Quantifying the Health Impacts of **Air Pollution**

Day 1: The Health Impacts of Air Pollution

Prof. Gavin Shaddick University of Exeter

7th August 2017

OUTLINE

An Introduction to R

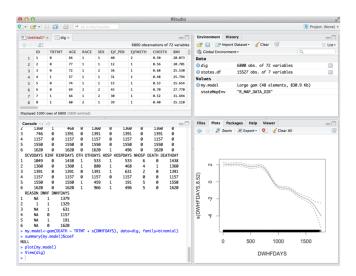
Health Impact Assessment associated with outdoor air pollution

An Introduction to R

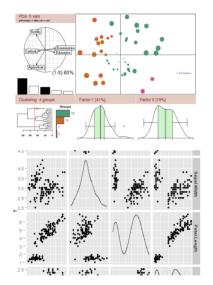
STATISTICAL SOFTWARE

Excel

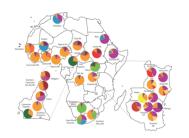
- simple descriptive statistics, plots, and regression can be done in the basic installation of Excel
- the Analysis Toolpak allows many more methods to be used such as ANOVA and hypothesis tests.


SPSS, SAS, Stata

- general purpose statistical packages that can perform a very wide variety of analyses
- cover everything from initial descriptive analyses to very complex methods.
- GUI interfaces: functions found by menus.


▶ R

- a language and environment for statistical computing and graphics
- open source with many many user packages
- it's free! (Open-Source)


RSTUDIO

R GRAPHICS

DOES R HAVE EPIDEMIOLOGICAL PACKAGES?

- ▶ The default installation of R does not have packages that specifically implement epidemiological applications.
- ▶ However, many of the statistical tools that epidemiologists use are readily available, including statistical models such as unconditional logistic regression, conditional logistic regression, Poisson regression, Cox proportional hazards regression, and much more.

DOES R HAVE EPIDEMIOLOGICAL PACKAGES?

- ► To meet the specific needs of public health epidemiologists and health data analysts, there are many epidemiology packages.
- ▶ There are also packages to perform sample size calculations, survival analysis, clustering, mapping, almost everything you can think of.
- ▶ "During the last decade, the momentum coming from both academia and industry has lifted the R programming language to become the single most important tool for computational statistics, visualisation and data science."

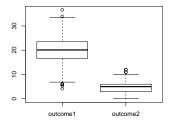
BASE R COMES WITH MANY STATISTICAL TOOLS

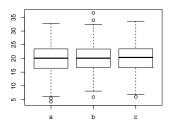
Summary statistics

- summary(), fivenum(), stem() examine the distribution of
 data
- ▶ boxplots()

Test statistics

- t.test() returns a one-sample t-test. Can be used for a two-sample t-test by setting paired=TRUE
- wilcox.test() returns a one-sample non-parametric Wilcoxon (Mann-Whitney) test. Similarly, can be used for a two-sample Wilcoxon test by setting paired=TRUE


SUMMARY STATISTICS IN R


▶ If we have a dataset mydat then we can summarise as follows

SUMMARY STATISTICS IN R

▶ We can create boxplots as follows

```
boxplot(mydat)
boxplot(outcome1~grp, data=mydat)
```


TEST STATISTICS IN R

 We can perform test statistics such as t-test and Wilcoxon-Rank test as follows

OUTPUTS

- ▶ Linear regression: lm(formula, data)
- Returns object of class 1m
 - summary (x) comprehensive summary of results
 - print (x) precise version of the object
 - ▶ deviance(x) residuals
 - ▶ plot (x) returns plot: residuals, fitted values and some diagnostics
 - coef (x) extract regression coefficients
 - ▶ predict (x, newdata=...) second argument takes a vector or matrix of new data values you want predictions for
 - step() add or drop terms, model with smallest AICs returned.

OUTPUTS

► Assign the function to an object to extract additional output:

my.reg <- lm(outcome1~outcome2, mydat)</pre>

PACKAGES ARE ADDITIONAL COLLECTIONS OF FUNCTIONS

- rmet.a
- ▶ ggplot2
- ▶ epicalc
- ▶ epi
- ► epitools
- ► epiR
- ▶ pwr
- ► MASS
- ▶ lattice
- ▶ lme4
- ▶ mgcv
- ▶ Survival
- **>** ...

15/17

Health Impact Assessment associated with outdoor air pollution

- ► City XYZ, Population: 1,000,000
- ▶ Overall Mortality rate: 80/10000
- ▶ 6% increase in mortality per each $10\mu gm-3 PM_{2.5}$ increase
- ► Counterfactual: 5μ gm-3

