each observation.

Sometimes/Often this is not sufficient.
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FEATURE: COPY

Suppose
ηi = ui + ui+1 + ...

Then we can code this as

formula = y ~ f(i, model="iid") +
f(i.plus, copy="i") + ...

I The copy-feature, creates internally an additional sub-model
which is ε-close to the target

I Many copies allowed, and copies of copies
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FEATURE: COPY

Suppose
ηi = ui + βui+1 + ...

Then we can code this as

formula = y ~ f(i, model="iid") +
f(i.plus, copy="i",

hyper = list(
beta = list(fixed = FALSE))) + ...
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FEATURE: COPY

Suppose that
ηi = ai + bizi + ....

where
(ai, bi)

iid∼ N2(0,Σ)
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library(mvtnorm)
n = 100
Sigma = matrix(c(1, 0.8, 0.8, 1), 2, 2)
z = runif(n)
ab = rmvnorm(n, sigma = Sigma)
a = ab[, 1]
b = ab[, 2]
eta = a + b * z

y = eta + rnorm(n, sd=0.1)
i = 1:n
j = 1:n + n
formula = y ~ f(i, model="iid2d", n = 2*n) +

f(j, z, copy="i") - 1
r = inla(formula, data = data.frame(y, i, j))
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MULTIPLE LIKELIHOODS

In many situations, you need to combine data from different sources
and need to be able to handle multiple likelihoods.

Examples:
I Joint modelling of longitudinal and event time data (Guo and

Carlin, 2004)
I Preferential sampling (Diggle et al, 2010)
I “Marked” point processes
I Animal breeding modelling with multiple traits
I Combining data from multiple experiments
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HOW TO DO THIS IN INLA

I Make response y a matrix rather than a vector.
> Y = matrix(NA, N, 2)
> Y[1:n, 1] = y[1:n]
> Y[1:n + n, 2] = y[(n + 1):(2 * n)]

I NAs are used to select components in the formula
> cov1 = c(cov, rep(NA,n))
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n = 100

x1 = runif(n)
eta1 = 1 + x1
y1 = rbinom(n, size = 1, prob = exp(eta1)/(1+exp(eta1))) #binomial

x2 = runif(n)
eta2 = 1 + x2
y2 = rpois(n, exp(eta2)) #poisson

Y = matrix(NA, 2*n, 2) # need the response variable as matrix
Y[1:n, 1] = y1 # binomial data
Y[1:n + n, 2] = y2 # poisson data

Ntrials = c(rep(1,n), rep(NA, n)) # required only for binomial
xx = c(x1, x2)

formula = Y ~ 1 + xx
result = inla(formula, data = list(Y = Y, xx = xx),

family = c("binomial", "poisson"),
Ntrials = Ntrials)

summary(result)
plot(result)
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BACK TO COVARIATES

Consider a model with a linear predictor that looks like

ηi = . . .+ βc(si) + . . .

where c is an unknown spatial covariate.

I ci is unknown, but we have some measurements {c′j} at points
{s′j}

I We can model the true covariate field as above

c′j |c(·) = c(s′j) + εj

c(·) ∼ SPDE model
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JOINT MODELLING OF THE COVARIATE

We can then fit these models at the same time!

Likelihood:

yi | ηi ∼ Any INLA likelihood with latent field η

c′j |c(·) ∼ N(ξj, τ
−1
c )

Latent field:

ηi = . . .+ βc(si) + . . .

ξj = c(s′j)

I We have two likelihoods (data and covariate)
I We use the covariate field c(s) twice −→ copy
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SETTING UP THE LIKELIHOOD

We begin by putting the observations and the observed covariates
together as data

> Y = matrix(NA, N, 2)
> Y[1:n, 1] = y
> Y[(n+1):(2*n), 2] = obs_covariate
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SETTING UP THE FORMULA

We need to set up the formula carefully to separate out the two
things. The trick is NAs in indices

> covariate_first_lik = c(1:spde$n.spde,
rep(NA, spde$n.spde))

> covariate_second_lik = c(rep(NA, spde$n.spde),
1:spde$n.spde)

The formula is then

> formula = Y ~ ...+ f(covariate_first_lik, model=spde)
+ f(covariate_second_like,

copy=covariate_first_lik) + ...
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THE INLA CALL

Finally, we need to make an inla call for this model.

