SQA

Quantifying the Health Impacts of Air Pollution

Day 3: Mapping Risks

Prof. Gavin Shaddick University of Exeter

10th August 2017

€ 990

ヘロト ヘロト ヘヨト ヘヨト

OUTLINE

Spatial Epidemiology

Disease Mapping

Statistical Methods for Smoothing Risks

SQC.

Spatial Epidemiology

Sac

WHAT IS SPATIAL EPIDEMIOLOGY?

- Epidemiology is the study of the distribution of diseases in populations.
- Disease risk depends on the person (genetics/behaviour), place and time.
- Spatial epidemiology focuses on the second of these.
- Place is a surrogate for exposures present at that location
 - environmental exposures in water/air/soil
 - lifestyle characteristics of those living in particular areas.

Sac

GROWING INTEREST IN SPATIAL EPIDEMIOLOGY

- Public interest in effects of environmental hazards/pollution.
- Epidemiological interest in differences in disease rates across different areas.
- Data availability: collection of health data at different geographical scales.
- Increase in computing power and methods
 - Geographical Informations Systems (GIS).
- Development of statistical/epidemiological methods for investigating disease 'clusters'.

SQA

THE NEED FOR SPATIAL METHODS

- Many epidemiological studies are spatial
 - many are spatio-temporal!
- When do we need to 'worry'?
 - are we explicitly interested in the spatial pattern of disease incidence?
 - disease mapping
 - cluster detection.
 - is the clustering a nuisance quantity that we wish to acknowledge, but are not explicitly interested in?
 - spatial regression.

TYPES OF SPATIAL DATA

- Point data
 - 'exact' residential locations exist, e.g. for cases and controls.
- Count data
 - aggregation
 - typically over administrative units.

590

Disease Mapping

OVERVIEW OF DISEASE MAPPING

- The estimation and presentation of summary measures of health outcomes.
- ▶ The aims of disease mapping include
 - simple description
 - hypothesis generation
 - allocation of health care resources, assessment of inequalities
 - estimation of background variability in underlying risk in order to place epidemiological studies in context.
- Unfortunately there are well-documented difficulties with the mapping of raw estimates since, for small areas and rare diseases in particular, these estimates will be dominated by sampling variability.

SQA

EXAMPLE: COPD IN ENGLAND

- Incidence rates of hospital admissions for Chronic Pulmonary Obstructive Disease (COPD) in 324 local authorities of England, between in 2001–2010.
- Data:
 - observed and 'expected' number of cases (based on the local authority age-sex profiles)
 - this allows the calculation of the standardised morbidity ratio (ratio of the observed to the expected cases).

EXPECTED NUMBERS

- The expected number of deaths/disease are calculated using indirect standardisation.
- Rates from a reference population are applied to the population of interest.
- The expected number

$$E = \sum_{k} N_k r_k$$

where r_k is the rate in the reference population and N_k is the population in the study. Commonly, *k* would denote age–sex categories.

11/24 ৩৫৫

• □ ▶ • @ ▶ • 图 ▶ • 图 ▶ · 图

STANDARDISED MORTALITY/MORBIDITY RATIOS

- The observed number of deaths can be compared to the expected number using the standardised mortality/morbidity ratio (SMR).
- Let O be the observed number of deaths/disease cases in the population of interest, and E be the expected number.

$$SMR = \frac{O}{E}$$

- An SMR of 1 means that the rates of death/disease in the population of interest are the same as in reference population.
- If it is greater than 1, we have more deaths/disease cases than expected; if it is less than 1 we have less.

590

æ

□ > < @ > < @ > < @ > <

EXAMPLE: COPD IN ENGLAND

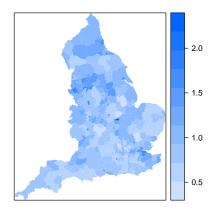


Figure: SMRs for hospital admissions of COPD in 324 local authorities in England.

NON-STATISTICAL ISSUES

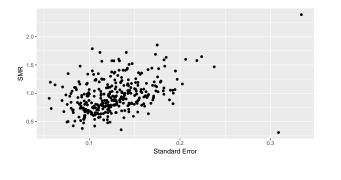
- There is a trade-off when a geographical scale is chosen
 - larger geographical areas provide more stable rates
 - risks may be distorted due to the large aggregation of individuals.
- The size of the areas chosen also determines the sort of questions that can be posed
 - smaller areas often mean greater contrasts in relative risks and exposures
 - localized effects can only be detected with data at a smaller level of aggregation
 - high (and low) relative risks will be diluted under aggregation
 - ► if the relative risk shows marked variation within a particular area this information may be lost under aggregation.

