SQA

Bayesian Hierarchical Models

Gavin Shaddick, Millie Green, Matthew Thomas ^{University} of Bath

6th - 9th December 2016

APPLICATIONS OF BAYESIAN HIERARCHICAL MODELS

OUTLINE

Spatial epidemiology

Disease mapping

Statistical methods for smoothing risks

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ∽ � ♥

Spatial epidemiology

Sac

WHAT IS SPATIAL EPIDEMIOLOGY?

- Epidemiology is the study of the distribution of diseases in human populations.
- Disease risk depends on the classic epidemiological triad of person (genetics/behaviour), place and time.
- Spatial epidemiology focuses on the second of these.
- Place is a surrogate for exposures present at that location
 - environmental exposures in water/air/soil
 - lifestyle characteristics of those living in particular areas.

Sac

GROWING INTEREST IN SPATIAL EPIDEMIOLOGY

- Public interest in effects of environmental hazards/pollution.
- Epidemiological interest in differences in disease rates across different areas.
- Data availability: collection of health data at different geographical scales.
- Increase in computing power and methods
 - Geographical Informations Systems (GIS).
- Development of statistical/epidemiological methods for investigating disease 'clusters'.

Sac

THE NEED FOR SPATIAL METHODS

Many epidemiological studies are spatial

- many are spatio-temporal!
- When do we need to 'worry'?
 - acknowledge the spatial component
 - are we explicitly interested in the spatial pattern of disease incidence?
 - disease mapping
 - cluster detection.
 - is the clustering a nuisance quantity that we wish to acknowledge, but are not explicitly interested in?
 - spatial regression.

▲□▶▲圖▶▲≣▶▲≣▶ ■ のへ⊙

TYPES OF SPATIAL DATA

Point data

'exact' residential locations exist for cases and controls.

Count data

- aggregation
- typically over administrative units
- ecological, in that they are collected across groups
- in spatial studies the groups are geographical areas.

590

Disease mapping

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

OVERVIEW OF DISEASE MAPPING

- The estimation and presentation of summary measures of health outcomes.
- ► The aims of disease mapping include
 - simple description
 - hypothesis generation
 - allocation of health care resources, assessment of inequalities
 - estimation of background variability in underlying risk in order to place epidemiological studies in context.
- Unfortunately there are well-documented difficulties with the mapping of raw estimates since, for small areas and rare diseases in particular, these estimates will be dominated by sampling variability.

. (ロ) 4 同) 4 ヨ) 4 ヨ) ヨー クへの

EXAMPLE: LIP CANCER IN SCOTLAND

- Incidence rates of lip cancer in males in 56 counties of Scotland, registered in 1975–1980.
- Data
 - observed and 'expected' number of cases (based on the county age populations)
 - this allows the calculation of the standardised morbidity ratio
 - ratio of the observed to the expected cases.
 - a covariate measuring the proportion of the population engaged in agriculture, fishing, or forestry (AFF)
 - the projections of the longitude and latitude of the area centroid, and the 'position' of each county expressed as a list of adjacent counties.

EXAMPLE: LIP CANCER IN SCOTLAND

County	Obs	Exp	Prop	SMR	Project	Project	Adjacent
No. i	Cases Y_i	Cases E_i	AFF		N (km)	E (km)	Counties
1	9	1.4	0.16	6.43	834.7	162.2	5,9,19
2	39	8.7	0.16	4.48	852.4	385.8	7,10
3	11	3.0	0.10	3.67	946.1	294.0	12
4	9	2.5	0.24	3.60	650.5	377.9	18,20,28
5	15	4.3	0.10	3.49	870.9	220.7	1,12,19
6	8	2.4	0.24	3.33	1015.2	340.2	Island
7	26	8.1	0.10	3.21	842.0	325.0	2,10,13,16,17
8	7	2.3	0.07	3.04	1168.9	442.2	Island
9	6	2.0	0.07	3.00	781.4	194.5	1,17,19,23,29
47	2	5.6	0.01	0.36	640.8	277.0	24,31,46,48,49,53
48	3	9.3	0.01	0.32	654.7	282.0	24,44,47,49
49	28	88.7	0.00	0.32	666.7	267.8	38,41,44,47,48,52,53,54
50	6	19.6	0.01	0.31	736.5	342.2	21,29
51	1	3.4	0.01	0.29	678.9	274.9	34,38,42,54
52	1	3.6	0.00	0.28	683.7	257.8	34,40,49,54
53	1	5.7	0.01	0.18	646.6	265.6	41,46,47,49
54	1	7.0	0.01	0.14	682.3	267.9	34,38,49,51,52
55	0	4.2	0.16	0.00	640.1	321.5	18,24,30,33,45,56
56	0	1.8	0.10	0.00	589.9	322.2	18,20,24,27,55

EXAMPLE: LIP CANCER IN SCOTLAND

Figure: SMRs for male lip cancer in 56 counties of Scotland.