> result = inla(formula, family = c("_____", "gaussian"),
data = list(Y=Y,
covariate_first_lik=covariate_first_lik,
covariate_second_lik=covariate_second_lik),
verbose=TRUE)

where _____ is the data likelihood.
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THIS MODEL IN PRACTICE

I Joint modelling the covariate adds 3 hyperparameters (range,
precision, noise precision)

I This can be done any type of data (eg point patterns)
I If there is misalignment, it can get tricky
I In this case, you need A-matrices
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ORGANISING DATA, LATENT FIELDS AND A MATRICES

Real life is hard!
I In complicated models, we will have multiple sources of data

occurring in different places with different likelihood.
I The latent field may also be composed of sections defined at

different resolutions (grid for a spatial covariate, mesh for
random field, etc).

I So we need a function that takes these components and chains
them together in a way that makes sense.

I (You can “roll your own” here, but I really don’t recommend it!)

We are rescued by inla.stack!
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THE INLA.STACK CALL

stack = inla.stack(data = list(...),
A = list(...),
effects = list(...),
tag = NULL, ...)

I The trick here is lists!
I The first element of the effects list is mapped to the first

element of the data list by the first element for the A list.
I Slightly more tricky when there are replicates and grouping

(time!)
I The functions inla.stack.data(stack) and
inla.stack.A(stack) are used to extract the data.frame and
the A-matrix for use in the inla call.
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AN UNFORTUNATE FACT

At risk of disappointing you...
Just because you have data and a question, doesn’t mean that the
data can answer that question!

I The best statistics infers the answer to a question from data
specifically and carefully collected to answer that question

I This is obviously not always possible, but we should do our best!
I For easy problems (differences of means, ANOVAs etc), there are

well-known ways to do this
I In this session, we will have a look at some simple (and some

practical) aspects of spatial experimental design
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THE BAD NEWS: UNDESIGNED SPATIAL DATA MAY

NOT ANSWER THE QUESTION
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Question: Can we build a spatial map of sero-prevelance of a certain
strain of malaria throughout Africa.
Answer: No.
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WHAT WENT WRONG

I Data: (ntest,npresent)

I Model: Binomial (low information!)
I Sampling locations are far apart
I Essentially uncorrelated!
I Low power, high uncertainty.
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HOW THIS MANIFESTED

The Folk Theorem
If your computation breaks, the problem is usually your model.

I INLA assumes that there is enough information in your model to
resolve all of the parameters

I If there isn’t, it can break!
I That’s what happened here!
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WHAT DOES A GOOD SPATIAL DESIGN LOOK LIKE?

I Sampling locations cover region of
interest (needed for prediction)

I Sampling locations are close enough
together that there is correlation
(hard to know beforehand)

I Sampling locations are clustered
(needed for parameter estimation)
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THIS CAN BE HARD!

Partial answer:— Sequential design
I Begin with an initial set of sampling locations
I Compute the posterior
I Add a new location in the best un-sampled location
I Best = “lowest variance”, “locally lowest variance”, “most

valuable-of-information”

NB: The over-all design here is preferential!
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Beyond spatial models
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MULTISPECIES POINT PATTERNS

Think about trees
I Many species appear together
I We don’t really think that these patterns are independent
I We can fit bivariate patterns and take a look at the correlation
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MAPLE AND HICKORY

Hickories (x) and Maples (o)
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FRAMEWORK

I Assume a set of spatial point patterns

x1, . . . , xT,

observed within bounded regions Ωt ∈ R2.

I Each pattern
xt = {xt1, . . . , xtnt}.

is regarded as a realisation from a random spatial point process
Xt, where nt is the number of points.
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THE LOG-GAUSSIAN COX PROCESS

I Define random intensities

Λt(s) = exp{ηt(s)}

where {ηt(s) : s ∈ Ωt ∈ R2} is a Gaussian random field.

I Conditional on the random intensities

Xt | Λt(s) ∼ Poisson(exp(ηt(s)))
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THE LATTICE-BASED APPROACH

I Define

sti : Grid cell i in Ωt

yti : Number of points in grid cell sti for pattern xt

ηti : Representative value of the Gaussian field for pattern xt

in cell sti.

I Point patterns are assumed conditionally independent

yti|ηt(sti) ∼ Poisson(|sti| exp(ηt(sti))).

I Special case: Ωt = Ω for all t such that sti = si.
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FITTING A JOINT MODEL

I Each point pattern might be too small to make sensible model.