► City XYZ, Population: 1,000,000

▶ Overall Mortality rate: 80/10000

▶ 6% increase in mortality per each $10\mu gm-3 PM_{2.5}$ increase

► Counterfactual: 5μ gm-3

PM _{2.5}	RR	Rate	Deaths	Extra	Gain
5					

► City XYZ, Population: 1,000,000

▶ Overall Mortality rate: 80/10000

▶ 6% increase in mortality per each $10\mu gm-3 PM_{2.5}$ increase

► Counterfactual: $5\mu gm-3$

PM _{2.5}	RR	Rate	Deaths	Extra	Gain
5	1.00				

► City XYZ, Population: 1,000,000

▶ Overall Mortality rate: 80/10000

▶ 6% increase in mortality per each $10\mu gm-3 PM_{2.5}$ increase

► Counterfactual: $5\mu gm-3$

PM _{2.5}	RR	Rate	Deaths	Extra	Gain
5	1.00	80.0			

► City XYZ, Population: 1,000,000

▶ Overall Mortality rate: 80/10000

▶ 6% increase in mortality per each $10\mu gm-3 PM_{2.5}$ increase

PM _{2.5}	RR	Rate	Deaths	Extra	Gain
5	1.00	80.0	8,000		
15					

► City XYZ, Population: 1,000,000

▶ Overall Mortality rate: 80/10000

▶ 6% increase in mortality per each $10\mu gm-3 PM_{2.5}$ increase

PM _{2.5}	RR	Rate	Deaths	Extra	Gain
5	1.00	80.0	8,000		
15	1.06				

► City XYZ, Population: 1,000,000

▶ Overall Mortality rate: 80/10000

▶ 6% increase in mortality per each $10\mu gm-3 PM_{2.5}$ increase

PM _{2.5}	RR	Rate	Deaths	Extra	Gain
5	1.00	80.0	8,000		
15	1.06	84.8			

► City XYZ, Population: 1,000,000

▶ Overall Mortality rate: 80/10000

▶ 6% increase in mortality per each $10\mu gm-3 PM_{2.5}$ increase

PM _{2.5}	RR	Rate	Deaths	Extra	Gain
5	1.00	80.0	8,000		
15	1.06	84.8	8,480		

► City XYZ, Population: 1,000,000

▶ Overall Mortality rate: 80/10000

▶ 6% increase in mortality per each $10\mu gm-3 PM_{2.5}$ increase

PM _{2.5}	RR	Rate	Deaths	Extra	Gain
5	1.00	80.0	8,000		
15	1.06	84.8	8,480	480.0	480.0
25					

► City XYZ, Population: 1,000,000

▶ Overall Mortality rate: 80/10000

▶ 6% increase in mortality per each $10\mu gm-3 PM_{2.5}$ increase

PM _{2.5}	RR	Rate	Deaths	Extra	Gain
5	1.00	80.0	8,000		
15	1.06	84.8	8,480	480.0	480.0
25	1.124				

► City XYZ, Population: 1,000,000

▶ Overall Mortality rate: 80/10000

▶ 6% increase in mortality per each $10\mu gm-3 PM_{2.5}$ increase

$PM_{2.5}$	RR	Rate	Deaths	Extra	Gain
5	1.00	80.0	8,000		
15	1.06	84.8	8,480	480.0	480.0
25	1.124	89.9			

► City XYZ, Population: 1,000,000

▶ Overall Mortality rate: 80/10000

▶ 6% increase in mortality per each $10\mu gm-3 PM_{2.5}$ increase

$PM_{2.5}$	RR	Rate	Deaths	Extra	Gain
5	1.00	80.0	8,000		
15	1.06	84.8	8,480	480.0	480.0
25	1.124	89.9	8,989		

► City XYZ, Population: 1,000,000

▶ Overall Mortality rate: 80/10000

▶ 6% increase in mortality per each $10\mu gm-3 PM_{2.5}$ increase

$PM_{2.5}$	RR	Rate	Deaths	Extra	Gain
5	1.00	80.0	8,000		
15	1.06	84.8	8,480	480.0	480.0
25	1.124	89.9	8,989	988.8	508.8
35					

► City XYZ, Population: 1,000,000

▶ Overall Mortality rate: 80/10000

▶ 6% increase in mortality per each $10\mu gm-3 PM_{2.5}$ increase

PM _{2.5}	RR	Rate	Deaths	Extra	Gain
5	1.00	80.0	8,000		
15	1.06	84.8	8,480	480.0	480.0
25	1.124	89.9	8,989	988.8	508.8
35	1.19				

► City XYZ, Population: 1,000,000

▶ Overall Mortality rate: 80/10000

▶ 6% increase in mortality per each $10\mu gm-3 PM_{2.5}$ increase

PM _{2.5}	RR	Rate	Deaths	Extra	Gain
5	1.00	80.0	8,000		
15	1.06	84.8	8,480	480.0	480.0
25	1.124	89.9	8,989	988.8	508.8
35	1.19	95.3			

► City XYZ, Population: 1,000,000

▶ Overall Mortality rate: 80/10000

▶ 6% increase in mortality per each $10\mu gm-3 PM_{2.5}$ increase

PM _{2.5}	RR	Rate	Deaths	Extra	Gain
5	1.00	80.0	8,000		
15	1.06	84.8	8,480	480.0	480.0
25	1.124	89.9	8,989	988.8	508.8
35	1.19	95.3	9,528		

► City XYZ, Population: 1,000,000

▶ Overall Mortality rate: 80/10000

▶ 6% increase in mortality per each $10\mu gm-3 PM_{2.5}$ increase

► Counterfactual: $5\mu gm-3$

PM _{2.5}	RR	Rate	Deaths	Extra	Gain
5	1.00	80.0	8,000		
15	1.06	84.8	8,480	480.0	480.0
25	1.124	89.9	8,989	988.8	508.8
35	1.19	95.3	9,528	1528.1	539.3
45	1.26	101.0	10,100	2099.8	571.7
55	1.34	107.1	10,706	2705.8	606.0
65	1.42	113.5	11,348	3348.2	642.3
75	1.5	120.3	12,029	4029.0	680.9
85	1.59	127.5	12,751	4750.8	721.7
95	1.69	135.2	13,516	5515.8	765.0
105	1.79	143.3	14,327	6326.8	810.9