Statistical Analyses

Packages

1/20

イロン 不聞と 不良と 不良とう 間

Bayesian Hierarchical Models

Gavin Shaddick, Millie Green, Matthew Thomas ^{University} of Bath

6th - 9th December 2016

IMPLEMENTING BAYESIAN MODELS USING R-INLA

Packages

OUTLINE

R and RStudio

Statistical Analyses

Packages

R-INLA

R and RStudio

R

5/20 < ロ > < 合 > < 主 > < 主 > うへぐ

RSTUDIO

	* •											🔳 Pr	oject: (None)
(a) Ur	titled 1*	× di	1 ×							Environ	ment Hi	story	-
Untitled1* x dig x 6800 observations of 72 variable									List				
	ID	TRTMT	AGE	RACE	SEX	EJF_PER	EJFMETH	CHESTX	BMI		al Environm		- 04
1	1	0	66	1	3EA	EJF_PER 40	2	0,50	20,073		All Environm	ient*	
	2	0	77	1	1	12	1	0.56	20.073	Data			
2	3	0	72	1	2	36	1	0.50	25.530	🔾 dig		6800 obs. of 72 variables	
	4	1	57	1	1	30	1	0.68	25.530	state		15527 obs. of 7 variables	
4										Values			
5	5	0	74	1	1	15	1	0.53	25.654	0 my.m	odel	Large gam (48 elements, 830.9 Kb)	
6	6	0	69	2	2	45	1	0.70	27.770	state	eMapEnv	"R_MAP_DATA_DIR"	
7	7	1	64	1	2	30	1	0.52	31.694				
8	8	1	60	2	1	39	1	0.40	25.110				
		rows of 680											
Jispiaj	1000	rows or eau	0 (5800)	omitted)									
Cons	ole ~/								-0	Files	Plots Pa	ckages Help Viewer	- 0
ć	1360	1	468		360		60 0	1360	0	4 4	P Zoon	n 🔎 Export + 🍳 🎻 Clear All	
3	746		1391		391		91 0	1391	0			a and a second sec	
4	1157		1157		157		.57 0	1157	0				
5	1550 1620		1550 1620		550 620		i50 0 196 0	1550 1620	0				
		RINF RINF				ISP HOSPDA		EATH DEAT					
1	1049		1438		533		33 6		1438				
ž	1360		1360		880		68 4		1360		ч — 🚞		
3	1391		1391		391		31 2		1391				
4	1157	0	1157	0 1	157	0 11	57 0	0	1157	22)		1	
	1550	0	1550		459		.91 5		1550	- 00	> -	1000	
	1620		1620	1	966	1 4	96 5	0	1620	S			
5		HE DWHEDA								¥.			
6 REA	SON DW									6 9	2 - 2		
REA	SON DW	1 13											
REA	NA 1	1 13 1 13	29							5			<u> </u>
REA	SON DW NA 1 NA	1 13 1 13 1 6	29 31							No.			
REA	ISON DW NA 1 NA NA	1 13 1 13 1 6 0 11	29 31 57							s(DWHFDAYS,8.52)	ŧ -		
REA	SON DW NA 1 NA NA NA	1 13 1 13 1 6 0 11 1 1	29 31 57 91							s(DWF	ŧ -		
REA	SON DW NA 1 NA NA NA NA	1 13 1 13 1 6 0 11 1 1 0 16	29 31 57 91 20	(TMT + s	CDWHFC	IAYS), dat	a=dia, fam	ilv=binom	rial)	s(DWF	t -	3	
REA	SON DW NA NA NA NA NA MA model<	1 13 1 13 1 6 0 11 1 1 0 16	29 31 57 91 20 H ~ TR	ltmt + s	(DWHFC	IAYS), dat	a-dig, far	ily=binom	rial)	s(DWF		· · · · · · · · · · · · · · · · · · ·	
REA	SON DW NA NA NA NA NA MA model<	1 13 1 13 1 6 0 11 1 1 0 16 -gam(DEAT	29 31 57 91 20 H ~ TR	ltmt + s	(DWHFC	IAYS), dat	a=dig, fam	ily=binom	rial)	s(DWF	t	500 1000 1500	
REA	SON DW NA 1 NA NA NA NA model< mory(m	1 13 1 13 1 6 0 11 1 1 0 16 -gam(DEAT y.model)	29 31 57 91 20 H ~ TR	ttmt + s	(DWHFC	IAYS), dat	a-dig, fam	ily=binom	rial)	s(DWF		1 I I 500 1000 1500	
1 2 3 4 5 6 5 5 6 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8	SON DW NA 1 NA NA NA NA model< mory(m	1 13 1 13 1 6 0 11 1 1 0 16 -gam(DEAT y.model)	29 31 57 91 20 H ~ TR	ltmt + s	(DWHFC	IAYS), dat	a=dig, fam	ily=binom	ial)	s(DWF		500 1000 1500 DWHFDAYS	

Statistical Analyses

(日)(御)(王)(王)(王)

STATISTICAL ANALYSIS IN $\ensuremath{\mathbb{R}}$

R comes with many statistical tools already installed

- descriptive statistics
- visualisation
- statistical tests
- model fitting.

R	and	RStud	lio

Statistical Analyses

Packages

R-INLA

Packages

9/20 বিচার @ার্ক বিটার বির্ণাল বির্ণাল

うちん 川田 マイヨン イヨン イロン

CAN R DO MORE?

