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OUTLINE

Friday, June 2
I 10:00 - 10:30 Coffee
I 10:30 - 11:00 Introduction to the BUC workshop series
I 11:00 - 12:00 Strategies for space-time modelling
I 12:00 - 13:00 Lunch
I 13:00 - 14:30 Better exposure measurements through better

design
I 14:30 - 15:00 Coffee
I 15:00 - 17:30 Young researchers’ conference
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OUTLINE

Saturday, June 3
I 10:00 - 10:30 Coffee
I 10:30 - 12:00 Modelling point patterns
I 12:00 - 13:00 Lunch
I 13:00 - 14:30 Applications of space-time modelling
I 14:30 - 15:00 Coffee
I 15:00 - 17:30 Lab session
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OUTLINE

Sunday, June 4
I 10:30 - 13:00 Roman Baths
I 13:00 - 15:00 Sunday Lunch at the Westgate
I 15:00 - 16:00 Walk around Bath
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COURSE TEXTBOOK
Title: Spatio-Temporal Methods in Environmental Epidemiology
Authors: Gavin Shaddick and Jim Zidek
Publisher: CRC Press
Resource Website:
http://www.stat.ubc.ca/~gavin/STEPIBookNewStyle/

http://www.stat.ubc.ca/~gavin/STEPIBookNewStyle/
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CONTACT INFORMATION

Dr. Gavin Shaddick, University of Bath
I Email: G.Shaddick@bath.ac.uk
I Webpage: http://people.bath.ac.uk/masgs/

Dr. Daniel Simpson, University of Bath
I Email: D.Simpson@bath.ac.uk

Prof. Jim Zidek, University of Bath
I Email: jim@stat.ubc.ca

Prof. Carlos Diaz, UNAM
I Email: carlos@sigma.iimas.unam.mx

http://people.bath.ac.uk/masgs/
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Strategies for space-time modelling
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OVERVIEW OF SPATIO–TEMPORAL MODELLING

I In recent years there has been an explosion of interest in
spatio–temporal modelling.

I One major area where spatio-temporal is developing is
environmental epidemiology, where interest is in the
relationship between human health and spatio–temporal
processes of exposures to harmful agents.
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OVERVIEW OF SPATIO–TEMPORAL MODELLING

I An example of is the relationship between deaths and air
pollution concentrations or future climate simulations, the latter
of which may involve 1000’s of monitoring sites that gather data
about the underlying multivariate spatio–temporal field of
precipitation and temperature.
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THE NEED FOR SPATIO-TEMPORAL MODELLING

I Spatial epidemiology is the description and analysis of
geographical data, specifically health data in the form of counts
of mortality or morbidity and factors that may explain variations
in those counts over space.

I These may include demographic and environmental factors
together with genetic, and infectious risk factors.

I It has a long history dating back to the mid-1800s when John
Snow’s map of cholera cases in London in 1854 provided an
early example of geographical health analyses that aimed to
identify possible causes of outbreaks of infectious diseases.
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EXAMPLE: JOHN SNOW’S CHOLERA MAP

Figure: John Snow’s map of cholera cases in London 1854. Red circles indicate locations of cholera
cases and are scaled depending on the number of reported cholera cases.Purple taps indicate
locations of water pumps.
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THE NEED FOR SPATIO-TEMPORAL MODELLING

I Advances in statistical methodology together with the increasing
availability of data recorded at very high spatial and temporal
resolution has lead to great advances in spatial and, more
recently, spatio–temporal epidemiology.

I These advances have been driven in part by increased awareness
of the potential effects of environmental hazards and potential
increases in the hazards themselves.
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EXAMPLE: SPATIAL CORRELATION IN THE UK

I An example of spatial correlation can be seen in the next slide
which shows the spatial distribution of the risk of hospital
admission for chronic obstructive pulmonary disease (COPD) in
the UK.

I There seem to be patterns in the data with areas of high and low
risks being grouped together suggesting that there may be
spatial dependence that would need to be incorporated in any
model used to examine associations with potential risk factors.
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Figure: Map of the spatial distribution of risks of hospital admission for a respiratory condition,
chronic obstructive pulmonary disease (COPD), in the UK for 2001. The shades of blue correspond
to standardised admission rates, which are a measure of risk. Darker shades indicate higher rates of
hospitalisation allowing for the underlying age–sex profile of the population within the area.
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EXAMPLE: DAILY MEASUREMENTS OF PARTICULATE

MATTER

An example of temporal correlation in exposures can be seen below,
which shows daily measurements of particulate matter over 250 days
in London in 1997. Clear auto-correlation can be seen in this series of
data with periods of high and low pollution.

Figure: Time series of daily measurements of particulate matter (PM10) for 250 days in 1997 in
London. Measurements are made at the Bloomsbury monitoring site in central London. Missing
values are shown by triangles. The solid black line is a smoothed estimate produced using a
Bayesian temporal model and the dotted lines show the 95% credible intervals associated with the
estimates.
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EXAMPLE: EFFECT OF WILDCAT DRILLING IN ALASKA

I In this example, NT = 2 and t = 1, 2 represent times before and
after the startup of exploratory drilling in Harrison Bay, Alaska,
the Beaufort Sea oil field having already been established.

I Interest in this case was on human welfare rather than human
health, namely on the effect of such drilling on the food chain of
the indigenous people who lived in that area.



17/ 317

Introduction Strategies for space-time modelling Better exposure measurements through better design Modelling point patterns Applications

EXAMPLE: EFFECT OF WILDCAT DRILLING IN ALASKA

I Clearly the risk of this drilling would depend on how wind and
sea currents carried the plume of drilling mud which is used to
lubricate the drill stem as it digs into the earth.

I Experts were asked to independently draw boundaries of what
they saw to be the zones of equitable risk.

I There was surprising agreement amongst the experts.
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EXAMPLE: EFFECT OF WILDCAT DRILLING IN ALASKA

I This led in the end to a model of the form

Yst = Zst + vst, t = 1, 2, s ∈ S
Zst = µst + ωst,

µst = µ+ βs + γtxt

βs ind ∼ N(0, σ2
β)

where the dummy variable is xt = I{t = 2} and bs puts s into its
zone of equitable risk.

I This simple model was chosen, in part because of its simplicity;
it resulted in a paired t–test like analysis to detect change.
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EXAMPLE: EFFECT OF WILDCAT DRILLING IN ALASKA

I However to allow fully for uncertainty, random effects are
assigned to the risk zones.

I The spatial domain S consisted of a geographic grid
superimposed on the risk zones.

I The eventual design was based on that knowledge that the
National Oceanic and Atmospheric Agency (NOAA), which was
overseeing the project, would prefer a simple method of analysis
for assessing the impact.
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EXAMPLE: EFFECT OF WILDCAT DRILLING IN ALASKA

I The Bayesian elements were used to find the expected value of
the uncertain non-centrality parameter for the test. This
depended on the subset S that was to be selected and so was
optimised to find the optimal design.

I That led to maximising the contrast in the field, with the optimal
sites distributed between low and high risk zones.

I That in turn led to a theoretical paper that generalised this
approach (Schumacher & Zidek, 1993)
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EXAMPLE: MODELLING POLLUTION FIELDS

I It has long been recognised that particulate air pollution is
associated with adverse health impacts in humans.

I Thus it is now a criteria air pollutant that is regulated to ensure
air quality.

I Of particular concern is PM2.5, consisting of small particles
formed from gaseous emissions, for example, from the burning
of wood.

I Both their mass µgm−3 as well as their counts ppm are
considered important since a large number of tiny particles in
the PM2.5 mix,

I for example those of size less than 1 micron in diameter, can
penetrate deeply into the lung.
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EXAMPLE: MODELLING POLLUTION FIELDS

I Primary interest lies in the spatial prediction of the PM2.5 field.
However, in general a spatio–temporal modelling approach is
preferable since the quasi replicates of the spatial field over time
enables better parameter estimation. The following model for the
underlying spatio–temporal mean term was proposed

µst = β0 + β1ps + βαs × ps +

12∑
l=2

ζlutl

where the dummy u = I{t is in month m} tells us the month in
which the time (week) t = 1, . . . , 52 is located.
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EXAMPLE: MODELLING POLLUTION FIELDS

I Although in some ways an appealing and simple way of
handling seasonality when temporal replicates are available it
comes at a cost of eleven degrees of freedom.

I These are used in estimating the set ofthe {ζl} coefficients.
I Here ps denotes human population density while αs is an

rural–urban indicator function.
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EXAMPLE: MODELLING POLLUTION FIELDS

I The process model used was

Zst = µst + ωst + psvst

where the the sum of the last two terms is thought of as
representing a spatially varying temporal trend.

I To complete the model description for this example, we need a
covariance structure and it is often assumed that space and time
are separable



25/ 317

Introduction Strategies for space-time modelling Better exposure measurements through better design Modelling point patterns Applications

STRATEGIES FOR SPATIO–TEMPORAL MODELLING

I There are many ways in which space and time can be
incorporated into a statistical model and we now consider a
selection. One must first choose the model’s space–time domain.

I Is it to be a continuum in both space and time?
I Or a discrete space with a finite number of locations at which

measurements may be made?
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STRATEGIES FOR SPATIO–TEMPORAL MODELLING

I Time is obviously different than space.
I For one thing, it is directed, whereas any approach to adding

direction in space is bound to be artificial.
I A major challenge in the development of spatio–temporal theory

has been combining these fundamentally different fields in a
single modelling framework.

I Much progress has been made in this area over the last three or
four decades to meet the growing need in applications of societal
importance, including those in epidemiology.
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STRATEGIES FOR SPATIO–TEMPORAL MODELLING

I There are competing advantages to using finite (discrete) and
continuous domains.

I Indeed a theory may be easier to formulate over a continuous
domain, but practical use may entail projecting themonto a
discrete domain.

I Time is regarded as discrete because measurements are made at
specified, commonly equally spaced, time points.

I The precise methodology will be determined by the nature of the
data that is available over space, for example is it
point-referenced or collected on a lattice?
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STRATEGIES FOR SPATIO–TEMPORAL MODELLING

Some general approaches to incorporating time are as follows:

Approach 1: Treat continuous time as another spatial dimension,
I For example, spatio–temporal Kriging
I There is extra complexity in constructing covariance models

compared to purely spatial process modelling and possible
reductions in the complexity based on time having a natural
ordering (unlike space) are not realised.
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STRATEGIES FOR SPATIO–TEMPORAL MODELLING

Approach 2: Represent the spatial fields represented as vectors
Zt : NS × 1, and combine them across time to get a multivariate time
series.

Approach 3: Represent the time series as vectors, Zs : 1×NT, and use
multivariate spatial methods

I For example, co-kriging

Approach 4: Build a statistical framework based on deterministic
models that describe the evolution of processes over space and time.
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STRATEGIES FOR SPATIO–TEMPORAL MODELLING

I Approach 1 may appeal to people used to working in a
geostatistical framework.

I Approach 2 may be best where temporal forecasting is the
inferential objective while Approach 3 may be best for spatial
prediction of unmeasured responses.

I Approach 4 is an important new direction that has promise
because it includes background knowledge through numerical
computer models.
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STRATEGIES FOR SPATIO–TEMPORAL MODELLING

I If the primary aim is spatial prediction then you would want to
preserve the structure of the spatial field.

I However if the primary interest is in forecasting this would lead
to an emphasis in building time series models at each spatial
location.

I The exact strategy for constructing a spatio–temporal model will
also depend on the purpose of the analysis.
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STRATEGIES FOR SPATIO–TEMPORAL MODELLING

I Interest may lie in forecasting an ambient measurement
twenty-four hours ahead of time. Or to spatially predict such
levels at unmonitored sites to get a better idea of the exposure of
susceptible school children in a school far from the nearest
ambient monitor.