200

STATISTICAL ISSUES

- Unfortunately there are well-documented difficulties with the mapping of raw estimates of risk.
- For small areas and rare diseases in particular, estimates will be dominated by sampling variability.
- ► The SMR is given by

$$SMR_i = \frac{O_i}{E_i}$$


and it has variance

$$\operatorname{var}(\operatorname{SMR}_i) = \frac{\operatorname{SMR}_i}{E_i} = \frac{O_i}{E_i^2}$$

therefore areas with smaller expected numbers, E_i have higher variance.

EXAMPLE: SCOTTISH LIP CANCER

- For COPD in England, the expected numbers are highly variable, with range 3.2–368.9.
- Are the extreme SMRs based on small expected numbers?
 - many of the large, sparsely populated, rural areas in the north have high SMRs.

16/24

500

Smoothing Models

- The above considerations have led to the development of models to *smooth* SMRs.
- These approaches use data from surrounding areas to improve the stability of estimates.

590

æ

□ > < @ > < @ > < @ > <

EXAMPLE: COPD IN ENGLAND

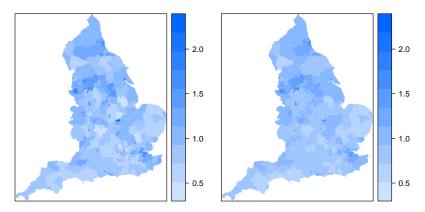


Figure: (Left) Unsmoothed SMRs and (Right) Smoothed SMRs for hospital admissions of COPD in England.

590

æ

ヘロト ヘロト ヘヨト ヘヨト

Statistical Methods for Smoothing Risks

Smoothing

- Defined in terms of 'neighbouring areas'.
- Often defined as when areas share a *common boundary*.
- May use an intrinsic conditional autoregressive (ICAR) distribution.

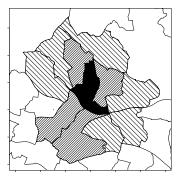


Figure: Close-up of a region within Birmingham, UK.

20/24

900

BAYESIAN ANALYSIS

- Spatial smoothing models are not easily fit using traditional techniques, and so Bayesian methods are commonly used.
- Unfortunately, Bayesian models are not available in most standard software packages.
- Markov chain Monte Carlo (MCMC)
 - Win/OpenBUGS A package that allows very general Bayesian modelling
 - GeoBUGS Module of WinBUGS that contains spatial models and mapping facilities
 - R Packages for example CARBayes.
- For fast computation on big datasets
 - ▶ R-INLA.

590

æ

□ > < @ > < @ > < @ > <

EXAMPLE: COPD IN ENGLAND

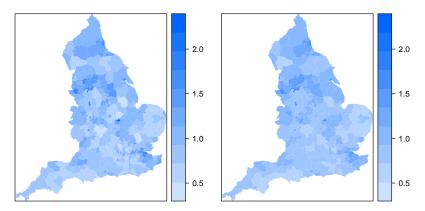
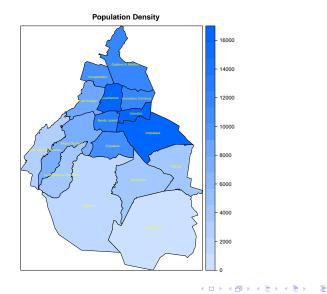


Figure: (Left) Unsmoothed SMRs and (Right) Smoothed SMRs for hospital admissions of COPD in England.

Sac


э

・ ロ ト ・ 同 ト ・ 回 ト ・ 回 ト

SUMMARY OF SMOOTHING IN DISEASE MAPPING

- The aim is to reduce the inherent instability in SMRs that are based on small expected numbers (from small populations).
- This is achieved by fitting a smoothing model.
- Comparing raw and smoothed SMRs is important.
- If there are big changes, are they appropriate?
 - were the expected numbers small?
 - can inform whether the statistical model was sensible or not.

And you will be able to do all of this by the end of the course!

24/24 ৩৭.৫