- ► The default installation of R has a comprehensive set of tools for statistical analyses.
- To meet the specific needs of data scientists, many other statistical tools are readily available in the form of packages.
- Packages are collections of functions and data.
- "During the last decade, the momentum coming from both academia and industry has lifted R to become the single most important tool for computational statistics, visualisation and data science."

(日)(御)(王)(王)(王)

R PACKAGES: EXAMPLES USED IN THIS COURSE

- ▶ ggplot2
- ▶ raster
- ▶ Rmisc
- ▶ mgcv
- maptools
- ... many many more!!

OTHER R PACKAGES

A list of R Packages can be seen and downloaded from https://cran.r-project.org

CRAN Mirrors What's new? Task Views Search

About R R Homepage The R Journal

Software R Sources **R** Binaries Packages Other

Documentation Manuals FAQs Contributed

Available CRAN Packages By Name

ABCDEFGHIJKLMNOPQRSTUVWXYZ

Accurate, Adaptable, and Accessible Error Metrics for Predictive Models
Access to Abbyy Optical Character Recognition (OCR) API
Tools for Approximate Bayesian Computation (ABC)
Computed ABC Analysis
Data Only: Tools for Approximate Bayesian Computation (ABC)
ABCDE_FBA: A-Biologist-Can-Do-Everything of Flux Balance Analysis with this package
Implementation of Artificial Bee Colony (ABC) Optimization
Approximate Bayesian Computational Model for Estimating P2
Array Based CpG Region Analysis Pipeline
Approximate Bayesian Computation via Random Forests
Tools for ABC Analyses
The Analysis of Biological Data
Load Gap-Free Axon ABF2 Files
Easy Visualization of ABH Genotypes
Combine Multidimensional Arrays
Modelling Multivariate Data with Additive Bayesian Networks
Angle-Based Outlier Detection
Improved False Positive Control of Gene-Permuting GSEA with Absolute Filtering
Abundant regression and high-dimensional principal fitted components

R	and	RStud	lio

R-INLA

13/20 イロトイポトイミトイミト ミ めへで

R-INLA

- The R–INLA package provides a practical implementation of Integrated Nested Laplace Approximations (INLA).
- The class of models that can be expressed in this form and thus can be used with R–INLA is very large and includes, amongst others, the following:
 - Dynamic linear models.
 - Stochastic volatility models.
 - Generalised linear (mixed) models.
 - Generalised additive (mixed) models.
 - Spline smoothing.
 - Semi-parametric regression.
 - Disease mapping.
 - Log–Gaussian Cox–processes.
 - Model–based geostatistics.
 - Spatio–temporal models.
 - Survival analysis.

THE SYNTAX OF **R**–INLA

▶ There are three main parts to fitting a model using R–INLA:

- 1. The data.
- 2. Defining the model formula.
- 3. The call to the INLA program.
- The basic syntax of running models in R-INLA is very similar in appearance to that of glm in R and takes the general form formula, data, family but with the addition of the specification of the nature of the random effects, f().
- ▶ For the latter component, common examples include
 - > f(i, model="iid") (independent)
 - > f(i, model="rw") (random walk of order one)
 - f(i, model="ar") (autoregressive of order p).

FITTING A POISSON REGRESSION MODEL IN R-INLA

An extension of the standard Poisson model to include log-normal random effects in the linear predictor

$$\log \mu_l = \beta_0 + \beta_{0i} + \beta_1 X_l + \beta_d X_l + \epsilon_l \tag{1}$$

where β_l represents the effect of exposure, β_d is the effect of an area-level covariate and β_{0i} denotes the random effect for area *i*.

▶ The syntax of the R–INLA code to fit this model is very similar to that of a standard glm in R.

FITTING A POISSON REGRESSION MODEL IN R-INLA

```
> formula = Y \sim X1+X2 + f(i, model="iid")
> model = inla(formula, family="poisson", data=data)
Call:
"inla(formula = formula, family = "poisson", data = data)"
Time used:
Pre-processing Running inla Post-processing
                                                       Total
       0.278389
                       0.286911
                                       0.125699 0.690999
Integration Strategy: Central Composite Design
Model contains 1 hyperparameters
The model contains 3 fixed effect (including a possible
    intercept)
Likelihood model: poisson
The model has 1 random effects:
1.'i' is a IID model
                                                           17/20
```

FITTING A POISSON REGRESSION MODEL IN R-INLA

18/20

FITTING A POISSON REGRESSION MODEL IN R-INLA

```
(Intercept) 2.4960 0.0713
                           2.3553
                                     2.4962
                                               2.6355
X 1
           0.1187 0.0310
                           0.0578
                                     0.1186
                                               0.1796
X2
           0.0578 0.0074
                           0.0433
                                     0.0578
                                               0.0722
Random effects:
         Model
Name
i
    IID model
Model hyperparameters:
                         sd 0.025quant 0.5quant 0.975quant
                mean
Precision for i 3.784 0.3548
                                 3.131
                                          3.769
                                                     4.525
Expected number of effective parameters(std dev):
   321.42(3.926)
Number of equivalent replicates : 1.223
Marginal Likelihood: -1513.92
```

FITTING MODELS IN R-INLA

Future details can be found on the R-INLA webpage: http://www.R-INLA.org.