I In deciding how to expand or contract an existing network of
monitoring sites in order to improve prediction accuracy or to
save resources, a spatio–temporal model will be required
together with a criterion on which to evaluate the changes you
recommend.
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BAYESIAN HIERARCHICAL MODELS

Bayesian hierarchical models are an extremely useful and flexible
framework in which to model complex relationships and
dependencies in data and they are used extensively throughout the
course. In the hierarchy we consider, there are three levels;
(1) The observation, or measurement, level; Y|Z,X1, θ1.

Data, Y, are assumed to arise from an underlying process, Z,
which is unobservable but from which measurements can be
taken, possibly with error, at locations in space and time.
Measurements may also be available for covariates, X1. Here θ1
is the set of parameters for this model and may include, for
example, regression coefficients and error variances.
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BAYESIAN HIERARCHICAL MODELS

(2) The underlying process level; Z|X2, θ2.
The process Z drives the measurements seen at the observation
level and represents the true underlying level of the outcome. It
may be, for example, a spatio–temporal process representing an
environmental hazard. Measurements may also be available for
covariates at this level, X2. Here θ2 is the set of parameters for
this level of the model.

(3) The parameter level; θ = (θ1, θ2).
This contains models for all of the parameters in the observation
and process level and may control things such as the variability
and strength of any spatio–temporal relationships.
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SPATIO–TEMPORAL PROCESSES

I A spatial–temporal random field, Zst, s ∈ S, t ∈ T , is a stochastic
process over a region and time period.

I This underlying process is not directly measurable, but
realisations of it can be obtained by taking measurements,
possibly with error.

I Monitoring will only report results at NT discrete points in time,
T ∈ T where these points are labelled T = {t1, . . . , tNT}.

I The same will be true over space leading to a discrete set of NS
locations S ∈ S with corresponding labelling, S = {s1, . . . , sNS}.



36/ 317

Introduction Strategies for space-time modelling Better exposure measurements through better design Modelling point patterns Applications

SPATIO–TEMPORAL PROCESSES

We can represent the space–time random field Zst in terms of a
hierarchical model for the measurement and process models

Yst = Zst + vst

Zst = µst + ωst

where
I vst represents independent random measurement error.
I µst is a spatio–temporal mean field (trend) that is often

represented by a model of the form µst = xstβst.
I ωst is the underlying spatio–temporal process
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SPATIO–TEMPORAL PROCESSES

I For many processes the mean term µst represents the largest
source of variation in the responses.

I Over a broad scale it might be considered as deterministic if it
can be accurately estimated,

I An average of the process over a very broad geographical area.
I However where there is error in modelling µst the residuals ωst

play a vital role in capturing the spatial and temporal
dependence of the process.
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SPATIO–TEMPORAL PROCESSES

I The spatio–temporal process modelled by ω can be broken down
into separate components representing space, m, time, γ and the
interaction between the two, κ.

ωst = ms + γt + κst

I Here, m would be a collection of zero mean, site-specific
deviations (spatial random effects) from the overall mean, µst
that are common to all times.

I For time, γ would be a set of zero mean time-specific deviations
(temporal random effects) common to all sites.

I The third term κst represents the stochastic interaction between
space and time.
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SPATIO–TEMPORAL PROCESSES

I For example, the effect of latitude on temperature depends on
the time of year.

I The mean term, µst may constitute a function of both time and
space but the interaction between the two would also be
manifest in κst.

I This would capture the varying intensity of the stochastic
variation in the temperature field over sites which might also
vary over time. In a place such as California the temperature
field might be quite flat in summer but there will be great
variation in winter.

I It is likely that there will be interaction acting both through the
mean and covariances of the model.
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SEPARABLE MODELS

I In most applications, modelling the entire spatial–temporal
structure will be impractical because of high dimensionality.

I A number of approaches have been suggested to deal with this
directly and we now discuss the most common of these, that of
assuming that space and time are separable.

I This is in contrast to cases where the space–time structure is
modelled jointly which are known as non-separable models.
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SEPARABLE MODELS

I Separable models impose a particular type of independence
between space and time components. It is assumed the
correlation between Zst and Zs′t is ρss′ at every time point t while
the correlation between Zst and Zt′s is ρtt′ at all spatial time
points s.

I The covariance for a separable process is therefore defined as

Cov(Zst,Zs′t′) = σ2ρss′ρtt′

for all (s, t), (s′, t′) ∈ S × T .
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SEPARABLE MODELS

I Expressed in matrix form, for Gaussian processes, we get the
Kronecker product for the covariance matrix,

ΣTp×Tp = σ2ρNT×NT
T ⊗ ρNS×NS

S .

where ρ1 is the between row temporal autocorrelations and ρ2 is
the between column spatial correlations.
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SEPARABLE MODELS

I Kronecker product models assumes temporal correlations are the
same at every site.

I Likewise, the spatial correlations are the same at every point in
time.

I These are strong assumptions which greatly simplify things but
they do seem to be reasonable in a lot of applications, for
example through cross-validation yields good results.
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SEPARABLE MODELS

I Due to the reduction in computational burden that comes with
this approach, the majority of work on space–time modelling
tends to be based on analysing the temporal and spatial aspects
separably, and then to combine the chosen models in a single
separable model.
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EXAMPLE: A HIERARCHICAL MODEL FOR

SPATIO–TEMPORAL EXPOSURE DATA

I We give details of a hierarchical model described by (Shaddick &
Wakefield 2002).

I There are three stages to the model: (i) the observation, or data,
model; (ii) the process model which in this case now describes
the form of the underlying spatial and temporal processes and
(iii) assigning prior distributions to the unknown parameters.

I The model is designed for cases where there are multiple
pollutants being measured at a number of monitoring sites.

I The model allows for a temporal–pollutant interaction and a
spatial–pollutant interaction, with the spatial model being
constant across time, isotropic and stationary.

I The model and its assumptions are now described.
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EXAMPLE: STAGE 1 - OBSERVATION MODEL

I At the first stage, the measurements of each pollutant
(p = 1, ...,P) over time (t = 1, ...,T) at each monitoring site
(s = 1, ...,S) are modelled as a function of the true underlying
level of the pollutant with a site adjustment and a pollutant-site
specific error term.

ystp = zstp + vstp

where ystp denotes the observed level of the pollutant p,
p = 1, ...,NP at time t and location s for t = 1, ..,NT where NT is
the number of time points and s = 1, ...,NS where NS is the
number of monitoring sites. In this model vspt represents the
measurement errors which are assumed i.i.d. N(0, σ2

sp).
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EXAMPLE: STAGE 2 - PROCESS MODEL

I In this stage the underlying levels of the exposure, Zstp, are
assumed to comprise an underlying trend, µstp together with a
separable spatio–temporal process, ωp for each pollutant.

zstp = µstp + ωstp

ωstp = msp + γtp

γt = αγt−1 + wstp

(1)

I Here µstp = βX where β is a vector of regression coefficients and
Xspt represents an explanatory variables that may change
temporally (for example, temperature), and spatially.
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EXAMPLE: STAGE 2 - PROCESS MODEL

I The latter may represent, for example, spatial characteristics of
the site that may be constant across time such as latitude and
longitude (which could be used to remove any trend), or
characteristics of the monitor, for example roadside or elevation.

I The subscript p allows these effects to be pollutant specific. and
γt is a multivariate temporal process that induces temporal and
pollutant dependence and msp represents the spatial effect of
being at site s (for pollutant p).
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EXAMPLE: STAGE 2 (A) - SPATIAL/POLLUTANT

MODEL

I The collection of random effects mp = (mp1, ...,mpNS
)′, p = 1, ...,P,

is assumed to arise from the multivariate normal distribution

mp ∼MVN(0NS , σ
2
pmΣpm)

where 0NS is an NS × 1 vector of zeros, σ2
pm the between-site

variance for pollutant p and Σpm is the NS ×NS correlation
matrix, in which element (s, s′) represents the correlation
between sites s and s′, s, s′ = 1, ...,NS, for pollutant p.
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EXAMPLE: STAGE 2 (B) - TEMPORAL/POLLUTANT

MODEL

I We assume that

γpt = γp,t−1 + wpt (2)

for p = 1, ...,NP. Here wt = (w1t, ...,wNPt)
′ are i.i.d. multivariate

normal random variables with zero mean and
variance-covariance matrix ΣNP . This matrix contains variances
σ2

wp thus allowing different pollutants to have different amounts
of temporal dependence, and NP(NP − 1)/2 covariance terms
reflecting the dependence (more precisely the covariance)
between each of the pollutants, conditional on the previous
values.
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EXAMPLE: STAGE 3 - HYPERPRIORS

I A normal prior N(c,C) is assumed for β, where c is a q× 1 vector
and C a q× q variance-covariance matrix.

I Gamma priors are specified for the precisions,specifically
σ−2

sp ∼ Ga(av, bv).

I The variance-covariance matrix, Σ−1
P ∼WP(D, d) where WP(D, d)

denotes a P−dimensional Wishart distribution with mean D and
precision parameter d.

I Unless there is specific information to the contrary, i.e. that a
monitor with different characteristics is used at a particular site,
it is assumed σ−2

vs ∼ Ga(av, bv), s = 1, ...,S.
I A uniform prior may be used for φp, with the limits being based

on beliefs about the relationship between correlation and
distance.
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EXAMPLE: MODEL ASSUMPTIONS

The assumptions of the model include the following:
I The measurement error variance σ2

sp does not depend on time,
although the model is easily extendable to situations in which
the measurement error may change as a function of t.

I The relationship between the pollutants is constant over time.
I The relationship between the pollutants is spatially constant.
I The temporal and spatial components are independent.
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NON-SEPARABLE MODELS

I Non-separable processes will often be more difficult to
understand than when separation processes can be assumed for
space and time and as a consequence modelling is often complex.

I In particular, dealing with the Kronecker products that define
covariances poses technical challenges if the wrong approach is
taken.

I To illustrate, consider the simple problem of showing that
(A⊗ B)−1 = A−1 ⊗ B−1.
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NON-SEPARABLE MODELS

I This problem proves to be very difficult if we ignore the
algebraic roots of the Kronecker product as a linear operator and
instead use the matrix definition which for simplicity in thecase
of 2× 2 matrices is the 4× 4 matrix given by:(

a11 a12
a21 a22

)
⊗
(

b11 b12
b21 b22

)
=

(
a11B a12B
a21B a22B

)
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GAUSSIAN PROCESSES

I So why is all this important for modelling spatio–temporal
Gaussian processes?

I There, the domain where measurements will be taken is
(s, t) ∈ S × T where S × T denotes what is called the ‘product
space’ of S and T .

I Over that domain responses for a separable Gaussian process
can be represented by a random matrix with a matrix normal
distribution:

Z ∼ NNS×NT [µ, σ2ρS ⊗ ρT]
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GAUSSIAN PROCESSES

I So if the temporal auto correlation matrix were known, we could
easily reduce the process to another with independent replicates
over time as follows.

Z∗ = (I⊗ ρ−1/2
T )Z ∼ NNS×NT [(I⊗ ρ−1/2

T )µ, σ2ρS ⊗ I)]

I Even if ρT is unknown, in some cases it may be possible to
estimate it well, for
example when it has a simple parametric form and there are
many time points.
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NON-SEPARABLE MODELS

I The complexity of non-separable spatio–temporal processes
often combined with computational issues has resulted in the
development of a number of different approaches to modelling
them.

I We now provide a brief description of a selection of the available
approaches.



58/ 317

Introduction Strategies for space-time modelling Better exposure measurements through better design Modelling point patterns Applications

NON-SEPARABLE MODELS

I The complexity of non-separable spatio–temporal processes
often combined with computational issues has resulted in the
development of a number of different approaches to modelling
them.

I We now provide a brief description of a selection of the available
approaches.
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NON-SEPARABLE MODELS

I A spatio–temporal model for hourly ozone measurements was
developed by Carroll et al. (1997).