I Fit joint model to several point patterns:

ηti = αt +

nβ∑
j=1

βjztji +

nf∑
k=1

fk(ctki) + εti, t = 1, . . . ,T.
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ESTIMATION BASED ON SEVERAL POINT PATTERNS

Use all of the point patterns to:

I Estimate fixed linear effects of covariates, that is the parameters
β1, . . . , βnβ .

I Estimate non-linear random effects of covariates, that is the
underlying smooth functions f1, . . . , fnf .

I Account for dependencies/variation between different patterns.

In R-INLA:
The joint model is fitted just stacking the responses and covariate
terms in vectors.
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UNDERSTANDING MARKED POINT PATTERNS

distinguish
a) different types of marks
b) different roles of marks

a) is obvious
I qualitative marks (species, age-groups, infected vs.

non-infected...)
I quantitative marks (size, age, chemical properties...)

b) is harder...
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MARKED POINT PATTERNS

different roles of marks
(i) models of the pattern that take the marks into account:

aim is to use marks to “explain" the pattern
(ii) models of the marks in a point pattern:

aim is to model the marks – often along with the pattern (!)
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UNDERSTANDING MARKED POINT PATTERNS

for qualitative marks
(i) models of the pattern that take the marks into account:

“superposition"
I consider several (sub-)patterns formed by different types of points
I different subpatterns have been generated by separate (but not

necessarily independent) mechanisms
example: pattern formed by a multi-species plant community

(ii) models of the marks in a point pattern
“labelling"

I consider a single pattern with different (qualitative) characteristics
I some underlying mechanisms have lead to different qualitative

properties of the points
example: pattern formed by a single species but individuals have
been affected or not affected by a disease
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UNDERSTANDING MARKED POINT PATTERNS

for quantitative marks
(i) models of the pattern that take the marks into account:

(ii) models of the marks in a point pattern
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MODELS WITH GROUPS

Earlier we talked about replicated random effects, where we
observed i.i.d. draws from the random effect distribution.

I Point patterns observed at different plots
I Annual rainfall observed during different years

But is this enough?
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NO IT ISN’T!

In a lot of applications, the assumptions that the repeated random
effects are independent is very restrictive.

I Monthly / daily rainfall data
I The results of nearby plots could be correlated

INLA provides the concept of a “group” that allows more
complicated dependence structures
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GROUP DEPENDENCE

Grouped random effects work as follows
I There is a within group correlation structure

I Any INLA latent model (iid, ar1, bym, spde etc)
I There is also a between group correlation model

I Not every model: "exchangeable" "ar1" "ar" "rw1" "rw2" "besag"

If xg,i is the ith element in group g, then

Cov(xg1,i1 , xg2,i2) = (cov between groups g1 and g2)

× (cov between elements i1 and i2)



257/ 293

Introduction Scalable Bayesian Modelling Introduction to spatial statistics Areal/Regional Models Continuous spatial models Beyond spatial models Conclusions

THE KRONECKER STRUCTURE

Grouped models are a special case of “Kronecker models”
I These models have covariance matrices of the form

Σbetween group ⊗Σwithin group

I We are working to implement the general structure (so you can
group any models in INLA together)

I We’re going to look through some examples...
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CORRELATED RANDOM EFFECTS

The simplest group model in INLA is the exchangeable model
I “Uniform correlation matrix”
I Corr(group i,group j) = ρ, −1 < ρ < 1
I This basically says that all of the groups are correlated in the

same way
I This is all you need for two correlated effects
I Allows for some dependence in other cases.
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GRAPH FOR CORRELATED RW2
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MULTISPECIES POINT PATTERNS

Think about trees
I Many species appear together
I We don’t really think that these patterns are independent
I We can fit bivariate patterns and take a look at the correlation
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MAPLE AND HICKORY

Hickories (x) and Maples (o)
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THE LINEAR MODEL OF CO-REGIONALISATION

(LMC)

The easiest way of modelling this is the LMC, which says
I Fit a common random effect for the two species
I For one species, add an independent random effect to “mop up”

the extra structure

ηmaple = (common effect)
ηhickory = β(common effect) + (extra hickory effect)
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LMC IN INLA

#Make indices
common_maple = c(1:n,rep(NA,n))
common_hickory = c(rep(NA,n), 1:n)
extra_hickory = c(rep(NA,n),1:n)

# Make formula

formula = y ~ ... + f(common_maple,model="rw2d")
+ f(common_hickory,copy="common_maple",

hyper = list(beta=list(fixed=FALSE)))
+ f(extra_hickory, model="rw2")
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RESULTS
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effect
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THE GROUPED VERSION

The other option is to model the random effect for each species
separately and let them be correlated.

