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COURSE CONTENT - SESSIONS

Using big data in the power industry

Identifying patterns in data and profiling

Spatial modelling
Spatial Lattice Processes
Point Referenced Spatial Processes

Spatial-temporal modelling
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COURSE CONTENT - PRACTICAL SESSIONS USING R

I R Statistical package
I A language and environment for statistical computing and

graphics
I Open source with many many user packages
I Free!!!
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OUTLINE

Tuesday, January 12
I 09:30 - 10:00 Introduction
I 10:00 - 11:00 Using big data in the power industry
I 11:00 - 11:30 Break
I 11:30 - 13:00 Identifying patterns in data and profiling
I 13:00 - 15:00 Lunch
I 15:00 - 17:00 Optional practical sessions using R
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OUTLINE

Wednesday, January 13
I 09:30 - 11:00 Spatial modelling
I 11:00 - 11:30 Break
I 11:30 - 13:00 Spatial-temporal modelling
I 13:00 - 15:00 Lunch
I 15:00 - 17:00 Optional practical sessions using R
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CONTACT INFORMATION

Gavin Shaddick, University of Bath
I Email: G.Shaddick@bath.ac.uk
I Webpage: http://www.bath.ac.uk/~masgs

http://www.gavinshaddick.com

Amelia Jobling, University of Bath
I Email: aj409@bath.ac.uk

http://www.bath.ac.uk/~masgs
http://www.gavinshaddick.com
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Using big data in the power industry
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USING BIG DATA IN THE POWER INDUSTRY

I Modelling demand patterns
I Data reduction techniques
I Validation
I Forecasting demands
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FIRST PUBLIC ELECTRICITY SUPPLY INDUSTRY
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EASY PROFILING TO START WITH
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NEW CHALLENGES ON LV NETWORK
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LV NETWORK TEMPLATE PROJECT

Aim: To provide visibility of the LV Network, help to identify stresses
caused by Low Carbon Technologies and potential mitigations

I To investigate the possibility of clustering LV substations
I To develop a set of common templates (demand profiles)

representing each type of LV substations
I To identify LV substations types and main characteristics

without monitoring
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DATA

I 928 substations and over 3,500 ends of LV feeders, 605 low
carbon devices

I A selection of areas and networks:
I Inner city (e.g. Cardiff)
I Suburbia (e.g. between Cardiff and Newport)
I Ex-industrial areas (e.g. the Valleys)
I Rural (e.g. Monmouthshire)
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DATA

I Fixed data:
I capacity, customer types and numbers, annual consumption,

number of outgoing LV feeders
I Variable data:

I voltage, current and real power delivered collected every 10
minutes
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DATA REDUCTION

I Clustering requires distance matrices
I Calculating distance matrices can be a challenge
I Is it possible to reduce the size of the data and retain essential

information?
I Common patterns based on industrial, commercial and domestic

usage may not require 10 min data
I Substation demand comes from a mixture of customers and so

possibly more complex
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POSSIBLE METHODS OF DATA REDUCTION

I Simple reduction
I I Use less time points
I Every 30, 60 minutes

I Best subset selection
I Try and identify which time points might be useful

I Based on PCA
I Data is available for all time points anyway

I PCA



17/ 256

Using big data in the power industry Identifying patterns in data and profiling Spatial modelling Spatial-temporal modelling

CORRELATIONS IN THE DATA
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SCALING

I Patterns can be lost in using data on original (or standarised)
scale

I Emphasizes magnitude of demand rather than patterns over
time

I Scaled by maximum value per substation affected by
daily/seasonal changes in maximum values

I Scaled by maximum value per substation per day
I Identifies daily patterns
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PCA

I 10 components: 90% of
total variation

I 20 components: 95% of
total variation

I Components of
demands over time
can be seen

I Different frequencies



20/ 256

Using big data in the power industry Identifying patterns in data and profiling Spatial modelling Spatial-temporal modelling

CLUSTERING

I Hierarchical clustering
I Choice of number of

clusters
I Practicality
I Ability to allocate

substations using
fixed characteristics

I Sensitivity analysis
I Using all data
I Reduced time points
I Principal

components
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SMOOTHED CURVES

I Penalised splines used
to assess complexity of
the curves in each
cluster

I Used to produce set of
smoothed demand
profiles

I What do they mean?
I What are the

substations like?
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Motorway lighting
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CLUSTERS

I Clusters are determined by power profiles from substations
I Clusters exhibit different magnitudes and patterns over time
I Need to able to predict cluster membership using routinely

available data
I not monitored data
I applicable to other substations and other areas

I Multinomial regression to allocate to clusters
I Scaling back to original scale
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VALIDATION

I Within-sample
I ’Correct’ classification
I Comparison of estimated

vs. measurements
I Interested in total error and

location of peaks
I Out-of-sample

I Data supplied from other
DNOs

I Issues with reliability of the
fixed data
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FORECASTING DEMANDS

I There is a need to be able to forecast future demands
I Integration of weather data into demand modelling
I How can weather data be used to improve prediction of

demand?
I How can temperature data be used to inform our demand

forecast model?
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THE STATE OF THE WEATHER DATA
I Weather data contained daily temperature and daily forecasts
I Consisted of data from the Met Office spread across 10 locations
I It was either measured at the location, or interpolated from

nearby measurements.
I The temperature, in degrees Celsius, across the study region was
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THE STATE OF THE WEATHER DATA

I The locations of each feeder were given in the form of bounding
rectangles.

I After some sensitivity analysis, the centroid of each bounding
rectangle was calculated and used as a representative location
for that feeder.

I Each feeder was mapped to its nearest weather measurement.
I Locations of feeders (blue rectangles) and weather stations (red

crosses):
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IDENTIFYING PATTERNS IN DEMANDS

I Initial data exploration
I Identifying patterns in demand vs temperature.
I Identifying patterns in demand at different temporal resolution

including
1. long term changes in underlying levels;
2. seasonal patterns;
3. shorter-term patterns, including weekly and within-day patterns.
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GENERALISED ADDITIVE MODELS (GAMS)

I Traditional linear modelling is unable to adequately capture the
complex relationship between demand, time and explanatory
variables.

I GAMs that allows for non-linear patterns and provide a flexible,
formal statistical framework for modelling complex relationships
between predictors and outcome variables.

I GAMs provide a flexible, expandable and scalable approach to
combining information from demand, temperature and other
data sources when making forecasts.
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GENERALISED ADDITIVE MODELS (GAMS) FOR

DEMAND FORECASTING

I The aim is to produce a function g(time, temperature) such that

demand = g(time, temperature) + [residual] (1)

where the [residual] denotes the small, un-modelled term.
I If the patterns of demand are sufficiently well captured by the

predictors time and temperature, then the [residual] term will not
have any further patterns in it.
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GENERALISED ADDITIVE MODELS (GAMS) FOR

DEMAND FORECASTING

I GAMs perform best when the function g(time, temperature) is
decomposed into simpler components.

g(time, temperature) = f 1(time) + f 2(temperature) (2)

I Possible to add a further interaction term f 3(time, temperature)
that models how the effect of time changes with temperature,
but for this problem that was found to be unnecessary.
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GENERALISED ADDITIVE MODELS (GAMS) FOR

DEMAND FORECASTING

I In order to take into account the multi-scale temporal effects (the
way in which there are different demand patterns at different
temporal scale), we can model f 1(time) as

f 1(time) = h1(year)+ h2(dayofyear)+ h3(dayofweek)+ h4(timeofday)
(3)

I A diagram that represents the full model is
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FORECASTING FUTURE DEMANDS USING MET OFFICE

WEATHER FORECASTS
I The GAM framework allows us to produce demand forecasts

that take into account the underlying non-linearity of the
relationship between demand, temperature, and time.

I The produced forecasts will have uncertainty bounds that
increase as the forecast period increases. The figure below
demonstrates this behaviour.

In the left panel, the demand pattern is captured well by the
covariates and the resulting uncertainty is low. In the right panel, the
demand modelling was less successful and the resulting prediction

intervals are wider. In both cases, the width of the prediction interval
increases as the length of the forecast period increases.
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Identifying patterns in data and profiling



38/ 256

Using big data in the power industry Identifying patterns in data and profiling Spatial modelling Spatial-temporal modelling

IDENTIFYING PATTERNS IN DATA AND PROFILING

I Clustering
I Advanced regression models
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CUSTOMER PREFERENCES

I A large online retailer wishes to provide each user with a unique
set of recommendations either by email or seen when the user
logs.

I Suppose we can define a measure of similarity between
customers based on their shopping history then we could use
cluster analysis to group customers into K groups.

I Within each group customers have similar purchasing patterns
but differences in the purchases could form the basis of a
recommendation system.

I The items could also be clustered based on the customers they
were bought by. If a group of customers have bought the same
set of items then these items could be considered similar and so
it might also be sensible to recommend similar items.
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GENE FUNCTION PREDICTION

I Much research in molecular biology is focussed on categorising
what function a particular gene serves.

I A useful source of information is from microarray data which
yields numerical values of how active a particular gene is under
given circumstances. For a set of genes this can be measured
over time.

I Genes can be clustered based on this data so that the genes in
each cluster show similar behaviour over time.
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ELECTRICITY DEMANDS

I LV networks Template project
I To investigate the possibility of clustering LV substations to

identify stresses caused by Low Carbon Technologies and
potential mitigations

I To develop a set of common templates (demand profiles)
representing each type of LV substations

I To identify LV substations types and main characteristics
without monitoring
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CLUSTERING TECHNIQUES

I Much of the history of cluster analysis is concerned with
developing algorithms that were not too computer intensive,
since early computers were not nearly as powerful as they are
today.

I Computational shortcuts have traditionally been used in many
cluster analysis algorithms.

I These algorithms have proven to be very useful, and can be
found in most computer software.

I More recently, many of these older methods have been revisited
and updated to reflect the fact that certain computations that
once would have been practically infeasible can now be
performed routinely.
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CLUSTERING IN R

I In R, a number of these updated versions of cluster analysis
algorithms are available through the cluster library

I This provides a large selection of methods to perform cluster
analysis, and the possibility of comparing the old methods with
the new to see if they really provide an advantage.

I One of the oldest methods of cluster analysis is known as
k-means cluster analysis, and is available in R through the
kmeans function.