I The model,
Zst = µt + ωst

combines a trend term incorporating temperature and
hourly/monthly effects,

µt = αhour + βmonth + β1tempt + β2temp2
t ,

which is constant over space, and an error model in which the
correlation in the residuals was a nonlinear function of time and
space.
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NON-SEPARABLE MODELS

I In particular the spatial structure was a function of the lag
between observations,

COV(vst, vs′t′) = σ2ρ(d, v),

where d is the distance between sites and v = |t′ − t′| is the time
difference, with the correlation being given by

ρ(d, v) =

{
1 d = v = 0
φd

vψv d otherwise

where

log(ψv) = a0 + a1v + a2v2 and log(φv) = b0 + b1v + b2v2
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NON-SEPARABLE MODELS

I The correlation of the random field is thus a product of two
factors, the first, ψd

v depends on both the time and space, the
second only on the time difference.

I Unfortunately, as Carroll et al. (1997) pointed out, this correlation
function is not positive definite.

I Using results from the model, there were occasions when

Cov(Zst,Zs′t) > Cov(Zst,Zst).

I This highlights a genuine lack of a rich set of functions that can
be used as space–time correlation functions.
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SUMMARY

In this section we have seen the many ways in which the time can be
added to space in order to characterise random exposure fields. In
particular we have looked at the following topics:

I Additional power that can be gained in an epidemiological study
by combining the contrasts in the process over both time and
space while characterising the stochastic dependencies across
both space and time for inferential analysis.

I Criteria that good approaches to spatio–temporal modelling
should satisfy.

I General strategies for developing such approaches.
I Separability and non-separability in spatio–temporal models,

and how these could be characterised using the Kronecker
product of correlation matrices.

I Examples of the use of spatio–temporal models in modelling
environmental exposures.
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Better exposure measurements through better
design
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1. What do random environmental process
fields look like?
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Vancouver’s	
  North	
  Shore	
  –	
  Early	
  
1900s	
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Vancouver’s	
  North	
  Shore-­‐Circa	
  
1990	
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2. What do monitoring networks look like?
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Metro	
  Vancouver	
  monitoriing	
  
network	
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CAPMON NETWORK: ACID RAIN THEN AIR

POLLUTION
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NOTES on Capmon:
I No sense an ‘optimal’ network for monitoring the environment.
I For administrative simplicity Capmon was a merger of three

networks, each setup to monitor acid precipitation when that
topic was fashionable.

I For simplicity, the sites were then adopted for other things, e.g,
air pollution
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THE NADP/NTN NETWORK: ACID PRECIPITATION

Monitors multivariate responses related to “acid precipitation”–
another merger–better defined siting rules!
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Rules governing siting and types of NDP/NTN monitors:

“ The COLLECTOR should be installed over undisturbed land on
its standard 1 meter high aluminum base. Naturally vegetated,
level areas are preferred, but grassed areas and up or down slopes
up to 15% will be tolerated. Sudden changes in slope within 30
meters of the collector should also be avoided. Ground cover
should surround the collector for a distance of approximately 30
meters. In farm areas a vegetated buffer strip must surround the

collector for at least 30 meters.”
...
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3. What do monitors look like?
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Monitoring	
  shed	
  in	
  school	
  yard	
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Monitoring	
  Shed	
  in	
  a	
  Park	
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4. Why do we need monitoring networks?
To reduce uncertainty!1

1[Le and Zidek(2006), ?]
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WHY MONITOR?

General objectives:
I Measure process responses at critical points:

I Near a new smelter using arsenic
I Enable predictions of unmeasured responses
I Enable forecasts of future responses
I Provide process parameter estimates

I physical model parameters
I stochastic model parameters eg. covariance parameters

I Address societal concerns
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Specific objectives:
I Detect non-compliance with regulatory standards
I Enable health effect assessments to be made

I & provide good estimates of relative risk
I determine how well sensitive sub-populations are protected
I can include all life, not just human

I To assess temporal trends
I are things getting worse?
I is climate changing?
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Overall objective:
I To explore/reduce uncertainty

I About aspects of environmental processes
I One form of uncertainty (aleatory) cannot be reduced (outcome of

fair die toss
I the other (epistemic) (whether the die is fair) can increase or

decrease. Implication: even an optimum design must be regularly
revisited
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Why	
  monitoring	
  design?	
  

As air quality monitoring networks 
have proliferated over the past, 

so have doubts arisen as to where, 
when and what to monitor” (A.C. 

Stern, 1976). 
 

Not much has changed in 40 years! 
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5. But what is uncertainty?
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‘UNCERTAINTY’?

I Laplace: Probability is the language of uncertainty
I DeFinetti: In life uncertainty is everything
I Statisticians: variance or standard error
I Kolmorov & Renyi: Entropy
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6. Designing networks with entropy
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POSSIBLE DESIGN CRITERIA

“Gauge” (add monitors to) sites that
I maximally reduce uncertainty at their space-time points

I measuring their responses eliminates their uncertainty
I best minimize uncertainty about unmeasured responses
I best inform about process parameters
I best detect non-compliers
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APPROACHES TO DESIGNING MONITORING

NETWORKS

Space-filling designs2: spead them out maximally over
the domain of interest

Probability based designs 3 : pick locations at random
I simple random sampling
I stratified, multistage designs
I e.g. (1) EPA’s survey of lakes; (2) the EMAP project

2[Nychka and Saltzman(1998)]
3[Mitch(1990)]
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Model based designs:
I Regression modelling4

I e.g. to estimate the slope of line put 1/2 the data at
each end of the data range

I Random fields (prediction, e.g. entropy) approach

4[Müller(2007)]
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Entropy based designs
I ‘Gauges’ sites with greatest ‘uncertainty’

I uncertainty = entropy
I maximally reduces uncertainty about ‘ungauged’

sites
I best estimates predictive posterior distribution

under entropy utility
I Bypasses specification of objectives
I Has a long history5

Other designs. E.g. incorporate both of the latter,
prediction and parameter estimation 6.

5General: [Good(1952)], [Lindley(1956)], [Shewry and Wynn(1987)]. Network
design:
[Caselton and Zidek(1984)],[Sebastiani and Wynn(2002)],[Zidek et al.(2000)Zidek, Sun, and Le],
currently popular

6[Zhu and Stein(2006)]
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CHALLENGES FACING THE DESIGNER:

I A multiplicity of valid objectives
I Unforeseen & changing objectives
I Multiple responses at each site: which to monitor?
I Must include prior knowledge & prior uncertainty
I Should use realistic process models. (How?)
I Must be integrated with existing networks
I Must deal with reality, e.g politicians, committees!!!

Use entropy approach–can deal with many challenges
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7. Entropy basics
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WHAT’S ENTROPY?

Let p = P(E)= probability an uncertain event E occurs (e.g. heads on
possibly bent coin). That uncertainty reduces to 0 when outcome
becomes known. Let the size of reduction be for some φ:

φ(p) if E occurs
φ(1− p) if not.

The expected reduction in uncertainty is then
pφ(p) + (1− p)φ(1− p)
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Simple assumptions imply:
φ(p) = −log(p)

Conclusion: reduction in uncertainty due to knowledge of E’s
occurrence (i.e. “uncertainty” about E) is the entropy for the two

point distribution (p, 1− p):

−p log (p)− (1− p) log (1− p)
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RELATIVE ENTROPY

When is an entropy a “big” entropy?

Need a reference point. Complete uncertainty about the coin (how
its to be tossed and so on) suggests a two point reference distribution
(q, 1− q) with q = 1/2.

Define the relative entropy as Kullback-Leibler’s measure of
deviation of (p, 1− p) from its reference level (q, 1− q) = (1/2, 1/2):

I(p, q) = −p log (p/q)− (1− p) log {(1− p)/(1− q)}

The reference distribution corresponds to a “state of equilibrium” in
physics (thermodynamics).
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ENTROPY FOR MULTIPLE EVENTS

I(p, q) =
∑

i

pi log {pi/qi}
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ENTROPY FOR CONTINUOUS VARIABLES

Start with pi ∼ f (xi)dxi & qi ∼ g(xi)dxi as approximations. Then as
dxi → 0, this entropy converges to

I(f , g) =

∫
f log (f/g)

.
Commonly g ≡ 1 (units of f ). In any event, f/g is a unitless quantity.
Moreover Jacobean cancels under transformations of x making
entropy an “intrinsic” measure of uncertainty – not scale dependent.
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8. Using entropy in design
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USING ENTROPY IN DESIGN

Best handled in a Bayesian framework. Let:
I Yf = process response vector at future time T+1 including all

sites (gauged & ungauged)
I D = set of all available data upon which to condition and get

posterior distributions
I h1 & h2 be baseline reference densities against which to measure

uncertainty.
I Finally:

H(Yf | θ) = E[− log(f (Yf | θ,D)/h1(Y) | D]

H(θ) = E[− log(f (θ | D)/h2(θ̃)) | D]

Then we get fundamental identity (Exercise):

H(Yf , θ) = H(Yf | θ) + H(θ)
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DESIGN GOAL

Add or subtract sites from an existing network. Let us add new
sites to an existing network

I Yf = (Y(1)
f ,Y(2)

f ) = all site responses at future time T +1

I Y(2)
f for sites currently gauged at time T

I Y(1)
f for sites currently ungauged at time T

DESIGN GOAL: Partition Y(1)
f = (Y(rem)

f ,Y(add)
f ) at future time (T+1).

Let
I Y(rem)

f ≡ U: future ungauged sites

I Y(add)
f ≡ G future new network stations.
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ENTROPY DECOMPOSITION THEOREM

Let U = Y(rem)
f ; G = (Y(add)

f ,Y(2)
f ); Yf = [U,G]

Fundamental identity:

TOT = PRED + MODEL + MEAS

where

PRED = E[− log(f (U | G, θ,D)/h11(U)) | D],

MODEL = E[− log(f (θ | G,D)/h2(θ)) | D],

and

MEAS = E[− log(f (G | D)/h12(G)) | D].

Theorem: Maximizing MEAS=Minimizing MODEL + PRED
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THE RESPONSE DISTRIBUTION

The model below is used in an R package: EnviroStat.
To apply it:

I transform the response if necessary to make its distribution
symmetric

I subject out the regular components such as regional trends and
regional seasonality

I fit a regional time series model to remove autocorrelation and
leave whitened residuals

Let Y denote the resulting residuals. These now carry the spatial
patterns.
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Now assume for T + 1 times and p sites both gauged and ungauged:

Y(T+1)×p | β,Σ ∼ N(X(T+1)×kβk×p, I(T+1) ⊗Σ)

β | Σ,β0,F ∼ N(β0,F−1 ⊗Σ)

Σ ∼ GIW(Ψ, δ) # Generalized Inverted Wishart distribution
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THE FAMOUS BARTLETT DECOMPOSITION

With u meaning ungauged and g, gauged let:

Σ =

(
Σ[u] Σ[ug]

Σ[gu] Σ[g]

)

The Bartlett decomposition: Σ = Ξ∆Ξ′ where

Ξ =

(
I Σ[ug](Σ[g])−1

0 I

)
∆ =

(
Σ[u] −Σ[ug](Σ[g])−1Σ[gu] 0

0 Σ[g]

)
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IMPLICATIONS OF THE GIW DISTRIBUTION

Let

Σ[u|g] = Σ[u] −Σ[ug](Σ[g])−1Σ[gu]

τ [u] = (Σ[g])−1Σ[gu].

Then Σ ∼ GIW(Ψ, δ) implies with appropriate hyperparameters:

Σ[g] ∼ GIW(Ψ[g], δ[g])

Σ[u|g] ∼ IW(Ψ[u|g], δ0)

τ [u] | Σ[u|g] ∼ N
(
τ 0 u,Σ

[u|g] ⊗ (Ψ[g])−1
)
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PREDICTIVE DISTRIBUTION

For certain constaints c, d, l

(G | D,H) ∼ tg

(
µ[g],

c
l
Ψg, l

)
.