I Advantage: A single parameter (ρ) that tells you about
correlation

I Disadvantage: You don’t get the pretty picture

#indices
effect = c(1:n,1:n)
group = rep(c(1,2), each=n)

#formula
formula = y~ ... + f(effect,model="rw2d",group=group,

control.group = list(model="exchangeble"))
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RESULTS WITH SPDE MODEL

range hickory range maple correlation DIC
est 64 67 -0.69 -
group 70 (48, 98) - -0.63 (-0.77, -0.46) 5568.5
LMC 70 (42, 109) 110 (72, 178) -0.79 (-0.95, -0.53) 5566.3

I Fitted using SPDE models (not rw2d)
I This allows for estimation of the correlation range for each

parameter
I We see strong negative correlation
I In this case, the LMC fits better
I The better fit is attributed to the components having different

correlation ranges for different species
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SPATIOTEMPORAL MODELS

I Data frequently has a temporal component
I Easy fixes:

I Treat them as independent (replicate)
I Add a temporal random effect

η = ...+ f (space) + f (time)

I Harder fix: Try to make space time models
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There are two types of space-time models:
I Separable models:

I Correlation between two points in space-time =
Corr in space× Corr in time

I This is easy to do and works well
I Doesn’t capture “spreading fronts”

I Non-separable models:
I Anything that isn’t separable!
I Much more flexible
I But harder to fit...
I Not in INLA (yet...)

We’re going to fit a separable model
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PM-10 CONCENTRATION IN PIEMONTE, ITALY
Everything that I’m talking about today is described in Cameletti et
al. (2011) on r-inla.org. (It’s a really good paper!)

PM10 concentration:
I 24 monitoring stations
I Daily data from 10/05 to 03/06

r-inla.org
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COVARIATES

I Daily mean wind speed (WS, m/s)
I Daily maximum mixing height (HMIX, m)
I Daily precipitation (P, mm)
I Daily mean temperature (TEMP, K◦)
I Daily emissions (EMI, g/s)
I Altitude (A, m) Coordinates (UTMX and UTMY, km).
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THE LATENT FIELD (STATE EQUATION)

We use an AR(1) structure

ξt = aξt−1 + ωt,

where a ∈ (0, 1) is a constant and

ωt
i.i.d.∼ N(0,Q−1),

is taken from a spatial SPDE model.
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THE MEASUREMENT EQUATION

We take the measurement equation to be

yt = Xtβ + Aξt + εt,

where Xt is a matrix of covariates, β are the weights, A picks out the
appropriate values of ξt and

εt
i.i.d.∼ N(0, σ2I).
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STEP 1: MAKE THE MESH

mesh =
inla.mesh.2d(points =NULL,

points.domain=borders,
offset=c(10, 140),
max.edge=c(40,1000),
min.angle=21,
cutoff=0,
plot.delay=NULL
)

boundary = inla.mesh.boundary(mesh)[[1]]

nmesh = mesh$n
#select (the rows of) the position of the stations
mesh.idx = 1:nmesh
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A MESH
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STEP 2: MAKE THE LATENT MODEL

In order to construct a kronecker product model in INLA, we use the
(experimental) group feature

spde = inla.create.spde(mesh,model="matern")

formula = y ~ WS + HMIX +...
+ intercept + f(field, model=spde,

group =time,
control.group=list(model="ar1")-1

)

I This tells INLA that the observations are grouped in a certain
way.

I control.group contains the grouping model (only ar1 and
exchangable) as well as their prior specifications.

I NB: intercept!
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STEP 3: MAKE AN A MATRIX

There are two ways to construct the A matrix: A for loop or an inbuilt
function.

LocationMatrix = inla.spde.make.A(mesh = mesh,
loc =dataLoc, group=time, n.group=nT)

This locates the data points in each group=time level and stacks the
corresponding local A matrices in an appropriate way.
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STEP 4: ORGANISING THE DATA

We have a problem: we have the covariates at the data points, but the
latent field only defined their through the A matrix.