I Prespecify the number of clusters and cluster centres
I Distance from each of the other observations is calculated for each

of the k clusters, and observations are put in the cluster to which
they are the closest.
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HIERARCHICAL CLUSTERING

I Data are not partitioned into a specified number of classes or
clusters in a single step

I Classification consists of a series of partitions
I May run from a single cluster containing all individuals to n

clusters, each contained a single individual
I Can be split into two types:

I Agglomerative: successively fusing individuals into groups
I Divisive: successively separating into finer groups
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HIERARCHICAL CLUSTERING

I Both methods of hierarchical clustering can be seen as trying to
find an optimal step at each step and relies on a proximity matrix

I In both cases, once a step has been made it is irrevocable
I E.g. once two individuals have been separated they can not be

joined back together
I Can’t repair what was done in previous steps

I The methods will either join everything together (agglomerative)
or separate into individuals (divisive) and so the user has to
decide how many clusters there should be, i.e. when to stop
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HIERARCHICAL CLUSTERING
I Heirarchical clustering can be represented by a dendrogram
I Two dimensional diagram
I Illutrates the fusion or divisions made at each stage
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SINGLE LINKAGE CLUSTERING

I In single linkage clustering the distance between two clusters is
measured as the distance between the pair of objects, one from
each cluster, that are closest.

I The distance between cluster A and cluster B is thus

dAB = min
r∈A,s∈B

drs.

I At any stage the pair of clusters with the smallest value of dAB
are merged together in one combined cluster.
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COMPLETE LINKAGE CLUSTERING

I If we want all of the objects in each cluster to be close before we
merge them then we might use complete linkage clustering which
measures distance between clusters A and B by

dAB = max
r∈A,s∈B

drs.

I In other words the distance between the pair of objects, one from
each cluster, that are farthest apart.
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AVERAGE LINKAGE CLUSTERING

I Average linkage clustering when the distance between clusters A
and B is

dAB =
1

nAnB

∑
i∈A

∑
j∈B

dij,

I It takes the average distance between the all the objects in A and
all the objects in B.

The methods may give quite different results and it would be good
practice to try all three and compare results hoping for patterns
which are robust to the method chosen.
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EXAMPLE

I Consider the following distance matrix

I Smallest non zero entry is for 1 and 2 and so they are joined
together
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EXAMPLE

I Distances between this cluster and the individuals are calculated

I A new distance matrix is calculated

I The smallest entry is for individuals 4 and 5 and so these are
joined together
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EXAMPLE

I DA new set of distances is calculated

I Smallest entry is d45(3) and so individual 3 is added to the cluster
with 4 and 5

I Finally, the groups containing 1,2 and 3,4,5 are combined into a
single cluster
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EXAMPLE

I The height represents the distance at which each fusion is made
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HIERARCHICAL CLUSTERING IN R

I For the hierarchical clustering methods, the dendrogram is the
main graphical tool for getting insight into a cluster solution

I When you use hclust or agnes to perform a cluster analysis,
you can see the dendrogram by passing the result of the
clustering to the plot function

I Example: data extracted from the 1974 Motor Trend US
magazine, and comprises fuel consumption and 10 aspects of
automobile design and performance for 32 automobiles (1973 -
74 models).
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EXAMPLE

I Dataset is in base R help(mtcars)

I Let’s look at the first few records;
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EXAMPLE

I pairs(mtcars[,1:4])
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EXAMPLE

I coplot(mpg disp | as.factor(cyl), data =
mtcars, panel = panel.smooth, rows = 1)
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STANDARDISATION

I If the variables are measured on different scales, so we will likely
want to standardise the data before proceeding

I By medians:

I By means:
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DISTANCE MATIRX

I First step is calculating a distance matrix.
I For a data set with n observations, the distance matrix will have

n rows and n columns
I the (i, j)th element of the distance matrix will be the difference

between observation i and observation j.
I There are two functions that can be used to calculate distance

matrices in R
I dist, which is included in every version of R
I daisy, which is part of the cluster library, library(cluster)



60/ 256

Using big data in the power industry Identifying patterns in data and profiling Spatial modelling Spatial-temporal modelling

DISTANCE MATRIX

I Default is Euclidean distance
I "maximum", "manhattan" (taxicab), "canberra", "binary" or

"minkowski"
I cars.dist = dist(cars.use)

I Only the lower triangle of the matrix is displayed.
I This is to remind us that the distance matrix is symmetric, since

it doesn’t matter which observation we consider first when we
calculate a distance.

I R takes advantage of this fact by only storing the lower triangle
of the distance matrix.

I If you need to use the distance matrix with anything other than
the clustering functions, you’ll need to use as.matrix to
convert it to a regular matrix.
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I cars.hclust = hclust(cars.dist)

I plot(cars.hclust)
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I One of the first things we can look at is how many cars are in
each of the groups.

I You can create a vector showing the cluster membership of each
observation by using the cutree function.

I Since the object returned by a hierarchical cluster analysis
contains information about solutions with different numbers of
clusters, we pass the cutree function the cluster object and the
number of clusters we’re interested in.
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I To get cluster memberships for the three cluster solution
groups.3 = cutree(cars.hclust,3)

I We can then summarise the data in each of the clusters
I A good first step is to use the table function to see how many

observations are in each cluster.

I We’d like a solution where there aren’t too many clusters with
just a few observations, because it may make it difficult to
interpret our results.
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AGNES

I The cluster library provides the agnes function which uses
essentially the same technique as hclust, but which uses fewer
shortcuts when updating the distance matrix.

I When the mean method of calculating the distance between
observations and clusters is used, hclust only uses the two
observations and/or clusters which were recently merged when
updating the distance matrix,

I Agnes calculates those distances as the average of all the
distances between all the observations in the two clusters.
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LAB SESSION AFTER LUNCH

I Clustering of electricity demand data in the UK
I Following the approach in Li et al. (2015). Development of Low

Voltage Network Templates Part I: Substation Clustering and
Classification, IEEE TRANSACTIONS ON POWER SYSTEMS,
VOL. 30, NO. 6, NOVEMBER 2015
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K−MEANS CLUSTERING

I In its simplest form, the idea is to represent each cluster by a
location, usually the mean of the observations of the objects in
that cluster and assign objects to that cluster so that the within
cluster variance is minimised.

I So K-means identifies a cluster by a representative point, just like
one of the data objects.
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K−MEANS CLUSTERING

I We first decide on K, the number of clusters that we wish to
partition the data into. Let Ck, (k = 1, ...,K) be the set containing
the indices of the observations in cluster k.

I Then
K⋃

k=1

Ck = {1, ...,n} and Ck ∩ Cj = φ for k 6= j.

I So Ck contains the members of cluster k. We want a set of clusters
such that the within-cluster variation is as small as possible.

I Let W(Ck) denote the within-cluster variation of cluster k and so
we want the clustering that minimises

∑K
k=1 W(Ck).
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K−MEANS CLUSTERING

I The definition of W(Ck) will depend on the kind of data we have
but the most common is based on Euclidean squared distance

I So the problem becomes, find C1,C2, ...,CK to minimise
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K–MEANS CLUSTERING

I Observations are divided into K groups and reshuffled to form
the most cohesive clusters possible according to a given criterion.

I There are two methods:
I K–means
I Partitioning around mediods (PAM).

I Unlike the hierarchical clustering methods, techniques like
K–means (available through the kmeans function) or
partitioning around mediods (avaiable through the pam function
in the cluster library) require that we specify the number of
clusters that will be formed in advance
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K–MEANS ALGORITHM

1. Selects K centroids
I K rows chosen at random or predefined cluster centres

2. Assigns each data point to its closest centroid
3. Recalculates the centroids as the average of all data points in a
cluster

I Centroids are p–length mean vectors, where p is the number of
variables

4. Assigns data points to their nearest centroids
5. Repeat steps 3 and 4 until observations are not reassigned or the
maximum number of iterations is reached

I R uses 10 as a default
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IMPLEMENTATION IN R

I R uses an efficient algorithm by Hartigan and Wong (1979)
I Partitions the observations into k groups such that the sum of

squares of the observations to their assigned cluster centers is a
minimum

I This means that in steps 2 and 4, each observation is assigned to
the cluster with the smallest value of

SS(k =
∑n

i=1
∑p

j=1(xij − (x̄kj)
2))

Where k is the cluster, xij is the value of the jth variable for the ith

observation, and x̄kj is the mean of the jth variable for the kth cluster.
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K–MEANS CLUSTERING

I K–means clustering can handle larger datasets than hierarchical
cluster approaches.

I Additionally, observations are not permanently committed to a
cluster.

I They are moved when doing so improves the overall solution.
I However, the use of means implies that all variables must be

continuous and the approach can be severely affected by outliers.
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K–MEANS CLUSTERING

I The format of the K–means function in R is kmeans(x,
centers) where x is a numeric dataset (matrix or data frame)
and centers is the number of clusters to extract.

I The function returns the cluster memberships, centroids, sums of
squares (within, between, total), and cluster sizes.

I Since K–means cluster analysis starts with k randomly chosen
centroids, a different solution can be obtained each time the
function is invoked.

I Use set.seed() to guarantee that the results are reproducible.
I This clustering approach can be sensitive to the initial selection

of centroids.
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K–MEANS CLUSTERING
I The kmeans() function has an nstart option that attempts

multiple initial configurations and reports on the best one.
I For example, adding nstart=25 will generate 25 initial

configurations
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K−MEANS CLUSTERING
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K−MEANS CLUSTERING

I Unlike hierarchical clustering, K–means clustering requires that
the number of clusters to extract be specified in advance.

I A plot of the total within-groups sums of squares against the
number of clusters in a K–means solution can be helpful.

I A bend in the graph can suggest the appropriate number of
clusters.
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K–MEANS CLUSTERING

wssplot(mtcars[,1:4])
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PAM: PARTITIONING AROUND MEDOIDS

I Modern alternative to K–means clustering
I Medoid refers to an observation within a cluster for which the

sum of the distances between it and all the other members of the
cluster is a minimum

I PAM requires that you know the number of clusters that you
want (like K–means clustering), but it does more computation
than K–means in order to insure that the medoids it finds are
truly representative of the observations within a given cluster

I In the K–means method the centers of the clusters (which might
or might not actually correspond to a particular observation) are
only recaculated after all of the observations have had a chance
to move from one cluster to another.