(U | G,D,H) ∼ tu

(
µ[u|g],

d
q
Ψu|g, q

)
.
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Conditional entropy for U = Y[u]
f that has to be partitioned into ‘add’

and ‘rem’ sites is

H [U | G,D] =
p
2

log |Ψu|g|+ irrelevant terms

Bartlett decomposition means choice of ‘add’ sites at time T+1 obtain
from maximizing |Ψu|g[add, add]|, the sub–determinant of | Ψu|g |
corresponding to the ‘add’ sites in the partitioned U.

That will simultaneously minimize the entropy left in the ‘rem’ sites.
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THE “ADD” COMPUTATION

I NP-Hard: No exact algorithms for big networks
I Inexact Methods:

I Greedy
I Greedy + Swap

I Exact Methods:
I Complete enumeration
I Branch and bound
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HOW MANY SITES?

Compute:
Entropy/(Numberofsites)

as the number of sites varies. Eventually this reaches a maximum
(bang for the sampling buck) and then declines. Indicates when to
stop on redesign.
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9. Case study in entropy design
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REDESIGNING VANCOUVER’S AIR QUALITY

NETWORK

Suppose hypothetically, Vancouver wishes to redesign its hourly PM10

contentration field. The existing 10 monitoring sites are to be increased to
16 by selecting 6 new stations from among 20 possible sites. Use the
entropy approach.
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INTRODUCING THE SITES:

Metro	
  Vancouver	
  monitoriing	
  
network	
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The PM10 levels at the 10 existing stations in Metro Vancouver. Note
differing startup times.
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0 50 150 250 350
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The 10 PM10 monitoring site locations (the ones with names) &
prospective new locations.
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TECHNICALITIES

The response Y is the log-transformed hourly PM10 concentration.

The normal-generalized inverted Wishart predictive
distribution is used

I needs “whitened” residuals; space - time interaction→
use of 24 (hour) dimensional multivariate AR(1) model

I different 10 - station startups→monotone (“staircase”)
data structure→ generalized inverted Wishart
distribution→ different d.f. for each staircase step

I select the 6 new stations with jointly maximum
conditional entropy
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Locations of the old and newly selected ‘add’ sites (square brackets).
The ranks of the 20 sites by estimated variance is in curved brackets.
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10. New Frontiers: Preferentially selection of sites
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PREFERENTIAL SELECTION

Preferential selection: occurs when site locations are determined
stochastically by the environmental field responses they are supposed
to measure e.g. where the responses are expected to be high.7

Preferential site selection can be undesirable: when the data are
meant to represent the random environment field of interest. For then
estimates will be biased.

7[Diggle et al.(2010)Diggle, Menezes, and Su]
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Example: There is conclusive evidence 8 that as the United
Kingdom’s network for monitoring black smoke in the United
Kingdom was reduced in size to reflect the decreased burning of coal
cuts were made preferentially 9 . The Figure shows how much
aggregate estimates of levels were overestimated.
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8[Shaddick and Zidek(2014)]
9[Zidek et al.(2014)Zidek, Shaddick, and Taylor]
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But prefential site selection can also be desirable: When the
objective is specific, e.g. near “sources” to measure mercury
emissions10

10[Schmeltz et al.(2011)Schmeltz, Evers, Driscoll, Artz, Cohen, Gay, Haeuber, Krabbenhoft, Mason, Morris, et al.]
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EXAMPLE: NONCOMPLIANCE WITH REGULATORY

STANDARDS

Networks may need to be set up to detect unduly high levels of a
air pollution field.11.

But that objective is not well–defined12.

What does it mean? The field is random so best design may vary
from day–to–day.

I Should you take a simulated future day? An
average day? A bad day?

What design strategy should you use? Should we:
I monitor the sites most likely to comply?
I or do not monitor the sites least likely to comply?

(leads to a different design)
I what do you do with existing sites?

11[Guttorp and Sampson(2010)]
12[Chang et al.(2007)Chang, Fu, Le, and Zidek]
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HOW WELL DOES AN ENTROPY DESIGNS WORK FOR

THIS PURPOSE?

Example: how well would Vancouver’s 6 site, entropy-based,
addition compare to an optimal noncompliance based addition?

Using data from the 10 stations with hourly data for PM10 on February 28,
1999 we can use the EnviroStat package to predict/simulate the potential
new sites in Metro Vancouver repeatedly and hence the distribution of the
daily maximum PM10 level over the region. Thus we can find the the six
sites that maximize the probability of detecting noncompliance over the
region:
argmax PR{daily max PM10 Y6added ≥ 50 (µg m−3)}
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Results: The top 7 choices of six new sites are identical to the top 7
chosen by the entropy criterion on Feb 28, 1999!

But the entropy criterion does not work as well on Aug 1, 1998 for
detecting noncompliance that day.

The entropy criterion was not meant to be best for every specified
purpose. But then the criterion above gives different designs for
different days!
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11. New frontiers: Designing for extreme values
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MONITORING EXTREME VALUES

Regulatory criteria usually involve moderate extremes like those in
the previous example. EnviroStat can be used to simulate/predict
them however complex.

Example: EPA’S PM10 criterion:
For particles of diameters of 10 micrometers or less:

Annual Arithmetic Mean: ≤ 50µg/m3

24 - hour Average: ≤ 150 µg m−3

Meaning: three year average of 98-th annual percentiles of 24 hour averages
must be ≤ 150 (µg m−3) at all sites in an urban area. Complex metric⇒
need predictive distribution to simulate its distribution!
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SOME CHALLENGES WITH EXTREMES

I Seldom enough data: spatial and temporal.
I Generally extremes have small inter–site dependence than raw

reponses–spatial prediction is hard.
I But some site pairs have strong intersite correlation: marks it

hard to model with classical extreme value theory
I Multivariate extreme value distributions are not tractable for

large geographical domains with lots of sites:
I conditional computation (e.g. entropy) difficult
I simulating extreme fields hard

I Design objective is elusive.
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EXAMPLE: INTERSITE CORRELATIONS - VANCOUVER

PM10 FIELD

Call n in Mn = max{Y1, . . . ,Yn} the span of the maximum. Vancouver
(and London) analyses show that as n increases from n = 1 hour, the
inter–site dependence declines with most site pairs but not all of
them.



125/ 317

Introduction Strategies for space-time modelling Better exposure measurements through better design Modelling point patterns Applications

EXAMPLE: INTERSITE CORRELATIONS - VANCOUVER

PM10 FIELD

Demonstrated by the following Figure that shows results for
Vancouver’s PM10 intersite correlations for successive maxima time
spans n: hour, 24 hours, week of hours and a month of hours:
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A POSSIBLE SOLUTION

Approximate the joint distribution of extremes by a log
multivariate-t distribution. Hence:

I has convenient conditional, marginal distributions
I can accommodate existing sites and historical data
I can permit simulation of complex metric distributions
I is tractable with computable entropy’s, regression models, etc
I bypasses need to specify specific design objectives
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Empirical results: log multivariate–t distribution as approximation to
joint distribution of extremes field. QQplots for weekly maxima of
hourly log PM10 London 1997 data: here even the marginal normal
to approach extreme value distribution works well:
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Another example involving Canadian climate
extremes:

Empirically shows well–calibrated 95% (etc) prediction intervals and
supports use of multivariate approximation.

Credibility Level Mean Median
30% 35 35
95% 96 97

99.9% 99.9 1

Table: Summary of coverage probabilities at different credibility levels for
the simulated precipitation data over 319 grid cells, Canadian Climate
Model
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EFFECT OF SPAN FOR THE T-DISTRIBUTION13:
Simulation study: 10 sites with decreasing intersite correlation.
Multi–normal responses. Varying span of maxima computed at
individual sites. (Result for t is similar.)

2 4 6 8 10

0.0
0.2

0.4
0.6

0.8
1.0

Site Number

Co
rre

lati
on

Raw Data
n = 24
n = 100
n = 500

13[Chang et al.(2007)Chang, Fu, Le, and Zidek]



130/ 317

Introduction Strategies for space-time modelling Better exposure measurements through better design Modelling point patterns Applications

SUMMARY

Design theory:
I Design-a much neglected subject in statistics and

one that cannot be done by software alone, thus
one of the few remaining domains where
statisticians still rule.

I Research opportunities abound in spatial design.
I The entropy design is the one robust approach

when goals cannot be specified precisely or future
uses cannot be anticipated. Needs to be extended
to non–Gaussian distributions.

I More work is needed on designing networks for
fields of extremes. Also when interest lies in the
extremes of fields.



131/ 317

Introduction Strategies for space-time modelling Better exposure measurements through better design Modelling point patterns Applications

Designing to measure the “metrics”
I Complex metrics seen in environmental

epidemiology are complex for a reason. Need a
predictive spatial distributions to simulate the
distributions of these metrics, which often reflect
levels north of whichhuman health is threatened.

I Complex metrics involve moderate extremes
whose intersite correlations will tend to small.
Hence the current urban monitoring networks are
likely to be insufficiently dense to monitor the field
of extremes.

I Urban monitoring sites seem likely to have
selected preferentially where response levels are
high. More assessment of these networks is
needed.
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Monitoring for extremes
I Metrics involve moderate but not ‘extreme’

extremes. Designs for monitoring these extremes
is an important but unstudied topics.

I More attention to design criteria for the field of
extremes needed
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Modelling point patterns
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Log Gaussian Cox Processes
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SPATIAL POINT PROCESS MODELLING

Aim
I describe and model the spatial structure formed by the locations

of individuals in space

specifically:
I develop methodology that is suitable for complex biological data
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A SPATIAL PATTERN...

I are the daisies randomly
distributed in the lawn of our
garden???

issues
I what do we mean by

“random"? formal
description?

I what if they are not random?
I how should we describe and

model non-random patterns?
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SPATIAL POINT PROCESS MODELLING

Aim
describe and model the spatial structure formed by the locations of
individuals in space

I is a pattern likely to be “random"?
I find a formal description of “randomness" – a suitable statistical

model
I find a formal description of “non-randomness"

What do you mean by “random pattern"?

complete spatial randomness (CSR)::
points are independently scattered in space
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SPATIAL POINT PROCESS MODEL

I captures the characteristics of spatial point patterns in a finite
number of parameters

I provides a mechanism for generating spatial point patterns; all
have the same spatial characteristics

I the locations of any objects can be modelled – plants, animals,
stars, cells, cities...
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POISSON PROCESS

a homogeneous Poisson process X with constant intensity λ0
(number of points per unit area) has two properties:
(1) density of points is constant
(2) the location of any point in the pattern is independent of the

location of any of the other points

⇒ formal way of describing "random" patterns; complete spatial
randomness (CSR)
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SPATIAL POINT PROCESS MODELS

I summary statistics have been applied in the literature to describe
deviations from CSR

I applications of models much rarer – but often better suited for
complex data sets

I statistical models for patterns that deviate from the Poisson case
⇒ more general spatial point process models
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SPATIAL POINT PROCESSES

I complicated mathematical object
I why?

point pattern differs from a standard dataset – number of
observed points is random

I mathematically complicated concept of a random measure has
to be used.
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SPATIAL POINT PROCESSES

generalisations of the Poisson case
I inhomogeneous Poisson process – inhomogeneous intensity
λ(s), s ∈ R2

I Cox processes – random intensity Λ(s), s ∈ R2

I Markov point processes – local interaction among individuals

We will focus on Cox processes!
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SPATIAL MODELLING – A CLASS OF MODELS

Cox processes are spatial point processes with random intensity
(density of points);
log Gaussian Cox processes depend on a (continuous) random field

Λ(s) = exp{Z(s)},

where {Z(s) : s ∈ R2} is a Gaussian random field.