13/34 <□▶<⊕>★≧><≧> ≧ ∽<€

EXAMPLE: LUNG AND BRAIN CANCER IN NORTH-WEST ENGLAND

- Two tumors
 - one non-rare (lung)
 - and one rare (brain).
- ▶ Study period is 1981–1991.
- Analysis performed at ward level (144 wards)
 - incidence data by postcode.
- Brain cancer
 - the median number of cases per ward over the 11 year period is 6
 - range of 0 to 17.
- Lung cancer
 - the median number is 20
 - range 0–60.
- 'Expected counts' were based on ward-level populations from the 1991 census, by 5-year age bands and sex.

14/34 ৩৭.৫

SAC

э

EXAMPLE: LUNG AND BRAIN CANCER IN NORTH-WEST ENGLAND

Figure: SIRs for (a) lung cancer, and (b) brain cancer in the North-West of England.

NON-STATISTICAL ISSUES

There is a trade-off when a geographical scale is chosen

- larger geographical areas provide more stable rates
- relative risk summaries may be distorted due to the large aggregation of individuals.
- If the relative risk shows marked variation within a particular area this information will be lost
 - high relative risks will be diluted under aggregation.
- The size of the areas chosen also determines the sort of questions that can be posed
 - larger areas often mean greater contrasts in relative risks and exposures
 - localized effects can only be detected with data at a smaller level of aggregation.

STATISTICAL ISSUES

- Unfortunately there are well-documented difficulties with the mapping of raw estimates since, for small areas and rare diseases in particular, these estimates will be dominated by sampling variability.
- For the model

 $Y_i \sim \text{Poisson}(E_i \theta_i)$

statistically, the best estimate of the rate $\hat{\theta}_i$ will be

$$\widehat{\theta}_i = \mathrm{SMR}_i = \frac{Y_i}{E_i}$$

with variance

$$\operatorname{var}(\widehat{\theta}_i) = \frac{\theta_i}{E_i}$$

so that areas with small E_i have high associated variance.

17/34 <□▶<⊕><≧><≧>> ≧ のQ@

EXAMPLE: SCOTTISH LIP CANCER

- The variance of the estimate is $var(SMR_i) = SMR_i/E_i$.
- This will be large if E_i is small.
- ► For the Scottish data the expected numbers are highly variable, with range 1.1–88.7.
- This variability suggests that there is a good chance that the extreme SMRs are based on small expected numbers
 - many of the large, sparsely populated, rural areas in the north have high SMRs.

5 6

4

ო

N

0

0.0

0.5

SMR

17

1.5

2.0

1.0

Standard Error

SMR estimates

1

SQA

Smoothing Models

- The above considerations led to methods being developed to smooth the SMRs.
- Use hierarchical/random effects models that use the data from all of the areas to provide more reliable estimates in each of the constituent areas.

590

æ

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Statistical methods for smoothing risks

SPATIAL MODELS

- In general we might expect relative risks in areas that are 'close' to be more similar than in areas that are not 'close'.
- We would like to exploit this information in order to provide more reliable relative risk estimates in each area.
- ► This is analogous to the use of a covariate *x*, in that areas with similar *x* values are likely to have similar relative risks.
- Unfortunately the modelling of spatial dependence is much more difficult since spatial location is acting as a surrogate for unobserved covariates.
- We need to choose an appropriate spatial model, but do not directly observe the covariates whose effect we are trying to mimic.

Consider the model

$$Y_i | \beta, \gamma, \mathbf{U_i}, \mathbf{V_i} \sim \text{Poisson}(\mathbf{E_i} \mu_i \mathbf{e}^{\mathbf{U_i} + \mathbf{V_i}})$$

$$\log \mu_i = g(\mathbf{S}_i, \gamma) + \mathbf{f}(\mathbf{x}_i, \beta),$$

- $\mathbf{S}_i = (S_{i1}, S_{i2})$ denotes spatial location, the centroid of area *i*,
- $f(\mathbf{x_i}, \beta)$ is a regression model,
- g(S_i, γ) is an expression that we may include to capture large-scale spatial trend, e.g. long-term spatial trend

$$f(\mathbf{S}_i) = \gamma_1 S_{i1} + \gamma_2 S_{i2},$$

- The random effects V_i ~_{iid} N(0, σ_v²) represent non-spatial overdispersion,
- ▶ *U_i* are random effects with spatial structure.

- One approach is to specify the distribution of the random effect for a particular area, U_i, as if we knew the values of the spatial random effects, U_i, in 'neighbouring areas'
- We therefore need to specify a rule for determining the 'neighbours' of each area.
- Commonly areas *i* and *j* are taken to be neighbours if they share a *common boundary*.

900

- ► Various other neighbourhood/weighting schemes are possible.
- The neighbourhood structure could depend on the distance between area centroids.
- Determine the distance within which regions are considered neighbours.

Figure: Close-up of a region of Birmingham.