I With PAM, the sums of the distances between objects within a
cluster are constantly recalculated as observations move around,
which should provide a more stable solution.
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PAM: PARTITIONING AROUND MEDOIDS

I A by-product is the identification the observations that represent
the medoids, and these observations (one per cluster) can be
considered a representative example of the members of that
cluster which may be useful in some situations

I PAM does require that the entire distance matrix is calculated to
facilitate the recalculation of the medoids which involves
considerably more computation than k-means

I As with K–means, there’s no guarantee that the structure that’s
revealed with a small number of clusters will be retained when
you increase the number of clusters.
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K–MEANS CLUSTERING
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COMPARE WITH HIERARCHICAL CLUSTERING
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SILHOUETTE PLOTS

I A measure is calculated for each observation to see how well it
fits into the cluster that it’s been assigned to

I This is done by comparing how close the object is to other objects
in its own cluster with how close it is to objects in other clusters

I Values near one mean that the observation is well placed in its
cluster; values near 0 mean that it’s likely that an observation
might really belong in some other cluster

I Within each cluster, the value for this measure is displayed from
smallest to largest
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SILHOUETTE PLOTS

I If the silhouette plot shows values close to one for each
observation, the fit was good; if there are many observations
closer to zero, it’s an indication that the fit was not good.

I Average Silhouette Width
I 0.71 - 1.0 : A strong structure has been found
I 0.51 - 0.70 : A reasonable structure has been found
I 0.26 - 0.50 : The structure is weak and could be artificial
I <0.25 : No substantial structure has been found
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SILHOUETTE PLOTS
plot(cars.pam)
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SILHOUETTE PLOTS

To create a silhouette plot for a particular solution derived from a
hierarchical cluster analysis, the silhouette function can be used.
plot(cars.pam)
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GENERALISED LINEAR MODELS

I Used when the response variable is non-Normal
I For example, when predicting probabilities, which have to be

between 0 and 1 (Binomial data)
I When predicting counts (e.g. failures, number of deaths of

disease) which have to be non-negative (Poisson data)
I Defined by three components

1. Response variable, Yi, following one of the above distributions
2. Linear predictor, γ = β0 + β1x1 + ...+ βpxp

3. Link function, γ(E(Yi)) = β0 + β1x1 + ...+ βpxp. In normal
regression, γ = E(Yi), the identity link function.
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LIKELIHOOD

I The likelihood, Ln(θ|y) = f (y|θ) is a measure of the support
provided for a particular set of the parameters, θ, of a probability
model by the data, y = (y1, ..., yn).

I It is a relative measure and only determined by the values of the
observed data, therefore any constants independent of θ can be
omitted.

I It is often more convenient to consider the log likelihood,
ln(θ|y) = log(Ln(θ|y)).
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LIKELIHOOD

I If the response vector, y, consists of n independent and
identically distributed observations, then the likelihood of θ is

Ln(θ|y) =

n∏
i=1

L(θ|yi)and (4)

ln(θ|y) =

n∑
i=1

ln(θ|yi) (5)

I The first derivative of the log likelihood is known as the score
function, Un, which for a sample of size n is given by

Un(θ|y) = ln(θ|y) =
dln(θ|y)

dθ
(6)

I The maximum likelihood estimate (MLE) is found by solving the
equation Un(θ|y) = 0.
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LIKELIHOOD

I The first derivative of the log likelihood is known as the score
function, Un, which for a sample of size n is given by

Un(θ|y) = ln(θ|y) =
dln(θ|y)

dθ
(7)

I The maximum likelihood estimate (MLE) is found by solving the
equation Un(θ|y) = 0.
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QUASI LIKELIHOOD

I Quasi-likelihood only requires that the first two moments of the
data generating distribution are specified, i.e. the mean and
variance.

I The integral Q(µ|y) =
∫ µ

y
y−t
V(t) dt acts like a quasi-likelihood even if

it does not constitute a proper likelihood function.
I Estimates of the parameters of the model can be obtained by

maximising under certain conditions.
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LIKELIHOOD RATIO TESTS

I The likelihood ratio test is a useful way of comparing the fit of
two competing nested models (where the set of parameters in
one model is a subset of those in another).

I The models can be constructed to correspond to the null and
alternative hypothesis of a test.

I If Ω is the parameter space of the larger model and Ω0 is that of
the smaller model, then the models are nested if Ω0 ∈ Ω.

I The null hypothesis corresponds to H0 : θ ∈ Ω0 and the
alternative H0 : θ ∈ Ω|Ω0.
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LIKELIHOOD RATIO TESTS

I The likelihood ratio test for comparing the two models, and thus
testing the hypotheses, is twice the log of the difference between
the maximised likelihoods under the two
models.

2
(

maxΩ|Ω0 ln(θ)

maxΩ ln(θ)

)
I In the case of regression models, if a particular model is

compared to the ‘full’ or saturated model then the scaled deviance
can be calculated

Deviance, D = −2 log(Lk/Lm)

= −2(lk − lm) (8)

where lk is the log of the likelihood of model Mk and lm is that for
the saturated model, Mm, which contains all n parameters.
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LINK FUNCTIONS AND ERROR DISTRIBUTIONS

I GLMs are defined by the distribution of the errors and a link
function which relates the linear predictor to the response.

I They can be used when data is an independent sample from an
exponential family probability distribution; which includes the
normal, binomial and Poisson distributions.

I The likelihood for a GLM has a general form for distributions in
the exponential family of distributions;
fy(y|θ, φ) = exp{(yθ − b(θ))/a(φ)}+ c(y, φ)}, where the
expectation and variance of Y take the form E(Y) = b′(θ) and
VAR(Y) = vi = b′′(θ)a(φ) respectively.

I The function a(φ) is often of the form a(φ) = φ/w, where φ is the
dispersion parameter and w the prior weights.
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LINK FUNCTIONS AND ERROR DISTRIBUTIONS

I The effects of the explanatory variables are contained in the
linear predictor, ηi =

∑p
i=1 xijβj, which simplifies certain aspects

of inference, both in terms of computation and properties of the
resultant estimates.

I The link function links the mean function µ = E(Y) to the linear
predictor, g(µi) = ηi

I The parameters, β can be estimated by solving the estimating
equations,

Un(β) =

p∑
i=1

dµi

dβ
v−1

i (yi − µi(β)) = 0 (9)
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EXAMPLE - POISSON LOG–LINEAR MODELS

I Where the outcome takes the form of counts, e.g. failures, defects
in a composite material, number of daily deaths, is assumed to
follow a Poisson distribution.

I Poisson data, for example, take the form of counts and thus the
outcome is in the range [0,∞).

I The natural link function is therefore log(µi) = γi

I This restricts the outcome to the required range and assumes an
underlying multiplicative relationship.

I In this case, fy(y|θ) = (µ, φ)) = exp{y logµ− µ− log y!}, therefore
logµ = θ, b(θ) = exp(θ), c(y, φ) = − log y! and a(φ) = 1.
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GENERALISED ADDITIVE MODELS

I GAMs can be thought of as non-parametric extensions of GLMs.
I In a GAM, instead of assuming dependence on the sum of linear

predictors, the outcome is assumed to be dependent on a sum of
smooth functions of the predictors

g(E(Y)) =
∑

j

Sj(Xi) (10)

where Sj are smoothing functions.
I GAMs therefore provide a flexible framework for controlling for

non-linear dependence on potential covariates.
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SMOOTHERS

I The class of potential smoothers is very large and so we shall
only cover a selection of the most commonly used ones

I Possibly the most intuitive smoother is the moving average or
running mean, in which the value of xi is replaced by the average
of that value together with those within a defined period around
t

S(Xi) =

p∑
k=−p

wpXi+k : k = p + 1, ...,n− p (11)

where wk are the weights and p > 0. Here, 2p + 1 is the order of
the moving average
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SMOOTHERS

I Unless the number of points included in the calculation of the
average is large, in which case information will be lost, the
resulting line is unlikely to be very smooth due to the sudden
drop in weights as points are not included in the calculation.

I However, if the weights were specified to follow a probability
distribution, as in density estimation, then a smooth set of weights
can be defined.
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SMOOTHERS

I An alternative approach is to calculate a least squares regression
line within each set of neighbouring points of the form

S(xi) = α̂xi + β̂xi xi (12)

I The fitted value at xi is then used as the smoothed value.
I The regression can be fitted using weights, wi, which can be

constructed to be decreasing with distance from xi, giving a loess
smoother
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SMOOTHERS

I Another approach is to fit a polynomial to the data, for example

S(xi) =

p∑
k=0

βkxk
i (13)

where the coefficients, βk, are estimated from the data.
I As with the moving average approach, a choice of the extent of

the smoothing (the order of the polynomial) has to be made.
I Simple polynomials are often useful as part of a model for the

trend with additional terms describing the seasonality
I Polynomials of higher order, whilst theoretically allowing very

good fits to part of the data are likely to be too restrictive,
especially if the model is to be used on another dataset or for
forecasting
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SPLINES

I Regression splines fit piecewise polynomials separated by knots,
and are usually
reforced to join smoothly at the knots.

I When the first and second derivatives are continuous, the
piecewise polynomial is known as a cubic spline.

I A drawback of this approach is the need to choose the number
and position of the knots, although attempts have been made to
automate the procedure

I Splines provide a flexible technique for modelling non-linear
relationships.

I They transform possible non-linear relationships into a linear
form.
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SPLINES

I Splines are formed by separating the data, x, into k + 1
sub-intervals.

I These intervals are defined by k knots, k1, ..., kK.
I The class of precise choice of splines and their basis functions is

very large
I A spline, f (x), is of the form

f (x) =

q∑
j=1

bj(x)βj (14)

where bj(x) is the jth basis function, and βj are the basis
parameters to be estimated.
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SPLINES

I There are many ways to express the basis function which will
represent the spline.

I A popular choice of spline are the cubic splines which have the
following properties:

1. Within each interval f (x) is a cubic polynomial
2. it is twice differentiable and continuous at the knots.

I Cubic splines comprise cubic polynomials within each interval.
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PENALISED SPLINES

I The shape and smoothness of the spline depend upon the basis
parameters and a term that represents smoothness, the latter of
which can be represented in a number of ways.