I very flexible class of models
I used to be really hard to fit

but: given the random field (i.e. a latent field !), the points are
independent (Poisson process)

⇒we can use INLA (hurrah!)
⇒ for INLA the continuous field is approximated by a (discrete)
Gauss Markov Random Field
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THE LIKELIHOOD

The likelihood (in the most boring case) is

log(π(Y|η)) = |Ω| −
∫

Ω

Λ(s) ds +
∑
si∈Y

Λ(si),

where Y is the set of observed locations and Λ(s) = exp(Z(s)), and
Z(s) is a Gaussian random field.

I likelihood is analytically intractable; requires the integral of the
intensity function, which cannot be calculated explicitly

I the integral can be computed numerically; computationally
expensive
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INLA AND COX PROCESSES

I nicely, we can fit Cox processes elegantly with INLA – and it’s
fast

I we will see how this is done using some simple examples now
I followed by some examples to give you a taste of what is

coming...
I later we will discuss how more complex models can be fitted

with INLA (and it is still fast!)
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GRIDDING

I to fit data a log Gaussian Cox process in INLA we need to grid
the data (regular grid)14

I the observation window is discretised into N = nrow × ncol grid
cells {sij}with area |sij|, i = 1, . . . ,nrow, j = 1, . . . ,ncol

I yij the observed number of points in grid cell {sij}
I conditional on the latent field ηij counts are independent

yij|ηij ∼ Poisson(|sij| exp(ηij)),

14We can also fit point process models with an SPDE models (see Dan’s lectures) but
this is beyond the scope of this course.
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A SIMPLE POINT PROCESS MODEL...

I model the point pattern as Poisson counts on a grid
I a very simple model assumes an underlying (but unobserved)

spatial trend with an error term
I no covariates
I the latent field is then modelled by

ηij = α+ fs(sij) + εij, i = 1, . . . ,nrow, j = 1, . . . ,ncol,

α is an intercept
I fs(sij) denotes a spatially structured effect reflecting the value of

an unobserved spatial trend in grid cell sij

I models spatial autocorrelation

So what is the magical fs(sij), i.e. the spatial model here?
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TWO-DIMENSIONAL RANDOM WALK (RW2D)

I in INLA point processes fitted on a grid uses a two-dimensional
random walk model as spatially structured effect

I formally, it is an intrinsic Gauss Matkov random field (IGMRF)
I it has a Markov property; the value in each cell that only

depends on the values in neighbouring cells
I only works on a lattice

inla(formula = y~...+f(index, nrow=100, ncol=100), ...)
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TWO-DIMENSIONAL RANDOM WALK (RW2D)
I constructed to produce a smooth field by penalizing local

deviation from a plane
I conditional mean is the weighted average of neighbours
I closer neighbours get a larger weight than those further away
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FITTING A SIMPLE MODEL IN INLA

fit the simple model to the spatial point pattern formed by the species
Andersonia heterophylla
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FITTING A SIMPLE MODEL IN INLA

The model is specified in R-INLA using the formula-call

formula = Y ~ 1
+ f(index, model="rw2d", nrow=nrow, ncol=ncol, ...)
+ f(J, model="iid",hyper=hyper.error)

Estimated spatially structured effect:

I smoothness of the spatial field? – prior choice!
I how do we include covariates?
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RAINFOREST DATA- SPATIAL PATTERN RELATIVE TO

COVARIATES

I 50 ha forest dynamics plot at Pasoh Forest Reserve (PFR),
Peninsular Malaysia; never logged

I e.g. species Aporusa microstachya; 7416 individuals
I we can model dependence of tree occurrence on soil or

topography covariates
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RAINFOREST DATA- SPATIAL PATTERN RELATIVE TO

COVARIATES

we can also fit
I a joint model to two (or more) spatial patterns (accounting for

shared environmental preferences)
I or a joint model of covariates AND the pattern (accounting for

measurement error)
⇒ INLA with multiple likelihoods
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KOALA DATA – MARKED POINT PATTERN DATA

I study conducted at the Koala Conservation Centre on Phillip
Island, near Melbourne, Australia, 1993 - 2004

I ≈ 20 koalas present in the reserve at all times throughout study;
reserve enclosed by a koala-proof fence

I koalas feed on eucalyptus leaves which are toxic to most
animals; koalas have adapted to this

Do the koalas feed selectively, i.e. do they choose trees with the least
toxic/ most nutritious leaves?
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COMPLEXITY – MARKED POINT PATTERN

marks for each tree:
I mark 1: leaf samples taken from each eucalyptus tree and

analysed for palatability
I mark 2: tree use by individual koalas collected at monthly

intervals between 1993 and March 2004
fit joint model to:

I tree locations depend on (unobserved) soil nutrients levels and
local clustering

I palatability depends on spatial pattern (through soil nutrients
levels)

I koala visitation depends on spatial pattern, palatability
⇒ INLA with multiple likelihoods
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Thymus carnosus – REPLICATED AND MARKED POINT

PATTERN

I perennial herbaceous herb
I endemic to the Iberian

Peninsula
I endangered and protected

species
I aim: understand threats to

survival of thymus plants to
support conservation
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INCLUDE MARKS IN ANALYSIS

I marks may provide additional information on underlying
dynamics

I use joint model of point pattern and marks (health status) to
distinguish short and long term survival

objective: use marks to distinguish processes operating at different
temporal scales
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ANIMAL STUDIES – VARYING EDGES

I edges in rainforest data have been arbitrarily chosen
I often different for data on animals
I tendency to use "natural borders" as edges

here: locations muskoxen herds in study area in Greenland
I assumption of "artificial" edges does not hold
I some edges are "true" edges; impact on the pattern
⇒ point pattern with varying edges...
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SPATIO-TEMPORAL POINT PROCESS MODELS

I main interest in the muskoxen study (and many other studies) is
to understand the changes in spatial behaviour over time –
climate change

I (the few) spatio-temporal point processes discussed in the
literature assume independence of space and time for
computational reasons

I recent work (Lindgren et al. 2011) allows the fitting of
spatio-temporal point processes that do not make this
assumption

I in combination with INLA approach, this is computationally
feasible
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PREFERENTIAL SAMPLING

Preferential sampling occurs when the sampling locations are
stochastically dependent on the thing that you are sampling.

I Not all inhomogeoneous designs are preferential
I Classic example: Fish counts using commercial trawlers. They

will only look where they believe there are fish.
I We can consider the sampling locations X as a realisation of a

point process with intensity that depends on the unknown
object of interest.

I Ignoring preferential sampling can be lead to biased estimates!
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THE PREFERENTIAL SAMPLING MODEL OF DIGGLE ET

AL. 2010

I S(x), x ∈ W is a stationary Gaussian process
I X|S is a non-homogeneous Poisson process with intensity

λ(x) = exp{α+ β S(x)}

I Conditional on S and X, Y is a set of mutually independent
Gaussian variates:

Yi|S(X) ∼ N (µ+ S(xi), τ
2)
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NOTATION

We divide the domainW into N disjoint cells
Then for each cell i, i = 1, . . . ,N

Si = Value of S in cell i

xi =

{
1 if cell i is observed
0 otherwise

yi =

{
Observed value at cell i if cell i is observed

NA otherwise
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LIKELIHOOD

We consider an extended data set (y1, . . . , yN, x1, . . . , xN) with
likelihoods:

xi|η1i ∼ Po{exp(η1i)}
yi|xi = 1, η2i 6= 0 ∼ N (η2i, τ

2)

where the linear predictors η1i, η2i are defined as

η1i = α+ β S∗i
η2i = µ+ Si
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LATENT GAUSSIAN FIELD

We assume S = (S1, . . . ,SN) to be a GMRF representation of a Matérn
field with fixed range and unknown precision τS:

S ∼ GMRF(τS)

While S∗ = (S∗1 , . . . ,S
∗
N) is a “copy” of S

S∗ = S + ε; ε ∼ N (0, 10−6I)

We assume also
µ, α ∼ N (0, 10−6)

So that
(η1,η2, α, µ,S,S

∗)|β, τS is Gaussian
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THE PREFERENTIAL SAMPLING MODEL AS A LATENT

GAUSSIAN MODEL

I The data
(y1, . . . , yN, x1, . . . , xN)

I The latent Gaussian model

(η1,η2, α, µ,S,S
∗)

I The hyperparameter vector

θ = (β, τ, τS)
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A SIMULATED EXPERIMENT ON A 100× 100 GRID
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The value for the preferential parameter is β = 2.
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IMPLEMENTING THE MODEL USING INLA
THE DATA FRAME

> yy > mu > alpha > ii > jj
[,1] [,2]

[1,] NA NA 1 0 1 NA
[2,] NA NA 1 0 2 NA
[3,] 6.41564 NA 1 0 3 NA
[4,] NA NA 1 0 4 NA
.
.

[10001,] NA 0 0 1 NA 1
[10002,] NA 0 0 1 NA 2
[10003,] NA 1 0 1 NA 3
[10004,] NA 0 0 1 NA 4

> data = list(yy=yy, mu=mu, ii=ii, jj=jj, alpha=alpha)
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IMPLEMENTING THE MODEL USING INLA
THE R CODE - FITTING A RW2D

formula = yy ~ alpha + mu +
f(ii, model = "rw2d", nrow=nrow, ncol=ncol,
constr=TRUE, bvalue=1) +
f(jj, copy="ii", fixed=FALSE) -1

model = inla(formula, family = c("gaussian", "poisson"),
data = data, verbose = TRUE)
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IMPLEMENTING THE MODEL USING INLA
THE R CODE - FITTING A MATÉRN FIELD

formula1 = yy ~ alpha + mu +
f(ii, model = "matern2d", nrow=nrow, ncol=ncol,

initial = c(3, log(10)),
fixed=c(FALSE,TRUE),constr=TRUE) +

f(jj, copy="ii", fixed=FALSE) -1

model1 = inla(formula1, family = c("gaussian", "poisson"),
data = data, verbose = TRUE)

Range of the Matérn field is fixed at 10.
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RESULTS

Computational time

I from about 2 to 10 minutes depending on the approximation
type and machine.

I Just seconds for a 50× 50 grid.
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RESULTS

Posterior estimate for β
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RESULTS

Posterior mean for the S field
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AN UNFORTUNATE FACT

At risk of disappointing you...
Just because you have data and a question, doesn’t mean that the
data can answer that question!

I The best statistics infers the answer to a question from data
specifically and carefully collected to answer that question

I This is obviously not always possible, but we should do our best!
I For easy problems (differences of means, ANOVAs etc), there are

well-known ways to do this
I In this session, we will have a look at some simple (and some

practical) aspects of spatial experimental design
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THE BAD NEWS: UNDESIGNED SPATIAL DATA MAY

NOT ANSWER THE QUESTION
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Question: Can we build a spatial map of sero-prevelance of a certain
strain of malaria throughout Africa.
Answer: No.
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WHAT WENT WRONG

I Data: (ntest,npresent)

I Model: Binomial (low information!)
I Sampling locations are far apart
I Essentially uncorrelated!
I Low power, high uncertainty.
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HOW THIS MANIFESTED

The Folk Theorem
If your computation breaks, the problem is usually your model.

I INLA assumes that there is enough information in your model to
resolve all of the parameters

I If there isn’t, it can break!
I That’s what happened here!
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WHAT DOES A GOOD SPATIAL DESIGN LOOK LIKE?

I Sampling locations cover region of
interest (needed for prediction)

I Sampling locations are close enough
together that there is correlation
(hard to know beforehand)

I Sampling locations are clustered
(needed for parameter estimation)
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THIS CAN BE HARD!

Partial answer:— Sequential design
I Begin with an initial set of sampling locations
I Compute the posterior
I Add a new location in the best un-sampled location
I Best = “lowest variance”, “locally lowest variance”, “most

valuable-of-information”

NB: The over-all design here is preferential!
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Joint modelling for point patterns
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OUTLINE

I Describe framework in fitting a joint model to a set of point
patterns.

I Discuss three different case studies.

Example

1. Marked point patterns for the plant speciesThymus Carnosus,
observed in six different plots.

2. Koalas!

3. Muskoxen at Greenland, observed at different time points within
the same study area.
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FRAMEWORK

I Assume a set of spatial point patterns

x1, . . . , xT,

observed within bounded regions Ωt ∈ R2.