207 5 (10) 10

The ICAR model

- A common model is to assign the spatial random effects an intrinsic conditional autorgressive (ICAR) prior.
- Under this specification it is assumed that

$$U_i|U_j, j \in \partial_i \sim N\left(\overline{U}_i, \frac{\omega_u^2}{m_i}\right),$$

where ∂i is the set of neighbours of area *i*, m_i is the number of neighbours, and \overline{U}_i is the mean of the spatial random effects of these neighbours.

- The parameter ω_u² is a conditional variance and its magnitude determines the amount of spatial variation.
- The variance parameters σ²_v and ω²_u are on different scales, σ_v is on the log odds scale while ω_u is on the log odds scale, *conditional* on U_j, j ∈ ∂i; hence they are not comparable.

- - Notice that if ω²_u is 'small' then although the residual is strongly dependent on the neighboring value the overall contribution to the residual relative risk is small.
 - This is a little counterintuitive but stems from spatial models having two aspects, strength of dependence and total amount of spatial dependence, and in the ICAR model there is only a single parameter which controls both aspects.

Recall the model

$$Y_i|\beta,\gamma,U_i,V_i\sim_{ind} \text{Poisson}(E_i\mu_i e^{U_i+V_i})$$

with

$$\log \mu_i = g(\mathbf{S}_i, \gamma) + f(\mathbf{x}_i, \beta), \tag{1}$$

where

- ► **S**_{*i*} = (*S*_{*i*1}, *S*_{*i*2}) denotes spatial location, the centroid of area *i*,
- $f(\mathbf{x_i}, \beta)$ is a regression model,
- *g*(**S**_{*i*}, *γ*) is an expression that we may include to capture large-scale spatial trend − the form

$$f(\mathbf{S}_i) = \gamma_1 S_{i1} + \gamma_2 S_{i2},$$

is a simple way of accommodating long-term spatial trend.

- The random effects V_i ~_{iid} N(0, σ_v²) represent non-spatial overdispersion,
- ► *U_i* are random effects with spatial structure which we now consider 'jointly' rather than considering neighbours.

28/34

3

・ ロ ト ・ 同 ト ・ 回 ト ・ 回 ト

. (ロ) 4 同) 4 ヨ) 4 ヨ) ヨー クへの

A Joint Model

- Assume that $\mathbf{U} = (U_1, ..., U_n)$ arise from a zero mean multivariate normal distribution with variances $\operatorname{var}(U_i) = \sigma_u^2$ and correlations $\operatorname{corr}(U_i, U_j) = \exp(-\phi d_{ij}) = \rho^{d_{ij}}$ where d_{ij} is the distance between the centroids of areas *i* and *j*, and $\rho > 0$ is a parameter that determines the extent of the correlation.
- This model is *isotropic* since it assumes that the correlation is the same in all spatial directions. We refer to this as the *joint* model, since we have specified the joint distribution for U.
- ► More generally the correlations can be modeled as corr(U_i, U_j) = exp(-(φd_{ij})^κ).

. (ロ) 4 同) 4 ヨ) 4 ヨ) ヨー クへの

BAYESIAN ANALYSIS

- Inference for models with a spatial component is often not straightforward using likelihood based approaches, and so Bayesian methods are commonly used.
- Unfortunately, most Bayesian models are not conducive to analytical analysis, and so are not available in standard software packages.
- Markov chain Monte Carlo (MCMC)
 - Win/OpenBUGS is a package that allows very general Bayesian modeling
 - GeoBUGS module contains a number of useful spatial models, and mapping facilities
 - Packages in R, for example CARBayes.
- Approximate Bayesian inference, for fast computation on big datasets
 - ► R-INLA.

EXAMPLE: LIP CANCER IN SCOTLAND

Figure: (a) Unsmoothed SMRs and (b) Smoothed SMRs for lung cancer in the North-West of England.

31/34 <□▶<∄><≧><≧> ≧ ৩৭৫

ヘロト 人間 とくほ とくほとう

EXAMPLE: LUNG AND BRAIN CANCER IN NORTH-WEST ENGLAND

Figure: (a) Unsmoothed SIRs and (b) Smoothed SIRs for lung cancer in the North-West of England.

э

ヘロト 人間 とくほ とくほとう

EXAMPLE: LUNG AND BRAIN CANCER IN NORTH-WEST ENGLAND

Figure: (a) Unsmoothed SIRs and (b) Smoothed SIRs for brain cancer in the North-West of England.

500

• □ ▶ • @ ▶ • 图 ▶ • 图 ▶ · 图

SUMMARY OF SMOOTHING IN DISEASE MAPPING

- The aim is to reduce the instability inherent in SMRs based on small expected numbers.
- This is achieved by fitting a random effects model which assumes that area-level deviations from the regression model arise from a probability distribution.
- Comparing SMRs with smoothed estimates is important
 - if there are big changes, are they appropriate?
 - were the expected numbers small?
 - did the regression model fit this area well?