I The most common of these is to use the number of knots, i.e. to
space the knots equally throughout the data, and specify the
smoothness by k the number of knots.

I However, too many knots may lead to oversmoothness, whilst
inadequate number of knots leads to rough model fit.

I Alternatively a penalised approach can be adopted, which uses
an overly large number of basis functions and penalises excess
curvature in the estimate using a penalty term.
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PENALISED SPLINES

I Penalised splines control smoothness by adding a ‘wiggliness’
penalty to the least squares objective, that is fitting the model by
minimizing

‖Y− Xβ‖2 + λ

∫ b

a

[
f ′′(x)

]2dx

where the second part of this formula penalises models that are
too ‘wiggly’.

I The trade off between model fit and model smoothness is
controlled by the smoothing parameter, λ.

I Since f is linear with parameters βi, the penalty term can be
written as a quadratic form in β:∫ b

a

[
f ′′(x)

]2dx = βTSβ

where S is a matrix of known coefficients
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PENALISED SPLINES

I Therefore, the penalised regression spline fitting problem is
equivalent to
minimize:

‖Y− Xβ‖2 + λβTSβ

I In this case, the estimation of degree of smoothness becomes the
issue of detecting the smoothing parameter λ.

I If λ is too high then the data will be oversmoothed, and if it is too
low then the data will be undersmoothed.

I In both cases this will mean that the spline estimate f̂ will not be
close to the true function f .

I Choosing λ may be done using data-driven criterion, such as
cross validation (CV) and generalised cross validation (GCV)
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EXAMPLE - GAMS FOR DEMAND FORECASTING
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EXAMPLE - GAMS FOR DEMAND FORECASTING



109/ 256

Using big data in the power industry Identifying patterns in data and profiling Spatial modelling Spatial-temporal modelling

EXAMPLE - GAMS FOR DEMAND FORECASTING
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GAMS FOR DEMAND FORECASTING

I The aim is to produce a function g(time, temperature) such that

demand = g(time, temperature) + [residual] (15)

where the [residual] denotes the small, un-modelled term.
I If the patterns of demand are sufficiently well captured by the

predictors time and temperature, then the [residual] term will not
have any further patterns in it.
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GAMS FOR DEMAND FORECASTING

I GAMs perform best when the function g(time, temperature) is
decomposed into simpler components.

g(time, temperature) = f 1(time) + f 2(temperature) (16)

I Possible to add a further interaction term f 3(time, temperature)
that models how the effect of time changes with temperature,
but for this problem that was found to be unnecessary.
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GAMS FOR DEMAND FORECASTING
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Spatial modelling
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TEXTBOOK
Title: Spatio-Temporal Methods in Environmental Epidemiology
Authors: Gavin Shaddick and Jim Zidek
Publisher: CRC Press
Resource Website:
http://www.stat.ubc.ca/~gavin/STEPIBookNewStyle/

http://www.stat.ubc.ca/~gavin/STEPIBookNewStyle/
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SPATIAL MODELLING

I Spatial and temporal dependence
I A hierarchical approach to modelling spatio–temporal data
I Spatial Lattice Processes
I Point Referenced Spatial Processes
I Stationary and non-stationary modelling
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DEPENDENCIES OVER SPACE

I We often seek associations between an predictor variables Z and
an outcome Y .

I A spatial association is suggested if measured values of Z are
found to be large (or small) at locations where counts of Y are
also large (or small).

I A classical regression analysis might then be used to assess the
magnitude of any associations and to assess whether they are
significant.
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DEPENDENCIES OVER SPACE

I However such an analysis would be flawed if the pairs of
measurements, Z and the outcomes, Y, are spatially correlated.

I This results in outcomes at locations close together being more
similar than those further apart.

I In this case, or in the case of temporal correlation, the standard
assumptions of stochastic independence between experimental
units would not be valid.
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EXAMPLE: SPATIAL PATTERNS

I An example of spatial correlation can be seen in the next slide
which shows the spatial distribution of the risk of hospital
admission for chronic obstructive pulmonary disease (COPD) in
the UK.

I There seem to be patterns in the data with areas of high and low
risks being grouped together suggesting that there may be
spatial dependence that would need to be incorporated in any
model used to examine associations with potential risk factors.
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Figure: Map of the spatial distribution of risks of hospital admission for a respiratory condition,
chronic obstructive pulmonary disease (COPD), in the UK for 2001. The shades of blue correspond
to standardised admission rates, which are a measure of risk. Darker shades indicate higher rates of
hospitalisation allowing for the underlying age–sex profile of the population within the area.
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EXAMPLE: DAILY MEASUREMENTS OF PARTICULATE

MATTER

An example of temporal correlation can be seen below, which shows
daily measurements of particulate matter over 250 days in London in
1997. Clear auto-correlation can be seen in this series of data with
periods of high and low pollution.

Figure: Time series of daily measurements of particulate matter (PM10) for 250 days in 1997 in
London. Measurements are made at the Bloomsbury monitoring site in central London. Missing
values are shown by triangles. The solid black line is a smoothed estimate produced using a
Bayesian temporal model and the dotted lines show the 95% credible intervals associated with the
estimates.
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EXAMPLE: SPATIAL PREDICTION OF NO2

CONCENTRATIONS IN EUROPE

I In this example we see the result of using a spatial model to
predict levels of nitrogen dioxide (NO2) across Europe (Shaddick
et al., 2013).

I Measurements were available from monitoring sites at
approximately 400 sites situated throughout Europe and these
data were used to predict concentrations for every 1km × 1km
geographical grid cell within the region.

I In this case, a Bayesian model was fit within WinBUGS and
posterior predictions were imported (via R) to ESRI ArcGIS for
mapping. The results can be seen in the next slide.
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Figure: Predictions of nitrogen dioxide (NO2) concentrations throughout Europe. The predictions
are from a Bayesian spatial model and are the medians of the posterior distributions of predictions
based on measurements from approximately 400 monitoring sites.
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DEPENDENCIES OVER SPACE AND TIME

I Measurements of a process will vary over both space and time
and there will potentially be many sources of variation and
uncertainty.

I Statistical methods must be able to acknowledge this variability
and uncertainty and be able to estimate exposures at varying
geographical and temporal scales in order to maximise the
information available that can be linked to health outcomes in
order to estimate the associated risks.

I In addition to estimates of risks, such methods must be able to
produce measures of uncertainty associated with those risks.

I These measures of uncertainty should reflect the inherent
uncertainties that will be present at each of the stages in the
modelling process.
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BAYESIAN HIERARCHICAL MODELS

Bayesian hierarchical models are an extremely useful and flexible
framework in which to model complex relationships and
dependencies in data and they are used extensively throughout the
course. In the hierarchy we consider, there are three levels;
(1) The observation, or measurement, level; Y|Z,X1, θ1.

Data, Y, are assumed to arise from an underlying process, Z,
which is unobservable but from which measurements can be
taken, possibly with error, at locations in space and time.
Measurements may also be available for covariates, X1. Here θ1
is the set of parameters for this model and may include, for
example, regression coefficients and error variances.
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BAYESIAN HIERARCHICAL MODELS

(2) The underlying process level; Z|X2, θ2.
The process Z drives the measurements seen at the observation
level and represents the true underlying level of the outcome. It
may be, for example, a spatio–temporal process representing an
environmental hazard. Measurements may also be available for
covariates at this level, X2. Here θ2 is the set of parameters for
this level of the model.

(3) The parameter level; θ = (θ1, θ2).
This contains models for all of the parameters in the observation
and process level and may control things such as the variability
and strength of any spatio–temporal relationships.
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A HIERARCHICAL APPROACH TO MODELLING

SPATIO–TEMPORAL DATA

I A spatial–temporal random field, Zst, s ∈ S, t ∈ T , is a stochastic
process over a region and time period.

I This underlying process is not directly measurable, but
realisations of it can be obtained by taking measurements,
possibly with error.

I Monitoring will only report results at NT discrete points in time,
T ∈ T where these points are labelled T = {t0, t1, . . . , tNT}.

I The same will be true over space, since where air quality
monitors can actually be placed may be restricted to a relatively
small number of locations, for example on public land, leading to
a discrete set of NS locations S ∈ S with corresponding labelling,
S = {s0, s1, . . . , sNT}.
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A HIERARCHICAL APPROACH TO MODELLING

SPATIO–TEMPORAL DATA

I There are three levels to the hierarchy that we consider.
I The observed data, Yst, s = 1, ...,NS, t = 1, ...,NT, at the first level

of the model are considered conditionally independent given a
realisation of the underlying process, Zst.

Yst = Zst + vst

where vst is an independent random, or measurement, error term
I The second level describes the true underlying process as a

combination of two terms: (i) an overall trend, µst and (ii) a
random process, ωst.

Zst = µst + ωst
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A HIERARCHICAL APPROACH TO MODELLING

SPATIO–TEMPORAL DATA

I The trend, or mean term, µst represents broad scale changes over
space and time which may be due to changes in covariates that
will vary over space and time.

I The random process, ωst has spatial–temporal structure in its
covariance.

I In a Bayesian analysis, the third level of the model assigns prior
distributions to the hyperparameters from the previous levels.
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DEALING WITH ‘BIG’ DATA

I Due to both the size of the spatio–temporal components of the
models that may now be considered and the number predictions
that may be be required, it may be computationally impractical
to perform Bayesian analysis using packages such as WinBUGS
or MCMC in any straightforward fashion.

I This can be due to both the requirement to manipulate large
matrices within each simulation of the MCMC and issues of
convergence of parameters in complex models.

I Recently developed techniques that perform ‘approximate’
Bayesian inference. This is based on integrated nested Laplace
approximations (INLA) and thus do not require full MCMC
sampling to be performed.

I INLA has been developed as a computationally attractive
alternative to MCMC.
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DEALING WITH ‘BIG’ DATA

I In a spatial setting such methods are naturally aligned for use
with areal level data rather than the point level.

I This is available within the R-INLA package and an example of
its use can be seen in the Figure on the next slide

I This shows a triangulation of the locations of black smoke (a
measure of particulate air pollution) monitoring sites in the UK.