I Each pattern
xt = {xt1, . . . , xtnt}.

is regarded as a realisation from a random spatial point process
Xt, where nt is the number of points.
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THE LOG-GAUSSIAN COX PROCESS

I Define random intensities

Λt(s) = exp{ηt(s)}

where {ηt(s) : s ∈ Ωt ∈ R2} is a Gaussian random field.

I Conditional on the random intensities

Xt | Λt(s) ∼ Poisson(exp(ηt(s)))
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THE LATTICE-BASED APPROACH

I Define

sti : Grid cell i in Ωt

yti : Number of points in grid cell sti for pattern xt

ηti : Representative value of the Gaussian field for pattern xt

in cell sti.

I Point patterns are assumed conditionally independent

yti|ηt(sti) ∼ Poisson(|sti| exp(ηt(sti))).

I Special case: Ωt = Ω for all t such that sti = si.
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FITTING A JOINT MODEL

I Each point pattern might be too small to make sensible model.

I Fit joint model to several point patterns:

ηti = αt +

nβ∑
j=1

βjztji +

nf∑
k=1

fk(ctki) + εti, t = 1, . . . ,T.



185/ 317

Introduction Strategies for space-time modelling Better exposure measurements through better design Modelling point patterns Applications

ESTIMATION BASED ON SEVERAL POINT PATTERNS

Use all of the point patterns to:

I Estimate fixed linear effects of covariates, that is the parameters
β1, . . . , βnβ

.

I Estimate non-linear random effects of covariates, that is the
underlying smooth functions f1, . . . , fnf .

I Account for dependencies/variation between different patterns.

In R-INLA:
The joint model is fitted just stacking the responses and covariate
terms in vectors.
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The joint model is fitted just stacking the responses and covariate
terms in vectors.
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UNDERSTANDING MARKED POINT PATTERNS

distinguish
a) different types of marks
b) different roles of marks

a) is obvious
I qualitative marks (species, age-groups, infected vs.

non-infected...)
I quantitative marks (size, age, chemical properties...)

b) is harder...
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MARKED POINT PATTERNS

different roles of marks
(i) models of the pattern that take the marks into account:

aim is to use marks to “explain" the pattern
(ii) models of the marks in a point pattern:

aim is to model the marks – often along with the pattern (!)
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UNDERSTANDING MARKED POINT PATTERNS

for qualitative marks
(i) models of the pattern that take the marks into account:

“superposition"
I consider several (sub-)patterns formed by different types of points
I different subpatterns have been generated by separate (but not

necessarily independent) mechanisms
example: pattern formed by a multi-species plant community

(ii) models of the marks in a point pattern
“labelling"

I consider a single pattern with different (qualitative) characteristics
I some underlying mechanisms have lead to different qualitative

properties of the points
example: pattern formed by a single species but individuals have
been affected or not affected by a disease
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UNDERSTANDING MARKED POINT PATTERNS

for quantitative marks
(i) models of the pattern that take the marks into account:

I very rarely looked at
I difficult...

(ii) models of the marks in a point pattern
I we’ll discuss an example tomorrow
I we’ll actually discuss an example with several (non-independent)

marks
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EXAMPLES

qualitative marks
I superposition – revisiting the rainforest
I superposition – a joint model
I labelling – replicated patterns

quantitative marks
I revisiting the joint model – and the koalas
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THE RAINFOREST REVISITED...

superposition
I bivariate point pattern of two different rainforest tree species, the

species Protium tenuifolium (“species 1”) and Protium panamense
(“species 2’)

I model the spatial pattern formed by pairs of species given
spatial covariates

I model both species within a single model
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THE RAINFOREST REVISITED...

superposition
I bivariate point pattern of two different rainforest tree species, the

species Protium tenuifolium and Protium panamense
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TWO SPECIES – CO-OCCURENCE

I the co-occurrence of the two species might be due to interaction
between individual trees (local interaction) or due to shared
environmental preferences

I these two effects are likely to be strongly confounded
I approach:

I fit a joint model to the two species
I use a shared spatial effect, representing the shared environmental

preferences
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A JOINT MODEL

I have two latent fields

η
(1)
ij = α1 +

∑
p∈I

β1pzp(sij) + βs1fs(sij),

η
(2)
ij = α2 +

∑
p∈I

β2pzp(sij) + βs2fs(sij)

I note that fs(sij) appears twice!



195/ 317

Introduction Strategies for space-time modelling Better exposure measurements through better design Modelling point patterns Applications

A JOINT MODEL – SPECIFICATION IN R-INLA

I a joint model for the two species basically means that we have
two response variables

I R-INLA requires that these are stored as the column vectors of a
2n× 2 matrix B, where n = ncells is the number of grid cells

I first column: counts for the first species in entries 1, . . . ,n and
NAs otherwise

I second column: NAs in entries 1, . . . ,n and counts for the second
species in entries n + 1, . . . , 2n

I we will revisit the principle a few times...
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A JOINT MODEL – SPECIFICATION IN R-INLA

I a joint model for the two species basically means that we have
two response variables

I we also have an area vector E of length 2n with the general
intensity of point pattern 1, in entries 1, . . . ,n and that of species
2 in entries n + 1 . . . , 2n

I also separate vectors i.spat1, i.spat2 for the spatial effects,
containing NAs in entries n + 1, . . . , 2n for species 1 and in
entries 1, . . . ,n for species 2

I similarly for the covariates
I and a vector mu with 1 in 1, . . . ,n and 2 in entries n + 1 . . . , 2n to

get separate intercepts



197/ 317

Introduction Strategies for space-time modelling Better exposure measurements through better design Modelling point patterns Applications

A JOINT MODEL

Specification in R-INLA becomes a bit more lengthy...
formula = B ∼ mu - 1 + z11 + z12 + z21 + z22
+ f(i.spat1, model = "rw2d", ...)
+ f(i.spat2, copy = "i.spat1", fixed=FALSE, ...)

I -1 tells INLA to not fit a joint intercept but to estimate two
separate intercepts

I specify the two different likelihoods when calling inla:

result = inla(formula, family=c("poisson","poisson"),...)

spatial effect (for both species)
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INTERIM CONCLUSIONS I

I fitting a joint model in R-INLA can be done easily
I and it still doesn’t take too long...
I we fitted a joint model to the two species
I the shared spatial effect accounted for shared environmental

preferences
I this is still a rather boring model...
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INTERIM CONCLUSIONS II

η
(1)
ij = α1 +

∑
p∈I

β1pzp(sij) + βs1fs(sij); η
(2)
ij = α2 +

∑
p∈I

β2pzp(sij) + βs2fs(sij)

I two species have a correlation of +1 or -1 everywhere in space
we can construct more complex multi-type models:

I models where the two patterns have a correlation ρ ∈ [−1, 1] but
otherwise similar spatial autocorrelation range

I models where the two patterns have a correlation ρ ∈ [−1, 1] and
different spatial autocorrelation range

I joint models can be very useful for multi-type patterns... but also
for other marked patterns...
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CONSERVATION STUDY

Aim: prevention of decline in
abundance of koalas in Australia

⇒ need to determine properties of
an optimal (or suitable) habitat



201/ 317

Introduction Strategies for space-time modelling Better exposure measurements through better design Modelling point patterns Applications

I study conducted at the Koala Conservation Centre on Phillip
Island, near Melbourne, Australia

I run from 1993 to 2004
I ≈ 20 koalas present in the reserve at all times throughout study
I reserve enclosed by a koala-proof fence
I koalas feed on eucalyptus leaves which are toxic to most

animals; koalas have adapted to this
I main interest is to assess if koalas feed selectively, i.e. if they

choose trees with the least toxic/ most nutritious leaves
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FOLIAGE COLLECTION AND ANALYSIS

I all 915 trees in woodland individually numbered and mapped

spatial autocorrelation:
I trees may cluster locally due to seed dispersal mechanisms

(small spatial scale)
I trees are likely to aggregate in areas where soil nutrient levels are

good (large spatial scale)
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FOLIAGE COLLECTION AND ANALYSIS

I leaf samples taken from each eucalyptus tree and analysed for
palatability

palatability: combination of toxins and nutrients based on previous
studies

spatial autocorrelation: palatability likely to not be independent of
spatial pattern:

I in areas with high soil nutrient levels, nutrients in leaves high
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KOALA TREE VISITATION

I tree use by individual koalas collected at monthly intervals
between 1993 and March 2004

I entire reserve searched for koalas
I identities of all koalas found and of the trees occupied were

recorded

spatial autocorrelation: koala visits likely to not be independent of
spatial pattern and palatability:

I koalas move very little and are more likely to favour areas with
higher tree density

I koalas are likely to favour trees with high palatability
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in summary this suggest:
I tree locations depend on (unobserved) soil nutrients levels and

local clustering
I palatability depends on spatial pattern (through soil nutrients

levels)
I koala visitation depends on spatial pattern, palatability

I spatial point pattern data, to be modelled with a (marked)
spatial point process

two types of marks:
1. palatability of leaves (“leaf marks")
2. koala use of trees (depends on palatability) (“frequency marks")

⇒ quantitative marks and another joint model
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The spatial pattern with the leaf marks and the frequency marks
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THE MODELLING APPROACH

I for the pattern of trees we have

ηij = α1 + β1 · fs(sij) + uij,

I the marks m1 depend on the pattern through a joint spatially
structured effect

κijkij = α2 + β2 · fs(sij) + vijkij ,

where vijkij is another error term
I the marks m2 depend both on the spatial pattern through a joint

spatial effect and on the marks m1

νijkij = α3 + β3 · fs(sij) + β4 ·m1(ξijkij) + wijkij ,

where wijkij denotes another error term
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DEPENDENT MARKS – SPECIFICATION IN R-INLA

I now we have three response variables

I R-INLA requires that these are stored as the column vectors of a
3n× 3 matrix B, in analogy to before

I three separate vectors i.spat1, i.spat2, i.spat3 for the spatial effects;
similarly for error terms

I and a covariate z containing the values of the leaf marks only in
the rows referring to the frequency marks
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DEPENDENT MARKS – SPECIFICATION IN R-INLA

Specification in R-INLA is very similar to what we saw for the
rainforest data - even though the models are very different
formula = B ∼ mu - 1 + z
+ f(i.spat1, model = "rw2d", ...)
+ f(i.spat2, copy = "i.spat1", fixed=FALSE,...)
+ f(i.spat3, copy = "i.spat1", fixed=FALSE, ...)
+ f(i.error1, model = "iid", ...)
+ f(i.error2, copy = "iid", ...)
+ f(i.error3, copy = "iid", ...)
We specify the three different likelihoods when calling inla
result =
inla(formula,...,family=c("poisson","normal","poisson"),...)
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RESULTS – MODEL COMPARISON

Model Terms DIC Time (s)
1. Only error terms 11308 4
2. Add intercepts 8362 4
3. Add fixed covariate (β4) 7640 5
4. Add spatial effect

only for pattern 7511 25
for pattern and leaf marks 7312 71
for pattern and frequency marks 7193 61
for pattern and both marks 6943 142

Table: DIC values and computation time for different fitted models for the koala data.
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RESULTS – SPATIALLY STRUCTURED EFFECT
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RESULTS – SPATIALLY UNSTRUCTURED EFFECTS

estimated error fields for the pattern, the leaf marks and the
frequency marks
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RESULTS

Parameter Mean 95% credible interval
β2 -1.18 [-1.39,-0.96]
β3 1.72 [1.45, 1.98]
β4 1.38 [1.24, 1.52]

Table: Posterior means and 95% credible intervals for parameters in the koala model.

