Environmental Health Impact Assessment using R

Mapping Risks

Prof. Gavin Shaddick University of Exeter

23rd November 2017

1/26

Sac

→ < @ > < E > < E > < E

nac

3

ヘロア 人間 アメヨアメヨア

OUTLINE

Disease Mapping

Lip Cancer in Scotland

Expected Numbers

Cancer in North-West England

COPD in England

Data Quality Issues

Disease Mapping

Sac

WHAT IS SPATIAL EPIDEMIOLOGY?

- Epidemiology is the study of the distribution of diseases in populations.
- Disease risk depends on the person (genetics/behaviour), place and time.
- Spatial epidemiology focuses on the second of these.
- Place is a surrogate for exposures present at that location
 - environmental exposures in water/air/soil
 - lifestyle characteristics of those living in particular areas.

Sac

GROWING INTEREST IN SPATIAL EPIDEMIOLOGY

- Public interest in effects of environmental hazards/pollution.
- Epidemiological interest in differences in disease rates across different areas.
- Data availability: collection of health data at different geographical scales.
- Increase in computing power and methods
 - Geographical Informations Systems (GIS).
- Development of statistical/epidemiological methods for investigating disease 'clusters'.

Sac

THE NEED FOR SPATIAL METHODS

- Many epidemiological studies are spatial
 - many are spatio-temporal!
- When do we need to 'worry'?
 - are we explicitly interested in the spatial pattern of disease incidence?
 - disease mapping
 - cluster detection.
 - is the clustering a nuisance quantity that we wish to acknowledge, but are not explicitly interested in?
 - spatial regression.

TYPES OF SPATIAL DATA

- Point data
 - 'exact' residential locations exist, e.g. for cases and controls.

7/26

Sac

(日) (個) (E) (E) (E)

- Count data
 - aggregation
 - typically over administrative units.

Sac

OVERVIEW OF DISEASE MAPPING

- The estimation and presentation of summary measures of health outcomes.
- ▶ The aims of disease mapping include
 - simple description
 - hypothesis generation
 - allocation of health care resources, assessment of inequalities
 - estimation of background variability in underlying risk in order to place epidemiological studies in context.
- There can be difficulties with the mapping of raw estimates since, for small areas and rare diseases in particular, these estimates will be dominated by sampling variability.

Sac

▲ □ ▶ ▲ @ ▶ ▲ ■ ▶ ▲ ■ ▶ ■ ■

STANDARDISED MORTALITY/MORBIDITY RATIOS

We can compare the observed expected number of deaths in an area with the expected number of deaths based on the population age-sex profile.

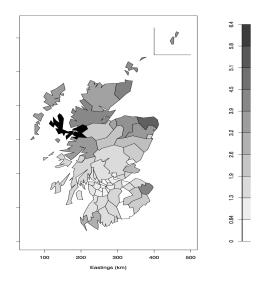
$$SMR = \frac{O}{E}$$

- The SMR is a ratio, not a rate or a percentage. An SMR of 100 means that the population of interest has the same number of deaths as we would expect from a reference population.
- If it is greater than 1, there are more deaths/disease cases than expected; if it is less than 1 there are less.

Lip Cancer in Scotland

EXAMPLE: LIP CANCER IN SCOTLAND

- Incidence rates of lip cancer in males in 56 counties of Scotland, registered in 1975–1980.
- Data
 - observed and 'expected' number of cases (based on the county age populations)
 - this allows the calculation of the standardised morbidity ratio
 - ratio of the observed to the expected cases.
 - a covariate measuring the proportion of the population engaged in agriculture, fishing, or forestry (AFF)
 - the projections of the longitude and latitude of the area centroid, and the 'position' of each county expressed as a list of adjacent counties.


EXAMPLE: LIP CANCER IN SCOTLAND

County	Obs	Exp	Prop	SMR	Project	Project	Adjacent
No. i	Cases Y_i	Cases E_i	AFF		N (km)	E (km)	Counties
1	9	1.4	0.16	6.43	834.7	162.2	5,9,19
2	39	8.7	0.16	4.48	852.4	385.8	7,10
3	11	3.0	0.10	3.67	946.1	294.0	12
4	9	2.5	0.24	3.60	650.5	377.9	18,20,28
5	15	4.3	0.10	3.49	870.9	220.7	1,12,19
6	8	2.4	0.24	3.33	1015.2	340.2	Island
7	26	8.1	0.10	3.21	842.0	325.0	2,10,13,16,17
8	7	2.3	0.07	3.04	1168.9	442.2	Island
9	6	2.0	0.07	3.00	781.4	194.5	1,17,19,23,29
47	2	5.6	0.01	0.36	640.8	277.0	24,31,46,48,49,53
48	3	9.3	0.01	0.32	654.7	282.0	24,44,47,49
49	28	88.7	0.00	0.32	666.7	267.8	38,41,44,47,48,52,53,54
50	6	19.6	0.01	0.31	736.5	342.2	21,29
51	1	3.4	0.01	0.29	678.9	274.9	34,38,42,54
52	1	3.6	0.00	0.28	683.7	257.8	34,40,49,54
53	1	5.7	0.01	0.18	646.6	265.6	41,46,47,49
54	1	7.0	0.01	0.14	682.3	267.9	34,38,49,51,52
55	0	4.2	0.16	0.00	640.1	321.5	18,24,30,33,45,56
56	0	1.8	0.10	0.00	589.9	322.2	18,20,24,27,55