I The triangulation is part of the computational process which
allows Bayesian inference to be performed on large sets of
point-referenced spatial data.
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DEALING WITH ‘BIG’ DATA

Figure: Triangulation for the locations of black smoke monitoring sites within the UK for use with
the SPDE approach to modelling point-referenced spatial data with INLA. The mesh comprises
3799 edges and was constructed using triangles that have minimum angles of 26 and a maximum
edge length of 100 km. The monitoring locations are highlighted in red.
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SPATIAL DATA

Three main types of spatial data are commonly encountered in
environmental epidemiology. They are:

(i) Lattice
(ii) Point-Referenced

(iii) Point-Process Data
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SPATIAL DATA: LATTICES

I Lattices refer to situations in which the spatial domain consists of
a discrete set of ‘lattice points’.

I These points may index the corners of cells in a regular or
irregular grid.

I Alternatively, they may index geographical regions such as
administrative units or health districts.

I We denote the set of all lattice points by Lwith data available at
a set of NL points, l ∈ L where L = l1, ..., lNL .

I In many applications, such as disease mapping, L is commonly
equal to L. A key feature of this class is its neighbourhood
structure; a process that generates the data at a location has a
distribution that can be characterised in terms of its neighbours.
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SPATIAL DATA: POINT-REFERENCED

I Point-referenced data are measured at a fixed, and often sparse,
set of ‘spatial points’ in a spatial domain or region.

I That domain may be continuous, S but in the applications
considered in this course the domain will be treated as discrete
both to reduce technical complexity and to reflect the
practicalities of siting monitors of environmental processes.

I For example, when monitoring air pollution, the number of
monitors may be limited by financial considerations and they
may have to be sited on public land.

I Measurements are available at a selection of NS sites, s ∈ S where
S = s1, ..., sNS .

I Sites would usually be defined in terms of their geographical
coordinates such as longitude and latitude, i.e. sl = (al, bl).



135/ 256

Using big data in the power industry Identifying patterns in data and profiling Spatial modelling Spatial-temporal modelling

SPATIAL DATA: POINT PROCESSES

I Point-process data consists of a set of points, S, that are
randomly chosen by a spatial point process.

I These points could mark, for example, the incidence of a disease
such as childhood leukaemia.

I Despite the importance of spatial point process modelling we do
not cover this topic and its range of applications in this course.
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EXAMPLE: VISUALISING SPATIAL DATA

I Data visualisation is an important topic which encompasses
aspects of model building, including the assessment of the
validity of modelling assumptions, and the presentation of
results.

I We illustrate this by mapping measurement of lead
concentrations in the Meuse River flood plain.

I The Meuse River is one of the largest in Europe and the subject
of much study.

I A comprehensive dataset was collected in its flood plain in 1990
and provides valuable information on the concentrations of a
variety of elements in the river.

I The information is measured at 155 sampling sites within the
flood plain.
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EXAMPLE: VISUALISING SPATIAL DATA

I The figure on the next slide shows the result of using Google
maps to visualise data. It shows the sampling sites marked with
map tacks.

I Google’s Street View then lets an observer see the map tacks.
Clicking on one of the visible map tacks reveals the sample data
record for that site within Street View.
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EXAMPLE: VISUALISING SPATIAL DATA

(a) Sampling sites near Meuse River (b) Map tack opens to show sample

Figure: Google Earth and Google Street Map provide useful ways of visualising spatial data. Here
we see (a) the location at which samples were taken in the Meuse River flood plain and (b) the
information that was collected.



139/ 256

Using big data in the power industry Identifying patterns in data and profiling Spatial modelling Spatial-temporal modelling

GOOD APPROACHES TO SPATIO-TEMPORAL

MODELLING

I Often spatio–temporal models are purpose-built for a particular
application and then presented as a theoretical model.

I It is then reasonable to ask what can be done with that model in
settings other than those in which it was developed.

I More generally, can it be extended for use in other applications?
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GOOD APPROACHES TO SPATIO-TEMPORAL

MODELLING

There are a number of key elements which are common to good
approaches to spatio–temporal modelling. The approaches should do
the following:

I Incorporate all sources of uncertainty. This has led to the
widespread use of Bayesian hierarchical modelling in theory and
practice.

I Have an associated practical theory of data-based inference.
I Allow extensions to handling multivariate data.



141/ 256

Using big data in the power industry Identifying patterns in data and profiling Spatial modelling Spatial-temporal modelling

GOOD APPROACHES TO SPATIO-TEMPORAL

MODELLING

I Be computationally feasible to implement. This is of increasing
concern as we see increasingly large domains of interest. One
might now reasonably expect to see a spatial domain with
thousands of sites and thousands of time points.

I Come equipped with a design theory that enables measurements
to be made optimally for estimating the process parameters or
for predicting unmeasured process values. Good data are
fundamental to good spatio–temporal modelling, yet this aspect
is commonly ignored and can lead to biased estimates of
exposures and thus risk.
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GOOD APPROACHES TO SPATIO-TEMPORAL

MODELLING

I Produce well calibrated error bands. For example, a 95% band
should contain predicted values 95% of the time, i.e. they have
correct coverage probabilities. This is important not only in
substantive terms, but also in model checking.

I There may be questions about the formulation of a model, for
example of the precise nature of the spatio–temporal process that
is assumed, but that may be of secondary importance if good
empirical performance of the model can be demonstrated.
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WHY MODEL LATTICE PROCESSES?

I To spot spatial patterns such as elevated disease counts near
hazardous waste sites.

I To smooth data across space by borrowing strength - small units
may not contain much data
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EXAMPLE: SIDS DATA

This well known data were treated in Cressie’s 1993 text on spatial
statistics. The represent counts of the sudden death infant syndrome.
A plot of the counts and their counts is given in the figure. This
exemplifies data obtained from records representing administrative
regions like cities. Concerns about cause in high count regions.
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PROXIMITY MATRICES

Play fundamental role in analyzing such data. Form: W = {wij}with
wii = 0 represents the proximity to one another of two locations or
regions i, j.

I Examples:
I wij = 1 if and only they have common boundary.
I wij = inverse distance between units
I wij = 1 if distance between units is ≤ K
I wij = 1 for all m of i’s nearest neighbours j

I W is typically symmetric, but need not be
I W̃: is standardised so rows sum to one but symmetry lost
I W’s elements called "weights"
I Can be used to define neighbours of i
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MORAN’S I

W can be used to define clustering indices such as Moran’s I for n
regions:

I =

∑
i
∑

j wij/w{−i}·(Yi − Ȳ)(Yj − Ȳ)∑
i(Yi − Ȳ)2/n

.

Here w{−i}· =
∑

i6=j wij & I large means that nearby points are similar.
Good exploratory tool for cluster detection.

NOTE: W can be used to construct smoothers.
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MARKOV RANDOM FIELD (MRF)
Markov random fields focus on local modelling of spatial
relationships through conditional distributions.
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NEIGHBOURHOODS

I D = {s1, . . . , sm} be the lattice indices (e.g centroids)
I Y(si) be a process of interest
I Y−i: all responses but Y(si)

I Define N(si) ⊂ {s1, . . . , sm} as si neighbourhood if
[Y(si) | Y−i] = [Y(si) | Y(sj), sj ∈ N(si)]
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LOCAL DEPENDENCE

Specify local spatial dependencies by:

[Y(si)|Y(sj), sj ∈ N(si)] for all i

Do these determine joint distribution [Y(s1), . . . ,Y(sm)]?

If yes field is MRF.
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BROOK’S LEMMA

Brook’s lemma says “YES” if N(si) ≡ D−i for all i. More precisely it
says if m = 2 for simplicity and we pick fix (y10, y20), for any (y1, y2).

[y1, y2] =
[y1 | y2][y2 | y10]

[y10 | y2][y20 | y10]
[y10, y20]

Left hand side proper means integration determines normalizing
constant. But doesn’t answer question for all MRFs. Need some new

concepts.
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GENERAL RESULT

I Definition: A clique is a set of cells or lattice indices such that
each element is a neighbour of every other element

I Definition: A potential function Q of order k is a function of k
arguments that is exchangeable in these arguments

I Example: For binary (i.e. 0,1) data and k = 2, we take
Q(yi, yj) = I{(yi = yj} = yiyj + (1− yi)(l− yj)

I Definition: p(y1, . . . , ym) is a Gibbs distribution if [as function of
{yi}] it’s product of potentials on cliques
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LOCAL MODELLING

I All cliques of size 1⇔ implies independence
I For cliques of size 2⇔ common choice is

p(y1, . . . , ym) ∝ exp

− 1
2τ 2

∑
i,j

(yi − yj)
2I{i ∼ j}


and therefore [yi | y−i] = N(

∑
j∈N(si)

yj/mi, τ
2/mi) where

mi =| N(si) | is the number of neighbours of i
I Hammersley-Clifford Theorem: If MRF (i.e. [yi | yj , j ∈ N(s−i) ]

uniquely determines p(y1, . . . , ym)) then the latter must be a
Gibbs distribution.

I Geman and Geman: The converse: if we have a joint Gibbs
distribution, then we have an MRF.
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MARKOV RANDOM FIELDS: NOTES

PROS:
I elegant, simple mathematics + computational power
I may be useful component in hierarchical model

CONS:
I compatible joint distribution may not exist
I neighbours may be hard to specify
I a new site may not have neighbours for spatial prediction!
I conditional distributions may be hard to specify when “sites” are

regions
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CONDITIONAL AUTOREGRESSIVE MODEL (CAR)

Space not ordered like time. The conditional autoregressive approach
(CAR) tries to emulate the AR approach. An MRF form. As before:

I D = {s1, . . . , sm} be the lattice
I Y(si) be a response of interest
I Y−i be all responses but Y(si)

I N(si) be si neighbourhood

CAR model (Gaussian case):

Y(si) ∼ N
(
µi, σ

2
i
)
, for all i

with
E(Y(si)|Y−i) =

∑
sj∈N(si)

bijY(sj, t), Var(Y(si)|Y−i) = τ 2
i
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CONDITIONAL AUTOREGRESSIVE MODEL (CAR)

Does CAR necessarily determine a joint distribution

[Y(si), . . . ,Y(sm)]?