I the full model shows the best fit
I negative β2: palatability is low where the trees are aggregated

(competition for soil nutrients?)
I positive β3: koalas are more likely to be present in areas with

higher intensity
I positive β4: positive influence of palatability on the frequency of

koala visits to the trees
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CASE STUDY II: Thymus carnosus

I Evergreen coastal shrub, up to 0.5m high.
I Endemic to the southwestern of the Iberian Peninsula coastal

dunes
I Protected species, in danger of extinction!
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BACKGROUND

I High mortality of Thymus carnosus observed in 2008.

I Possibly due to severe drought in 2005, water table dropped
sharply.

I Spatial pattern of mortality/decline in health not homogeneous,
higher mortality in lower areas of the dunes.

Aim:
Understand threats to survival of Thymus Carnosus to support
conservation.
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THREE DIFFERENT STUDY AREAS

1. High herbivory plots
I Easily accessible for livestock.
I Outside protected area.

2. Low herbivory plots
I Limited livestock access
I Outside protected area

3. Non herbivory plots
I Not accessible to livestock.
I Within protected area
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COMPETING SPECIES: Retama monosperma

I Leafless leguminous shrub, up to 3.5m high.

I Planted in the El Rompido spit in the 1930s as a dune stabilizing
species.

I Threat to dune landscapes, suppresses natural vegetation.
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DESCRIPTIVE SUMMARY

Plot Number of Dead/unhealthy Retama Altitude (m)
thymus plants plants (%) cover (%)

High12 1309 65.62 23.84 [70, 246]
Low1 741 3.91 31.00 [49, 172]
Low2 526 11.03 26.00 [71, 246]
Nat1 206 13.11 54.88 [62, 101]
Nat2 79 30.38 62.24 [70, 107]

I High12 denotes two adjacent plots with high livestock pressure,
analysed as one plot

I The other plots are in different areas and assumed independent.
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MARKED POINT PATTERNS

Covariates:

I Different levels of livestock pressure

I Distance to water table (altitude)

I Coverage of competing species Retama monosperma.

Recorded marks:
All plants marked on a scale from 0 (dead) to 4 (very healthy).
Categorized as:

0 - 2: Poor health
3 - 4: Alive and healthy
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NOTATION

I Point patterns for t different (rectangular/square) plots

x1, . . . , xt

I Fixed covariates
z1(sti), . . . , znβ

(sti)

where sti denotes cell i in plot t.

I Response variables

yti : Observed number of points in grid cell sti.

mti : Number of healthy plants in grid cell sti.



221/ 317

Introduction Strategies for space-time modelling Better exposure measurements through better design Modelling point patterns Applications

CONDITIONAL DISTRIBUTIONS FOR PATTERN AND

MARKS

I Number of points in each cell:

yti|η(1)
ti ∼ Poisson(|sti| exp(η

(1)
ti )),

I Number of healthy plants:

mti|η(2)
ti ∼ Binomial(yti, pti),

where

pti =
exp(η

(2)
ti )

1 + exp(η
(2)
ti )

is the probability of plants being healthy.
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JOINT MODEL FOR PATTERN LOCATIONS AND MARKS

Need additional tools in R-INLA:

multiple likelihoods: Define response matrix[
counts NA

NA marks

]
and specify the families in the inla-call.

replicate: Define conditionally independent replicates of
the same latent model, given hyperparameters.

copy: Create a copy of a model component, when it is
used more than once for each observation.
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FORMULA SPECIFICATION IN R-INLA

I Assume a common spatial effect for counts and marks in each
plot.

I Use all plots to estimate fixed effects for counts and marks.

Formula specification:

> formula = y.mat
~ -1 + beta.counts + beta.marks
+ cov.counts + cov.marks + ...
+ f(I1, model="rw2d", nrow=nrow, ncol=ncol,

replicate=plot.location, hyper=...)
+ f(I2, copy="I1",

replicate=plot.marks, fixed=F)
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RUNNING THE MODEL

Run inla:

> result = inla(formula, family =c("poisson","binomial"),
data = data.frame, Ntrials = Ntrials,
E = Area)

where family =c("poisson","binomial") specifies the two
different distributions for the response variables and

E : The area of each of the cells
Ntrials : The number of plants in each cell.

Results in:

Illian, J.B, Martino, S., Sørbye, S. H., Gallego-Fernandez, J. B., Zunzunegui, M., Paz Esquivias, M.

and Travis, J. (2013). Fitting complex marked point patterns with integrated nested Laplace

approximation (INLA). Methods in Ecology and Evolution, 4, 305–315.
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CASE STUDY I: MUSKOXEN IN ZACKENBERG VALLEY,
GREENLAND

Dataset: Details the spatial location of muskoxen in a 45 km2

census area, observed in summer months since 1996.
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ZACKENBERG VALLEY, NORTHEAST GREENLAND
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ENVIRONMENTAL MONITORING PROGRAM

Zackenberg Basic:

I Large-scale monitoring programs, used to study the dynamics
and potential climate effects on a high-arctic ecosystem:

http://www.zackenberg.dk/monitoring/

I Monitoring programs for a large variety of organisms, including
the muskoxen.

I Provides long-term time series on vegetation and climate
variables.

http://www.zackenberg.dk/monitoring/
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FACTS FOR THE MUSKOXEN DATA: 1996 - 2009

I Data collected on 144 different days.

I A total of 2249 observed muskoxen herds

I Herd size ranges from 1 to 59 individuals, giving a total number
of 9975 individuals

I Each animal has been approached and categorized according to
gender and age.
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MUSKOXEN HERDS OBSERVED IN THE YEAR 2000
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1996 - 2009: SUPERIMPOSED PATTERNS OF

MUSKOXEN HERDS

1996 1997 1998 1999 2000

2001 2002 2003 2004 2005

2006 2007 2008 2009
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PURPOSE OF A STATISTICAL ANALYSIS

Long-term aim:
Investigate potential effects of climate changes.

Other relevant biological issues
Understand the dynamics of the spatial distribution of muskoxen:

I Influence of environmental covariates.

I Seasonal and annual variation.

I Interaction between different categories of the muskoxen.
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INPUT

I Time variables: Days and years

I Fixed covariates:

- Altitude: Can be regarded as a proxy for vegetation quality.

- Ndvi: Normalized differential vegetation index, measure
of vegetation greenness.

- Snow: Binary variable for snow cover.

I Spatially structured effect:
Account for spatial autocorrelation not explained by covariates.
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A JOINT MODEL FOR ALL PATTERNS

For t = 1, . . . ,T:

ηti = βyear +

nβ∑
j=1

βjztj(si) + fs(si) + v(t), i = 1, . . . ,N

where

βyear : Factor for years
βj : Fixed effects of covariates

fs(.) : Common spatial effect
v(t) : Random iid variation in intensity on different days.

Dimension: T ×N = Days × grid cells.
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SUBSET: NDVI AND SNOW COVER ONLY AVAILABLE

FOR SIX YEARS

Year No. of days No. of herds Average: Herds pr. day
1998 13 99 7.62
1999 8 78 9.75
2000 8 70 8.75
2002 9 123 13.67
2004 14 202 14.43
2005 10 208 20.80

All years 62 780 12.58

Dimension: T ×N = 62× 4533 = 281046
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ALTITUDE

Ranges from sea level to 600 meters above sea level:
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NORMALIZED DIFFERENTIAL VEGETATION INDEX
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SMOOTHED!
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SNOW COVER
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COMMENTS: NDVI AND SNOW MEASUREMENTS

I Requires intensive pre-processing

- Corrections, removal of artifacts etc.

I Other problems

- Missing data, varying accuracy etc.

I Only measured once a year, around August 1.
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MORE DETAILED COVARIATE INFORMATION?

I Ongoing work with the databases:

- Based on satellite data, estimates of snow and vegetation will be
available in every pixel for every day since 2003.

I Incorporating this in the model:

- Estimate quantitative indices for vegetation quality, for example
based on time since snow melt.
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TWO MAIN CATEGORIES OF MUSKOXEN HERDS

I Each muskoxen herd have been categorized based on gender
and age (a total of 17 categories)

I Current analysis:

Males: Single old males and herds of young males.

Females: Herds with females, with or without calves.
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ANALYSIS OF THE TWO CATEGORIES

Hypotheses:
I Females and males have different spatial distributions.

- Females need high-quality food, change area from year to year
based on food availability.

- Males keep to the same area, need enough food.

I Distribution between females and males changes during the
summer.
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ESTIMATED INTENSITY, ALL YEARS
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ESTIMATED INTENSITY 1998
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ESTIMATED INTENSITY 1999
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ESTIMATED INTENSITY 2000
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ESTIMATED INTENSITY 2002
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ESTIMATED INTENSITY 2004
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ESTIMATED INTENSITY 2005
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ESTIMATED INTENSITY PRE- AND POST- SEASON
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SEASONAL VARIATION? ESTIMATED INTENSITIES
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SEASONAL VARIATION? ESTIMATED INTENSITIES
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SUMMARY MUSKOXEN

I Want to assess differences between different groups of muskoxen
herds and study seasonal variation.

I Need joint model as many of the individual patterns are small.

In general:
Sequences of point patterns are easily analysed in R-INLA, just
stacking all observations and covariate values in vectors.

I Include some commonly estimated terms.

I Allow for variation between different patterns.
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SUMMARY

I Joint models are easily adapted to analyse different sets of point
patterns.

I Use information given by several point patterns to give more
accurate estimates.

I Use commonly estimated terms to model dependency structures
between point patterns, or between pattern locations and marks.
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Applications
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Modelling spatial phenomena has become increasingly important in
recent years as scientific questions arise in fields such as Ecology,
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Earth Sciences
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Water resources planning
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The main tasks is diverse, ranges from descriptive to predictive,
mainly driven by industrial, health or conservationist concerns.

In spatial problems, a sensible approach is to assume that the
observations come from a spatial process

X = {Xs : s ∈ D}

indexed by a spatial set D with Xs taking values in a state space E .

The positions of observation sites s ∈ S may be fixed in advance or
may be a random set.
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Tipically, S is a 2-dimensional subset, S ⊂ R2.

S is 1-dimensional for applications such as chromatography, crop
trials along rows, pollution along river beds
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Or a subset of R3 in fields like mineral prospection, earth science, 3D
imaging).

However, fields such as meteorology, Bayesian statistics and
simulation may even require spaces S of dimension d > 3.
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In some studies, data are collected both in space and in time, adding
a temporal dimension to the statistical problem.

Data collected in space and time are becoming widely available as the
result of new monitoring technologies (satellites, and continuous
record monitoring stations), adding a new dimension to the statistical
modelling problems

Space-time applications arise regardless of the support of the data
(aggregated, point or continuos) and statistical methodologies have
been developed for each problem type.

We now show a couple of applied examples.
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Markov Random Fields
In some applications, the data represent aggregates over areas. The
mesurement is attached to a point inside each area,

D = {s1, s2, . . . , sn}

are the locations to which we associate a value of Z.

Define Z(si) = Zi y Z = (Z1, . . . ,Zn)

Definition
{Z1,Z2, . . . ,Zn} form a Markov Random Field ⇐⇒ Pr(Zi|z−i)
depends only on the neighbouring sites to location i.
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To make inferences we need to know Pr(Z1,Z2, . . . ,Zn). For this, we
need the following assumption :

Positivity condition

Pr(Zi = 0) > 0 =⇒ Pr(Z = 0) > 0

The joint distribution of {Z1,Z2, . . . ,Zn} is found in the following
steps:
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1.- Factorization Theorem (Besag, 1974). Suppose that
{Z1,Z2, . . . ,Zn} satisfy the positivity condition. Then

Pr(z)

Pr(y)
=

n∏
i=1

Pr(zi|z1, , zi−1, yi+1, , yn)

Pr(yi|z1, , zi−1, yi+1, , yn)

where z y y are two valid realizations of the process.