æ

ヘロト 人間 とくほ とくほとう

EXAMPLE: LIP CANCER IN SCOTLAND

Disease Mapping	Lip Cancer in Scotland	Expected Numbers	Cancer in North-West England	COPD in England	Data Quality Issues
-----------------	------------------------	------------------	------------------------------	-----------------	---------------------

Expected Numbers

EXPECTED NUMBERS

- The expected number of deaths/disease are calculated using *indirect* standardisation.
- Rates from a reference population are applied to the population of interest.
- The expected number

$$E = \sum_{k} N_k r_k$$

15/26

SQA

where r_k is the rate in the reference population and N_k is the population in the study. Commonly, *k* would denote age–sex categories.

SQA

↓ □ ▶ < @ ▶ < @ ▶ < @ ▶ < @ ▶

STANDARDISED MORTALITY / MORBIDITY RATIOS

- The observed number of deaths can be compared to the expected number using the standardised mortality/morbidity ratio (SMR).
- Let O be the observed number of deaths/disease cases in the population of interest, and E be the expected number.

$$SMR = \frac{O}{E}$$

- An SMR of 1 means that the rates of death/disease in the population of interest are the same as in reference population.
- If it is greater than 1, we have more deaths/disease cases than expected; if it is less than 1 we have less.

Disease Mapping	Lip Cancer in Scotland	Expected Numbers	Cancer in North-West England	COPD in England	Data Quality Issues
-----------------	------------------------	------------------	------------------------------	-----------------	---------------------

Cancer in North-West England

EXAMPLE: LUNG AND BRAIN CANCER IN NORTH-WEST ENGLAND

- Two tumors
 - one non-rare (lung)
 - and one rare (brain).
- ▶ Study period is 1981–1991.
- Analysis performed at ward level (144 wards)
 - incidence data by postcode.
- Brain cancer
 - the median number of cases per ward over the 11 year period is 6
 - range of 0 to 17.
- Lung cancer
 - the median number is 20
 - range 0–60.
- Expected counts were based on ward-level populations from the 1991 census, by 5-year age bands and sex.

18/26

Cancer in North-West England

COPD in England Data Qual

19/26

590

イロト 不得 トイヨト イヨト

EXAMPLE: LUNG AND BRAIN CANCER IN NORTH-WEST ENGLAND

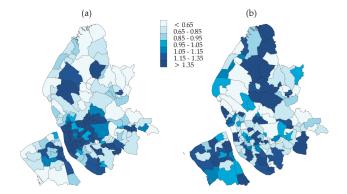


Figure: SIRs for (a) lung cancer, and (b) brain cancer in the North-West of England.

Disease Mapping	Lip Cancer in Scotland	Expected Numbers	Cancer in North-West England	COPD in England	Data Quality Issues
-----------------	------------------------	------------------	------------------------------	-----------------	---------------------

COPD in England

EXAMPLE: COPD IN ENGLAND

- Incidence rates of hospital admissions for Chronic Pulmonary Obstructive Disease (COPD) in 324 local authorities of England, between in 2001–2010.
- Data:
 - observed and 'expected' number of cases (based on the local authority age-sex profiles)
 - this allows the calculation of the standardised morbidity ratio (ratio of the observed to the expected cases).

21/26

500

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

22/26

SAC

э

EXAMPLE: COPD IN ENGLAND

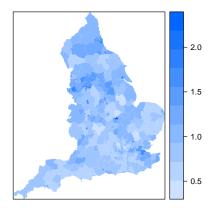


Figure: SMRs for hospital admissions of COPD in 324 local authorities in England.

Data Quality Issues

DATA QUALITY ISSUES

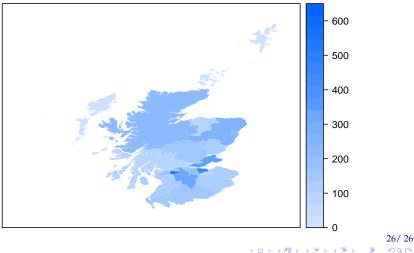
- In routinely carried out investigations the constituent data are often subject to errors.
- ► Population data
 - Population registers are the gold standard but counts from the census are those that are typically routinely-available.
 - Census counts should be treated as estimates, however, since inaccuracies, in particular underenumeration, are common.
 - For inter-censual years, as well as births and deaths, migration must also be considered.

24/26

 The geography, that is, the geographical areas of the study variables, may also change across censuses which causes complications.

DATA QUALITY ISSUES

- In routinely carried out investigations the constituent data are often subject to errors.
- ▶ Health data
 - For any health event there is always the possibility of diagnostic error or misclassification.
 - For other events such as cancers, case registrations may be subject to double counting and under registration.


25/26

200

▶ In both instances *local knowledge* is invaluable.

And you will be able to do this by the end of the session!

Population (in 1000s)

900