Answer: Yes under reasonable conditions.
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IMPLICATIONS

Brook’s lemma implies:

p(y) = e−
1
2 y′D−1(I−B)y

with y = y1:m where D = diag{τ 2
1 , . . . , τ

2
m} & B = {bij}. Note that

D−1(I − B) must be symmetric so for all i, j

bij

τ 2
i

=
bji

τ 2
j

meaning that B is not symmetric! Also note that Cov(Y) = (I− B)−1D.
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IAR: INTRINSIC AUTOREGRESSION

Much flexibility exists in choice of B. But natural choice is B = W
with wij = 0 or 1 for an adjacency matrix. Yet that would not be an
allowable. Curiously bij = wij/wi+ works & gives

p(yi | y−i) = N(
∑

j

wijyj/wi·, τ
2
i /wi+)

with wi· =
∑

j wij while

p(y) = e−
1
2 y′(Dw−B)y

where D = diag{w1+, . . . ,wm+} and hence Cov(Y)−1 = Dw − B
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IAR: INTRINSIC AUTOREGRESSION

However

(Dw − B)

 1
...
1

 = 0

so:
1. the inverse of the covariance matrix is singular
2. the covariance is undetermined
3. the probability distribution is not integrable.
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IAR: INTRINSIC AUTOREGRESSION

More explicitly,

p(y) ∝ exp

− 1
2τ 2

∑
i,j

(yi − yj)
2wij


which is non-integrable. An example where natural & proper local
dependence models do not yield proper joint distribution. Meaning Y
does not have stochastic generator, MCMC cannot be used, and so
on. This model has been called the intrinsic autoregression model which
de facto means a model concentrated on a lower dimensional space
say where Y· = 0. Modellers use it despite issues.
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FIXING THE IAR

Choose Dw − ρW instead with ρ < 1.

But now,
p(yi | y−i) = N(ρ

∑
j

wijyj/wi+, τ
2
i /wi+)

so conditional mean is fraction of neighbourhood mean. Makes
interpretation and inference challenging (ρ is an extra parameter).
Further even with ρ large say 0.95, Moran’s I is small (around 0.25) in
simulated samples. So fix is unappealing.

Situation resembles AR(1) as the autocorrelation goes to 1 - model
flips from AR (a stationary process) to a random walk (a
non-stationary process).
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THE REVISED IAR

PROS:
I makes distribution proper
I adds parametric flexibility
I ρ = 0 interpretable as independence

CONS:
I hard to rationalize model with Yi’s conditional expectation a

fraction of neighbour average – spatial interpretation?
I interpretation of ρ? As correlation seems tenuous since

I ρ = 0.80 yields 0.1 < Moran′sI < 0.15
I ρ = 0.90 yields 0.2 < Moran′sI < 0.25
I ρ = 0.99 yields Moran′sI < 0.5
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CAR NOTE:

Spatial prediction with CAR is ad hoc using:

p(y0 | y) = N(
∑

j

w0jyj/w0+, τ
2/w0+)

Well defined but not a CAR! That is it could not arise by application
of Brook’s lemma.
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CAR IN THE NON-GAUSSIAN CASE

The CAR theory extends to the non–Gaussian case as the following
example shows.

The following hierarchical model induces a CAR structure.
I Measurement model:

Y(si) ∼ ind Poi(exp [Z(si)])

I Process model:

[Z|β, τ 2, φ] = Gau(Xβ,Σ[τ 2, φ])

where X represents site specific covariates or factors & Σ[τ 2, φ]
the CAR neighbourhood structure.

I Parameter model: [β, τ 2, φ]



164/ 256

Using big data in the power industry Identifying patterns in data and profiling Spatial modelling Spatial-temporal modelling

SIMULTANEOUS AUTOREGRESSION (SAR)

This natural model is like a CAR:

Z(si)− µ(si) =
∑

j

bij(Z(sj)− µ(sj)) + εi

where εi ∼ indN(0, σ2
i ). In vector matrix form:

Z− µ = B(Z− µ) + ε

or
Z = µ+ ε∗

where ε∗ ∼ Nm(0, (I − B)−1Σ(I − B′)−1) with Σ = diag{σ2
1 , . . . , σ

2
m}.

This model capture spatial independence through the mean structure
- a moving average of the {εi}.
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SAR IN EXTENDED FORM

I Data model: [Y(si) | Z(si), σε] = indN(Z(si), σε)

I Process model: [Z | β, σ2, ρ] = N(Xβ, σ2(I− ρW′)(I− ρW)) where
W has zeros down the diagonal but need not be the adjacency
matrix.

I Parameter model: Prior distribution on the parameters.

A large class of models. Can see the affect of covariates on the process
Z. CAR can also incorporate the Xβ type model.
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NOTE ON MISALIGNED DATA

Different responses measured at monitoring sites in a systematic way.
We call unmeasured complements at each site.

systematically missing. Often these unmeasured values are
predicted from the others at different sites.

Change of support means data measured at different resolutions, e.g.
some at a county level, some at point locations.
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NOTES ON AREAL DATA

Sometimes areal data can profitably be modelled as an aggregate of
individual data.

I Can reflect greater uncertainty due to variation within areas.
I Was used to explore the ecological effect and develop model that

avoids it.
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EXAMPLE: US OZONE MONITORING SITES
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RANDOM FIELD

A random process Z(s), s ∈ D ⊂ Rd for some d

Usually d = 2. Interest focuses on stochastic inter-site spatial
dependence (correlation in the case of Gaussian fields) between Z(s1)
and Z(s2).

Why?
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CORRELATION: IS YOUR ENEMY!

Suppose Y(si) = µ+ W(si), i = 1, . . . , p where for any two sites
corr[W(s1),W(s2)] = 0.97. A naive statistician might take

Ȳ± 1.96
s
√p

as a 95% CI. But strong correlation effectively reduces the sample size
to p = 1. It makes the CI much larger. Of particular concern in spatial
regression where Y = Xβ + ε where Y is sample of measurements
made at various locations in a random field.
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CORRELATION IS YOUR FRIEND!

Strong intersite correlation enables strength to be ‘borrowed’.
Measurements at a few sites can be used to predict the rest.

Bad and good correlation has thus led to an explosion of interest in
stochastic models for random fields.
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SPATIAL MODELLING: START WITH EDA! CASE

STUDY 1

The Maas or Meuse: major European river. Rises in France. Flows
through Belgium & the Netherlands. Draining into North Sea. ITotal
length of 925 km. Has been monitored over time.
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SPATIAL MODELLING: START WITH EDA! CASE

STUDY 1

Various chemical measurements are stored in a dataset found in the
gstat package.

> library(gstat)
> data(meuse)
> str(meuse)
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SPATIAL MODELLING: START WITH EDA! CASE

STUDY 1

‘data.frame’: 155 obs. of 13 variables:
$ x : num 181072 181025 181165 181298 181307 ...
$ y : num 333611 333558 333537 333484 333330 ...
$ cadmium: num 11.7 8.6 6.5 2.6 2.8 3 3.2 2.8 2.4 1.6 ...
$ copper : num 85 81 68 81 48 61 31 29 37 24 ...
$ lead : num 299 277 199 116 117 137 132 150 133 80 ...
$ zinc : num 1022 1141 640 257 269 ...
$ elev : num 7.91 6.98 7.80 7.66 7.48 ...
$ dist : num 50 30 150 270 380 470 240 120 240 420 ...
$ om : num 13.6 14 13 8 8.7 7.8 9.2 9.5 10.6 6.3 ...
$ ffreq : Factor w/ 3 levels "1","2","3": 1 1 1 1 1 1 1 1 1 1 ...
$ soil : Factor w/ 3 levels "1","2","3": 1 1 1 2 2 2 2 1 1 2 ...
$ lime : Factor w/ 2 levels "0","1": 2 2 2 1 1 1 1 1 1 1 ...
$ landuse: Factor w/ 15 levels "Aa","Ab","Ag",..: 4 4 4 11 4 11 4 2 2 15 ...$
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SPATIAL MODELLING: START WITH EDA! CASE

STUDY 1

First of all: inspect sampling locations.

> print(xyplot(y ~ x, data = meuse))
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SPATIAL MODELLING: START WITH EDA! CASE

STUDY 1
Ad hoc checks for non-stationarity can be done. Conditioning plots
are one such approach.

> coplot(zinc ~ x | y, data = meuse)
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SPATIAL MODELLING: START WITH EDA! CASE

STUDY 1

> coplot(zinc ~ y | x, data = meuse)
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SPATIAL MODELLING: START WITH EDA! CASE

STUDY 1

Next distributional checks, e.g. Box and Whisker plot.

> print(bwplot(~zinc, data = meuse))
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SPATIAL MODELLING: START WITH EDA! CASE

STUDY 1

Or a histogram.

> print(histogram(~zinc, data = meuse))
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SPATIAL MODELLING: START WITH EDA! CASE

STUDY 1
The empirical cdf

> library(stepfun)
> cdf.zinc <- ecdf(meuse$zinc)
> plot(cdf.zinc, verticals = T, do.points = F)
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SPATIAL MODELLING: START WITH EDA! CASE

STUDY 1
The q–q (quantile-quantile) plot

> qqnorm(meuse$zinc)
> qqline(meuse$zinc)
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SPATIAL MODELLING: START WITH EDA! CASE

STUDY 1

geoR alternative to gstat has nice plot function. But data must be
converted to a geodata object from the meuse dataset, a dataframe
object.

> library(geoR, warn = F)
> meuse.geo <- as.geodata(meuse, data.col = 6)

Loading required package: mva
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SPATIAL MODELLING: START WITH EDA! CASE

STUDY 1

> plot(meuse.geo)
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SPATIAL MODELLING: START WITH EDA! CASE

STUDY 1

CONCLUSION: Log zinc fitted reasonably well with a student t
distribution - very heavy tails.
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SOME THEORY: MOMENTS

Y ∼ F: random vector field. Fixed time t omitted in sequel. s and x
commonly used for spatial coordinates, e.g. (lat, long). We use s.
For locations {s1, . . . , sg} for any g

Fs1,...,sg(y1, . . . , yg) ≡ P{Y(s1) ≤ y1, . . . ,Y(sg) ≤ yg}.

Fs1,...,sg(y) is joint distribution distribution (DF)
I Moment of kth-order:

E[Y(s)]k ≡
∫

ykdFs(y)
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SOME THEORY

I Expectation: If exists, defined as the 1st-order moment for any s

µ(s) ≡ E[Y(s)]

I Variance:
Var[Y(s)] ≡ E[Y(s)− µ(s)]2.