2.-Define the potential energy

Q(z) = log
{

Pr(z)

Pr(0)

}
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This implies

Pr(z)

Pr(0)
= exp{Q(z)}

=⇒
Pr(z) ∝ exp{Q(z)}

and therefore

Pr(z) =
exp{Q(z)}∑
y exp{Q(y)}
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3.- Q(z) satisfies: a)

Q(z) =
∑n

i=1 ziGi(zi) +
∑

i<j zizjGij(zi, zj) + · · ·
+z1z2 · · · znG12···n(z1, z2, · · · , zn)

The G functions model the trend and the interactions between the

sites.

b)

Pr(zi|{zj : j 6= i})
Pr(0i|{zj : j 6= i})

=
Pr(z)

Pr(zi)
= exp{Q(z)−Q(

zi)}
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Note: The G satisfy

ziGi(zi) =
Pr(zi|{0j : j 6= i})
Pr(0j|{0j : j 6= i})

y

zizjGij(zi, zj) =
Pr(zi|zj, {0k : k 6= i, j})Pr(0i|{0k : k 6= i})
Pr(0i|zj, {0k : k 6= i, j})Pr(zi|{0k : k 6= i})

Definition
si y sj son vecinos ⇐⇒ Pr(zi|{zj : j 6= i}) depende de zj

Definition
A clique is composed either of a single site or by a set of mutual
neighbouring sites.
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Hammersley-Clifford Theorem:
Suppose that the Markov Random field{z1, . . . , zn} satisfies the
positivity condition. Then G12···p(z1, z2, · · · , zp) = 0 unless sites
s1, . . . , sp form a clique
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5.- Automodels. Suppose that

Pr(zi|{zj : j 6= i}) = exp
{

Ai({zj : j 6= i)Bi(zi) + Ci(zi) + Di({zj : j 6= i})
}

and that there are only firs order interactions among sites. Then

Ai({zj : j 6= i) = αi +
n∑

j=1

θijBj(zj); i = 1, . . . , n

where θii = 0; θ?ij = θji y θij = 0 unless si y sj are neighbours.
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5.- Example: Autologistic model.- The binomial distribution can be
expressed as

Pr(zi) = exp

{
zilog

(
αi +

n∑
i=1

θijzj

)
+ log

(
ni

zi

)

+nilog(1− exp{αi +

n∑
i=1

θijzj})

(3)

Covariate information can be easily incorporated.
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Space time analysis of forest fire ignitions in Oregon

Fire plays a key role in plant communities:

I Recycling of minerals.

I Trigers germination of dormant seeds.

I Removes plant material from surface→ growth of new plants.

I Promotes habitat dynamics.
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Conditions for fire:

Fuel ————– Ignition source
� �

Oxigen
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THE DATA SET
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COVARIATES

For each site, we have the following covariate information
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THE DATA SET
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THE DATA SET
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THE DATA SET
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The time unit is a quarter, to avoid too much zeroes if a monthly basis
is used

There goal is to assess the risk factors associated to fire ignitions and
to get a predictive model.

The problem may be approached using space-time point process
methods or by rasterizing the study area and use a MRF approach.
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Consider an area D divided in n area units (pixels) and a set of
observation times equally spaced (quarters). Let

Yi =

{
1 at least a fire ignition at site i and quarter t,
0 otherwise

Given the binary nature of the data yit, we fitted an autologistic
regression model of the form

ξit = logit(pit) = Vi + Ei + Si + Rit + ψit

to the fire presence-absence data.

The spatial term ψit can be taken as a surrogate for unobserved
variables that are correlated in space and time (Besag , 1995 ).
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We assumed a flat, noninformative prior distribution (Box and Tiao,
1973) for the nonspatial parameters in our model

π(ψ) ∝ λ0.5N|W|0.5 exp{−0.5λψ′Wψ}

Wii = νi, Wij = 1 if pixels i and j are neighbors and Wij = 0 otherwise.

For the precision λ we assumed a G(1, 1) prior density
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The posterior density of the parameters is proportional to

(
N∏

i=1

exp
{

yix′iβ + αRt + ψit
}

1 + exp
{

yix′iβ + αRt + ψit
})× λ0.5N|W|0.5 exp{−0.5λψ′Wψ}

×λa−1 exp {−bλ}
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Full conditionals

π(β, α|·) ∝

(
N∏

i=1

exp
{

yix′iβ + αRt + ψit
}

1 + exp
{

yix′iβ + αRt + ψit
})

π(ψ|·) ∝

(
N∏

i=1

exp
{

yix′iβ + αRt + ψit
}

1 + exp
{

yix′iβ + αRt + ψit
})× exp{−0.5λψ′Wψ}

π(λ|·) ∼ Γ(a + 0.5N, b +

N∑
i=1

νi(ψit − ψ̄)2)
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Implementation Vegetation was shrinked into 9 categories:
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Results : Probability intervals for the covariate coefficients related to
vegetation
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Results : Probability intervals for the covariate coefficients related to
elevation, slope and rainfall by quarter
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Spatial effect 86-87
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A DIFFERENT APPROACH FOR THE SAME

PROBLEM:SPACE TIME POINT PROCESS.

Consider a spatio temporal point process X = {Xt : t ∈ Z} , driven by
an intensity functon Λ = {Λt : t ∈ Z}

We further assume

λ(u, t) = λ1(u)λ2(t)S(u, t), ES(u, t) = 1, (u, t) ∈ R2 × Z

where

log[λ1(u)] = Z1(u) · θ1,1 log[λ2(t)] = Z2 · θ1,2
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We include a time dependent covariate
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MODEL

We let

logλ1(u) = c(βV,C,E) +

9∑
i=1

βV
i 1[V(u) = i] +

16∑
j=1

βC
j 1[C(u) = j]+

βE
1 E(u) + βE

2 E(u)2 (4)

and

logλ2(t) =β0 + βS
1 cos(ηtt) + βS

2 sin(ηtt) + βS
3 cos(2ηtt)+

βS
4 sin(2ηtt) + βT

1 T(t) + βT
2 T(t)2 + βT

3 T(t)3+

βT
4 T(t)4 + βT

5 T(t)5 (5)
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MODEL

For the shot-noise component we also assume a separable kernel

S(u, t) = δ

∞∑
s=−∞

∑
y∈˘s

φ(u− y, t− s)

ϕ(u, t) = φ
(2)

σ2 (u)χζ(t), (u, t) ∈ R2 × Z. (6)

φ
(2)

σ2 (u) =
1

2πσ2 exp
(
−‖u‖

2

2σ2

)
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MODEL

χζ(t) is concentrated on 0, . . . , t∗ − 1 with t∗ = 20

χζ(t) = ζ(t∗ − t), t = 1, . . . , t∗ − 1, (7)

is a decreasing linear function so that χζ becomes a probability

density function.

Note that

χζ(0) = 1− ζt∗(t∗ − 1)/2 and 0 ≤ ζ ≤ 2/[t∗(t∗ − 1)].
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ESTIMATION

Regression parameters are obtained by maximum composite
likelihood, ie,

max(θ1,1)

{∑
u∈xW

logλ1(u; θ1,1)−
∫

W
λ1(u; θ1,1) du

}
and

max(θ2,2)

{∑
t∈T

nt logλ2(t; θ1,2)−
∑
t∈T

λ2(t; θ1,2)

}
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The rest of the parameters are estimated by minimum contrast., ie,

minimize

t∗−1∑
t=1

[
Corr(t; ζ)− Ĉorr(t)

]2

where

Corr(t; ζ) = χζ ∗ χ̃ζ(t)/χζ ∗ χ̃ζ(0); χζ(t) = ζ(t∗− t), t = 1, . . . , t∗−1

and ∫ a

0

(
K∪T(r;σ, δ)b − K̂∪T(r)b

)2
dr

K∪T(r;σ, δ) = πr2 + δ′
[
1− exp

(
−r2/(4σ2)

)]
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For the spatio-temporal margins we use

K̂∪T(r) =

6=∑
u1∈x, u2∈x

1[‖u1 − u2‖ ≤ r]wu1,u2

ρ∪T(u1)ρ∪T(u2)
(8)

and compare

Corr(t) =
χ ∗ χ̃(t)
χ ∗ χ̃(0)

, t = 0, 1, . . . . (9)

to

Ĉorr(t) =

∑m−t
s=1 [(nsns+t)/(λ2(s)λ2(s + t))− 1]∑m

s=1 [(ns/λ2(s))2 − 1]
. (10)
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ESTIMATES: δ̂ = 2672.72, σ̂2 = 81.05

Table: Estimated regression parameters.

Index β̂S
i β̂T

i β̂V
i β̂C

i β̂E
i

1 -1.6700 0.0527 -0.9769 0.0150 -0.0293
2 2.0360 -0.0059 0.1050 0.1479 -0.6040
3 0.1631 -9.04E-6 -0.1273 -0.0243
4 0.1187 4.38E-6 0.5856 -0.0548
5 -4.69E-8 0.6260 0.0836
6 0.6810 0.2055
7 0.2307 0.1208
8 -0.0529 0.0971
9 -1.0713 0.0370

10 0.1892
11 -0.1148
12 -0.0569
13 -0.2364
14 0.0826
15 -0.3104
16 -0.1811
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ESTIMATES
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Model Control is done by simulation, and computing sample
versions of the 2nd order properties:

K̂(r, t) =
1

m− t

m−t∑
t′=1

K̂(r, t′, t′ + t), (11)

where

K̂(r, t1, t2) =

6=∑
u1∈xt1 , u2∈xt2

1[‖u1 − u2‖ ≤ r]wu1,u2

ρ(u1, t1)ρ(u2, t2)
(12)

Assuming λmax
1 = supu∈W λ1(u) <∞ and letting

ν(s) =
∑

t∈T λ2(t)χ(t− s) for s ∈ T̃, the steps are as follows



307/ 317

Introduction Strategies for space-time modelling Better exposure measurements through better design Modelling point patterns Applications

I Generate the mother processes Φ̃s, s ∈ T̃.
I For each s ∈ T̃ and y ∈ ˜̆s,

(i) generate a realization n(y, s) from a Poisson distribution with
parameter λmax

1 ν(s)δ;
(ii) generate n(y, s) i.i.d. points with density φ(u− y), u ∈ R2;

(iii) make an independent thinning, where we retain each point u from
(ii) with probability (λ1(u)/λmax

1 )1[u ∈ W];
(iv) to each retained point u from (iii) associate a time tu generated from

the density ps(t) = λ2(t)χ(t− s)/ν(s), t ∈ T.
I For each t ∈ T, return all retained points u with tu = t (no matter

which s ∈ T̃ and y ∈ ˜̆s are associated to u).

These points constitute the approximate simulation of Xt ∩W.
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RESULTS: CONFIDENCE BANDS FOR K̂∪T(r)
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RESULTS: CORRELATION FUNCTION.
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RESULTS:K̂(r, t, t + l), l = 0, 1, 2
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RESULTS:INTENSITY FUNCTION AND RESIDUALS.
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CHEMICAL SPILL IN A RIVER

On 2014 there was an accidental spill from industry in a river in
México

The government sent a team to make chemical analyses to monitor
the extent of the damage

Samples were taken during 60 consecutive days at 32 locations along
the river, covering 220 Km

Data may be considered as a random field in R× [0,T]
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A simple kriging analysis comes handy to give a quick answer to the
question Is the pollution diluting along time and distance?

Metals under study were As, Al, Cd, Cu, Cr, Mn, Ni, Pb.

Variograms along time and space (distance) were computed and a
prediction grid was used to obtain the kriging "map".
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Selected variograms: As, Ni.
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Results: As, Cr
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Results:
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I Space time models provide a wide set of tools to analyze
different kind of problems.

I Depending on the problem kind, fitting methods may be simple
or computing intensive (Simple kriging or MCMC)

I Care must be taken to check the validity of the assumptions
made (conditional independence)

I Separability or not is an importan issue in order to provide
adequate answers to the scientific problem under study.

I Space-time models are still a rich subject of study, with many
open problems waiting for a solution. Ongoing research is
expected to provide better modeling approaches in the near
future.
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