We need to make sure that A only applies to the random effect.

Solution: Padding by NAs.
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STEP 5: ORGANISING THE DATA WITH INLA.STACK

We can now put everything together.

stack = inla.stack( data = dat,
A = list(1, LocationMatrix),
effects = list( list(WS = cov$WS,...),

c(inla.spde.make.index("mesh.idx",n.field=nmesh,
n.group=T),

list(intercept=rep(1,mesh$n*nT)))
)

)
result = inla(formula, family = "gaussian",

data=inla.stack.data(stack).
control.predictor = list(A=inla.stack.A(stack)),
verbose=TRUE)
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POSTERIOR MEAN PM10 CONCENTRATION FOR

30/01/2006 (LOG SCALE)
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BUT DID WE ANSWER THE QUESTION?

I The question was not fit a space-time surface
I The limit value fixed by the European directive 2008/50/EC for

PM10 is 50µg/m3. The daily mean concentration cannot exceed
this value more than 35 days in a year.

I The question was “Does the PM-10 concentration exceed the
EU-mandated maximum levels?”

I So can we get the answer to this question?
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MULTIPLE COMPARISONS

I The easiest thing is to compute, for each point, the probability of
exceeding the threshold

I We can do that with inla.pmarginal

I But this is bad...
I We want areas where everything exceeded the level... multiple

comparisons
I These sets are called excursion sets
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EXCURSIONS AND INLA

David Bolin (Chalmers) wrote an R package called excursions that
works with INLA to solve this problem.

I It’s pretty easy to use
excursions.inla(result.inla, ind=indices, alpha=0.99,

u=0, method=’QC’, type=’>’ )

I result.inla is the output from INLA
I You need to run INLA with the option
control.compute=list(config=TRUE)

I ind=indices tells it which indices of the model you’re
interested in

I u and alpha are the level and the confidence
I type=">" says you want the set of things above level u
I method=’QC’ tells the function how to deal with the

non-Gaussianity
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PM10 IN PIEMONTE: WHERE IS PM10 > 50?
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PM10 IN PIEMONTE: WHERE IS PM10 > 50?
UNCERTAINTY?
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EXAMPLE 1: GAUSSIAN PROCESS WITH EXPONENTIAL

COVARIANCE

I Gaussian process with exponential covariance function.
I The 95% excursion set is shown in red.
I The grey area contains {s : Pr(x(s) > 0) > 0.95}.
I The dark red set is the Bonferroni lower bound.
I The black curve is the kriging estimate of x(s).



286/ 293

Introduction Scalable Bayesian Modelling Introduction to spatial statistics Areal/Regional Models Continuous spatial models Beyond spatial models Conclusions

CONTOURS AND EXCURSIONS

I A contour curve of a reconstructed field can (almost) be found
from the pointwise marginal distributions.

I But they are uncertain...
I The uncertainty depends on the full joint distribution.
I A credible contour region is a region where the field transitions

from being clearly below, to being clearly above.
I This is the same problem as the excursion problem
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EXAMPLE 2: GAUSSIAN MATÉRN FIELD

I Gaussian Matérn field measured under Gaussian noise.
I Left panel shows the kriging estimate,
I The grey block on the right is the 95% contour for the zero level
I i.e. The field is, with high probability, equal to zero somewhere

in that region.
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PM-10: JANUARY 30, 2006
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PM-10: JANUARY 30, 2006

Marginal probabilities
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PM-10: JANUARY 30, 2006
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Conclusions
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THE KEY LESSONS OF THIS COURSE

I You should leverage the properties of the class of model you are
using to improve the computation

I Bayesian computation does not need to be slow!
I MCMC is not the only horse in town (although it is the most

flexible)
I You can buy computational flexibility and scaling by making

Markov assumptions
I Priors are important!
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BUC 4 AND ITT4: AN INVITATION TO VISIT BATH

THIS SUMMER

BUC4: Bath, UK, 1st – 3rd June 2016
I ‘New frontiers: advanced modelling in space and time’
I Presented by Gavin Shaddick (Bath), Dan Simpson (Bath) and

Jim Zidek (University of British Columbia)
I The third in the series on Big Data and Statistics in

Environmental Research .

ITT4 (Integrated Think Tank): Bath, UK, 6th – 9th June 2016
I Industrial partners: AstraZeneca (pharmaceuticals) and the

National Health Service (NHS)

Please come!
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