I Covariance between locations s1 & s2,

C(s1, s2) ≡ E[(Y(s1)− µ(s1))(Y(s2)− µ(s2))]

NOTE: C(s1, s1) ≡ Var[Y(s1)]
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SOME THEORY: STATIONARITY

An important concept in characterizing the random field Y
I Strict stationarity Y strictly stationary if:

Fs1,...,sn(y) = Fs1+h,...,sn+h(y)

for any vector h & an arbitrary n
I Second–order stationarity Y is second-order stationary if:

µ(s) = E[Y(s)] = µ
C(s, s + h) = C(s + h− s) = C(h)

when h = 0 : Var[Y(s)] = C(s, s) = C(0)
ie. Mean, Variance do not depend on location
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SOME THEORY: STATIONARITY

I Second–order stationarity - cont’d
C(h): covariogram (or autocovariance in time series) implies
Intrinsic Stationarity (weaker)

Var[Y(s)− Y(s + h)] = Var[Y(s)] + Var[Y(s + h)]

−2Cov[Y(s),Y(s + h)]

= C(0) + C(0)− 2C(h)

= 2[C(0)− C(h)].

or equivalently semi-variogram

γ(h) = C(0)− C(h)
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PROPERTIES OF C(h)

X second-order stationary process with covariance function C(h).
I Positive Definiteness (PD): If Σ = {C(hij)} being covariance

matrix of random vector (Y(s1), . . . ,Y(sn)) makes it PD implying
for any vector a that: ∑

i

∑
j

aiajC(hij) > 0

I Anisotropy: C(h) - function of length & direction
I Isotropy: C(h) - function only of length |h|



190/ 256

Using big data in the power industry Identifying patterns in data and profiling Spatial modelling Spatial-temporal modelling

VARIOGRAMS

Matheron supposed that at least for small | h |

E[Y(s + h)− Y(s)] = 0

would be reasonable assumption. He then defined the
I Variogram:

2γ(h) ≡ var[Y(s + h)− Y(s)]
= E[Y(s + h)− Y(s)− (µ(s + h)− µ(s))]2.
= E[Y(s + h)− Y(s)]2.

I γ(h) is called semi-variogram.
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ISOTROPIC SEMI-VARIOGRAM MODELS

Second order stationarity implies γ(h) = C(0)− C(h)→ γ(0) = 0
I But often limh→0 γ(h) 6= 0. Discontinuity called nugget effect.
I When γ(h)→ B as h→∞, B called a sill
I Note: Few functions satisfy positive definiteness condition - only

certain ones (eg. variogram)
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COMMON ISOTROPIC MODELS

Exponential model

|h|

se
m

i
va

rio
gr

am

γ(h) = a  +   b  (1 − e−t0  h )
for h > 0 , a ≥ 0 , b ≥ 0, and t0 ≥ 0

a

b
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COMMON ISOTROPIC MODELS

Gaussian model

|h|

se
m

i
va

rio
gr

am

γ(h) = a  +   b  (1 − e−t0  h2 )
for h > 0 , a ≥ 0 , b ≥ 0, and t0 ≥ 0

a

b
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COMMON ISOTROPIC MODELS

Whittle Matern model

|h|

se
m

i
va

rio
gr

am

γ(h) = a  +   b  (1 − (t0h)ν Kν(t0h) c)
c = 2ν−1Γ(ν)
Kν : Modified Bessel function

for h > 0 , a ≥ 0 , b ≥ 0, and t0 ≥ 0

a

b
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SPATIAL PREDICTION

Problem: Estimate at location s0 given observed levels X(si) ?

X(s1)

X(sn)

X(s3)

X(s2)

s0
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CASE STUDY 1: ZINC LEVELS IN THE NETHERLANDS

Values of log zinc at sampling locations. Mapping the basin would
mean predicting unmeasured responses at other sites without

measurements.

178000 179000 180000 181000 182000

33
00

00
33

10
00

33
20

00
33

30
00

X Coord

Y 
C

oo
rd



197/ 256

Using big data in the power industry Identifying patterns in data and profiling Spatial modelling Spatial-temporal modelling

ORDINARY KRIGING

Goal:. Ignoring measurement error for simplicity predict Y(s0) given
observations y1, . . . , yn at locations s1, . . . , sn. Assumption

I Covariance structure known
I Y(s) = µ+ W(s) & intrinsic stationary, ie.

E[Y(s)] = µ

Var[Y(s)− Y(s + h)] = 2γ(|h|)

I Linear predictors:

Y∗(s0) =

n∑
i=1

αiY(si)
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ORDINARY KRIGING

Reaching the goal: choose {α} to get unbiasedness & minimal
prediction error

σ2
s0
≡ E [Y∗(s0)− Y(s0)]

2

Result: Kriging predictor = best linear unbiased predictor (BLUP)
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ORDINARY KRIGING SYSTEM

I E[Y∗(s0)] = E
[∑n

i=1 αiYsi)
]

= µ
∑n

i=1 αi (1)

implies
∑n

i=1 αi = 1.
I Prediction error (Kriging variance).

σ2
s0
≡ E [Y∗(s0)− Y(s0)]

2
= E

[
n∑

i=1

αi[Y(si)− Y(s0)]

]2

=

n∑
i=1

n∑
j=1

αiαjE[Y(si)− Y(sj)]
2/2

−
n∑

i=1

αiE[Y(si)− Y(s0)]2

=

n∑
i=1

n∑
j=1

αiαjγ(|hij|)− 2
n∑

i=1

αiγ(|hi0|) (2)

α’s chosen to minimize (2) & satisfy (1)
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IMPLEMENTATION IN SUMMARY

I Select good semi-variogram model. Estimate γ̂(.) since it will not
be known as assumed.

I Solve the Kriging system to obtain α̂’s

Resulting Kriging predictor & estimated Kriging variance

Ŷ∗(s0) =

n∑
i=1

α̂iyi

σ̂2
s0

=

n∑
i=1

n∑
j=1

α̂iα̂jγ̂(|hij|)−
n∑

i=1

α̂iγ̂(|hi0|)
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REMARKS

I Y ∼ Gaussian implies 95% prediction interval:

[Y∗(s0)− 1.96σs0 ,Y
∗(s0) + 1.96σs0 ]

I Kriging predictor is exact interpolator;
(interpolator = observed value at that location)

I σ2
s0

is

σ2
s0

=

n∑
i=1

n∑
j=1

αiαjC(si, sj)− 2
n∑

i=1

αiC(si, s0) + Var(Y(s0))

I Stationarity required only because cannot otherwise estimate the
covariance.
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UNIVERSAL KRIGING

Random fields with non-constant means. Let

Y(s) = µ(s) + W(s)

I Here W(s) is 2nd-order stationary with mean E[W(s)] = 0

I µ(s) =
∑k

l=1 alfl(s) {fl(s), l = 1, . . . , k} : known functions with
parameters and {al}. Can be dummy variables.

Universal Kriging Estimator:

Y∗(s0) =

n∑
i=1

αiY(si)

Weights α’s chosen to get unbiased estimate with smallest prediction
error.
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SIMULATION STUDY

geoR provides a random field simulation function. Notice that we
have used the Matern covariance function to generate the data with
κ = 0.5 so it gives an exponential variogram. The range is φ = 0.05
but this varies in the simulation study.

grf(n, grid = "irreg", nx, ny, xlims = c(0, 1),
ylims = c(0, 1), borders, nsim = 1,
cov.model = "matern", cov.pars = c(1,0.04) kappa = 0.5, nugget =
0, lambda = 1, aniso.pars,
mean = 0, method, RF=TRUE, messages)
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SIMULATION STUDY

We begin with the variogram clouds for φ = 0.05, 0.50.
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SIMULATION STUDY

We turn to bins or φ = 0.05, 0.50.
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SIMULATION STUDY

We finish with smoothers φ = 0.05, 0.50.
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VARIOGRAM FITTING STRATEGIES

First choose a parametric variogram family.

Then use:
Least squares: We use four LS methods below, all of
which fit to the binned variogram:

1. ordinary least squares
2. weighted least squared- bin counts; variances;

Cressie weights.
Maximum likelihood: Needs to have a specified
sampling distribution.
Bayes: Distributions put on the parameters.
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CASE STUDY 1 (CONTINUED)

Values of log residuals, after detrending the data by removing effect
of the distance from river and elevation through universal kriging.
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CASE STUDY 1 (CONTINUED)

Predicted spatial residual surface.
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CASE STUDY 1 (CONTINUED)

Standard error of prediction of residual.
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LEAST SQUARE ESTIMATORS

Ordinary least squares: Choose θ to minimize

(γ̂ − γθ)′(γ̂ − γθ).

Ordinary LS immediately implementable by a
nonlinear least squares procedure. But estimates γ̂(h)
may vary a lot so assigning equal weights to all γ̂(h)
unsatisfactory.
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LEAST SQUARE ESTIMATORS

Number weighted least squares: Modification of equal weights
scheme uses weights given by number of pairs in each
bin as in second method above. Choose θ to minimize

(γ̂ − γθ)′M(γ̂ − γθ),

where M is a diagonal matrix of the number of pairs of
points in each bin.
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LEAST SQUARE ESTIMATORS

Weighted least squares: Choose θ to minimize

(γ̂ − γθ)′Wθ(γ̂ − γθ),

where Wθ is a diagonal matrix of the variances of the
entries of γθ.
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LEAST SQUARE ESTIMATORS

Generalized least squares: Choose θ to minimize

(γ̂ − γθ)′Vθ(γ̂ − γθ),

where Vθ denotes the covariance matrix of γθ.

NOTES:
I The weighted and generalized least squares method require

specification of the matrices Wθ and Vθ.
I Generalized LS is possible in principle, but complicated to

implement.
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CASE STUDY 2: SOIL CALCIUM IN BRAZIL

These data consist of calcium content in soil from a region in Brazil.
They are in the geoR library. For a description use help(ca20) on
the command line in R.
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CASE STUDY 2: SOIL CALCIUM IN BRAZIL

Fitting variograms by ordinary least squares.
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CASE STUDY 2: SOIL CALCIUM IN BRAZIL

Estimated parameters.

model sill range nugget RSS
exponential 139.1881 179.0273 7.3292 678.683
gaussian 87.8525 273.3551 56.7929 443.8803
spherical 104.1764 555.6048 40.3781 375.0742
matern 110.7297 135.1417 35.213 601.5659
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CASE STUDY 2: SOIL CALCIUM IN BRAZIL

Number weighted least square fitting.
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CASE STUDY 2: SOIL CALCIUM IN BRAZIL

Estimated parameters.

model sill range nugget RSS
exponential 139.901 249.1264 20.3517 430123.7
gaussian 90.6371 303.4283 59.9994 251816.7
spherical 107.8644 599.9593 41.8199 149820.6
matern 114.1321 170.633 42.6684 355798.4
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CASE STUDY 2: SOIL CALCIUM IN BRAZIL

Estimated parameters –spherical model – different fitting methods.

method sill range nugget RSS
ordinary 104.1764 555.6048 40.3781 375.0742
number 107.8644 599.9593 41.8199 149820.6
cressie 108.1 598.2109 41.6151 8.8353
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LIKELIHOOD APPROACH

The likelihood approach is viewed as best method since points in the
empirical variogram are highly correlated. Makes LS inefficient and
misleading. geoR has that option.
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ENSURING SIMPLE MODELS

Adding parameters can always reduce residal sums of squares. But
also need to minimize # of parameters. Distributional assumptions &
Akaike Information Criterion (AIC) can do this:

AIC =− 2 log(maximized likelihood) + 2(number of parameters),

AIC’s variable part is estimated by

n log(RSS) + 2p.

Here n = # of points, p= #of model parameter and RSS = residual sum
of squares.
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CROSS-VALIDATION WITH KRIGING

Spatial prediction important goal of kriging. So choose model that
does this best. How? By leave–one–out cross–validation.

1. Estimate variogram using sample data & fitted plausible models.
2. For each model, predict excluded Y’s using kriging value there.

Calculate kriging variance as well.



224/ 256

Using big data in the power industry Identifying patterns in data and profiling Spatial modelling Spatial-temporal modelling

CROSS-VALIDATION WITH KRIGING

Diagnostics from results: mean–deviation (ME);
mean–squared–deviation (MSE); mean–squared–deviation–ratio (MSDR)
found from squared–errors & kriging variances, σ̂2(si):

ME =

N∑
i=1

| y(si)− ŷ(si) | /N

MSE =

N∑
i=1

| y(si)− ŷ(si) |2 /N

MSDR =

N∑
i=1

(y(si)− ŷ(xi))
2

σ̂2(si)
/N.
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CROSS-VALIDATION WITH KRIGING

NOTES:
I ME should be close to 0, since kriging is an unbiased prediction

method.
I MSE should be as small as possible.
I If the model is accurate then the MSDR should be close to 1.



226/ 256

Using big data in the power industry Identifying patterns in data and profiling Spatial modelling Spatial-temporal modelling

CASE STUDY 2 (CONT’D).

Do cross-validation for the four variogram models “exponential”,
“gaussian”, “spherical”, and “matern” on the ca20 data from the
geoR package. Then calculate diagnostic indices.

model ME MSE MSDR
exponential -0.008028705 60.94539 1.103823
gaussian -0.007405837 69.02756 1.064712
spherical -0.008975785 62.69338 1.022848
matern -0.00870061 62.96571 1.057020
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SOME DIAGNOSTIC PLOTS

The spherical model seems to win also in the cross-validation
competition. But diagnostic plots seen in the slides that follow can
also be useful.
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SOME DIAGNOSTIC PLOTS
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SOME DIAGNOSTIC PLOTS
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SOME DIAGNOSTIC PLOTS
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SOME DIAGNOSTIC PLOTS
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SOME DIAGNOSTIC PLOTS
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SOME DIAGNOSTIC PLOTS
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SOME DIAGNOSTIC PLOTS
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WHAT IF PROCESS SEEMS NON–STATIONARY?

Some options follow:
1. Change spatial mean: µ(s) will inevitably be misspecified as
µ∗(s) so the residual is misspecified as W∗(s) = Y(s)− µ∗(s).
Thus the calculated variogram will be non–stationary

E[W∗(s1)−W∗(s2)]2 = E[W(s1)−W(s2)]2+

[{µ∗(s1)− µ(s1)}−
{µ∗(s2)− µ(s2)}]2
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WHAT IF PROCESS SEEMS NONSTATIONARY?

2. Adopt non-stationary modelling approach, convolution
approach: Represent the residual as

W(s) =

∫
K(s− s′)W∗(s′)ds′

where W∗ is stationary. NOTE: Allows only modest degree of

non–stationarity.
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WHAT IF PROCESS SEEMS NON–STATIONARY?

3. Warping: The Sampson–Guttorp approach warps the geographic
space into dispersion space so that strongly correlated sites are
moved closet together, uncorrelated ones further apart.

4. Dimension expansion: Keep the geographic space as is but add
additional dimensions.



238/ 256

Using big data in the power industry Identifying patterns in data and profiling Spatial modelling Spatial-temporal modelling

EXAMPLE: PARTICULATE MATTER IN VANCOUVER

I Small particulates, the size of those in cigarette smoke are nasty.
I They get deep into the lung to the gas exchange membrane

where they can generate antiinflammatory mediators.
I These in turn affect the cardio–vascular system and cause heart

problems.
I PM10 are all up to 10 microns in size. PM2.5 is the fraction with

the smallest sizes and are now of primary concern.
I However the spatial field can be quite nonstationary since these

particulates come from mobile and local sources.
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HOURLY PM10 IN VANCOUVER -1994-1999
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HOURLY PM10 IN VANCOUVER -1994-1999
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Spatial-temporal modelling
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SPATIAL-TEMPORAL MODELLING

I Approaches to incorporating time
I Dynamic linear models
I Physical statistical modelling
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SPATIO–TEMPORAL MODELLING

Handling time.
I Depends on random response paradigm: point referenced;

lattice; point process.
I Active area of current development
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GENERAL APPROACHES TO INCORPORATING TIME

I Approach 1: Treat continuous time as like another spatial
dimension with stationarity assumptions. Eg. Spatio–temporal
Kriging. NOTE: Constructing covariance models is more
involved

I Approach 2: Integrate spatial fields over time. Eg. Given a
spatial lattice let Y(t) : m× 1 be vectors of spatial responses at
lattice points. Eg. use multivariate autoregression.

I Approach 3: Integrate times series across space. For a temporal
lattice let Y(s) : 1× T be vector of temporal responses at - use
multivariate spatial methods.
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SPECIALISED APPROACHES

I Approach 4: Build a statistical framework on physical models
that describe the evolution of physical processes over time
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EXAMPLE: THE DLM

Combine dynamic linear models across space to get spatial

predictor & temporal forecastor. Result: model for hourly
√

(O3)

field over Mexico City - data from 19 monitors in Sep 1997.
Measurement model:

Y(s, t) = β(t) + S′(t)α(s, t) + X(s, t)γ(t) + ε(s, t)

where
I St : 2× 1 has sin’s and cos’s;
I α has their amplitudes, X temperature covariate
I ε(s, t): un-autocorrelated error with isotropic exponential spatial

covariance.
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SPECIALISED APPROACHES: EG DLM

Process model:

β(t) = β(t− 1) + ωβ(t)
α(s, t) = α(s, t− 1) + ωα(s, t)
γ(t) = γ(t− 1) + ωγ(t)
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SPECIALISED APPROACHES: EG DLM

PROS:
I intuitive, flexible
I allows incorporation of physical/prior knowledge

CONS:
I computationally intensive - maximum of 10 measurement sites
I non - unique model specification - finding good one can be

difficult
I unrealistic covariance
I empirical tests suggest simpler multivariate BSP works better for

spatial prediction and temporal forecasting but much less
computationally demanding, Eg. 300 measurement sites
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PHYSICAL STATISTICAL MODELLING

I physical models needed for background
I prior knowledge often expressed by differential equations (de’s)
I can lead to big computer models
I yield deterministic response predictions
I can encounter difficulties:

I butterfly effect
I nonlinear dynamics
I lack of relevant background knowledge
I lack of sufficient computing power
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PHYSICAL STATISTICAL MODELLING

I statistical models also desirable
I prior knowledge expressed by statistical models
I often lead to big computer models
I yield predictive distributions
I can encounter difficulty:

I off-the-shelf-models too simplistic
I lack of relevant background knowledge
I lack of sufficient computing power
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EXAMPLE: CHEMICAL TRANSPORTATION MODELS

MAQIP hourly ozone concentration prediction model outputs
version data. A CMAQ prototype. Red is from the model. Blue are
the data.
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PHYSICAL STATISTICAL MODELLING

May be strength in unity but:
I big gulf between two cultures
I communication between camps difficult
I approaches different
I route to reconciliation unclear
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PHYSICAL STATISTICAL MODELLING

Approach to reconciliation - depends on: purpose; context; # of
(differential) equations; etc.

With many equations (e.g. 100):

I build a better predictive response density for [field response |
deterministic model outputs]
eg. input model value as prior mean

I view model output as response and create joint density for
[field response,model output] =∫

[field response|λ][model output|λ]× π(λ|data)dλ
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PHYSICAL STATISTICAL MODELLING

With a few differential equations (de’s)

Example: dY(t)/dt = λY(t).
I Option 1: solve it and make known or unknown constants

uncertain (i.e. random):
Y(t) = β1 expλt + β0

I Option 2: discretize the de and add noise to get a state space
model: Y(t + 1) = (1 + λ)Y(t) + ε(t)

I Option 3: use functional data analytic approach - incorporate de
through a penalty term as in splines∑

t(Yt − Xt)
2 + (smoothing parameter)

∫
(DY− λY)2dt
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DOWNSCALING PHYSICAL MODELS

Regression – like approaches may be used:

Y(s, t) = αst + βMstM(S,T) + βstXcovariates(s, t)δ(s, t)

where M is physical model output, s ∈ Sgrid cell & t ∈ TTime Interval.
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EXAMPLE: MAQSIP REVISITED

MAQIP hourly ozone concentration prediction model outputs
version the downscaling model above.


	Using big data in the power industry
	Identifying patterns in data and profiling
	Spatial modelling
	Spatial Lattice Processes
	Point Referenced Spatial Processes

	Spatial-temporal modelling

