# Data Science and Statistics in Research: unlocking the power of your data 

Session 1.4:

Data and variables

## Outline

Types of data

Types of variables

Presentation of data

Tables

Summarising Data

## Types of data

## What are data and variables?

- Data are the results of sampling values of some variables associated with a population or a process.
- A variable takes on one of a set of allowed values each time it is observed.
- Variables can be either qualitative or quantitative.
- Multiple measurements of a variable form a sample.


## EXAMPLES OF DATA

- Heart rates of a patients - heart rates taken at various times of day
- heart rate is a variable
- each measurement is an observation of that variable.
- Car attributes - collecting fuel consumption and 10 other aspects of car design and performance for 32 automobiles.
- fuel consumption and the 10 other aspects are variables
- each car tested is an observation of these variables.
- Charateristics of iris flowers - measurements of petals for 50 iris flowers
- petal length and width are variables
- each iris measured is an observation of these variables.


## Types of variables

## Qualitative Variables

- These take on distinct values or classes.
- Categorical: for example, whether someone travels to work by car/bus/train/foot/bicycle/motor cycle. These are called nominal data.
- Ordered categorical: for example whether someone is a non-smoker/light/moderate/heavy smoker or has low/medium/high blood pressure. These are called ordinal data as there is an order to the classes.
- Binary: a special case of variables which take on one of two possible values, for example true/false, male/female, survived/died.


## Quantitative Variables

- These take on numeric values and can be of two classes.
- Discrete: for example, number of patients in a study, number of cases of disease.
- Continuous: for example, temperature, blood pressure.
- Continuous quantitative variables can have their values grouped into classes and presented as discrete or ordered categorical variables.


## Example: Motor Trend Car Road Tests

- In R, there is a dataset from the 1974 Motor Trend US magazine
- comprises fuel consumption and 10 aspects of design and performance for 32 cars (1973-74 models).
- Dataset has 32 rows (observations) and 11 columns (variables).
- Let's look at a few variables to understand the types
- mpg - Miles per Gallon
- cyl-Number of cylinders
- hp - Horsepower
- wt - Weight (1000 lbs)
- am - Automatic or manual
- gear - Number of gears.


## Example: Motor Trend Car Road Tests

head (mtcars)

|  | mpg cyl | hp | wt | am | gear |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Mazda RX4 | 21.0 | 6 | 110 | 2.620 | 1 | 4 |
| Mazda RX4 Wag | 21.0 | 6 | 110 | 2.875 | 1 | 4 |
| Datsun 710 | 22.8 | 4 | 93 | 2.320 | 1 | 4 |
| Hornet 4 Drive | 21.4 | 6 | 110 | 3.215 | 0 | 3 |
| Hornet Sportabout | 18.7 | 8 | 175 | 3.440 | 0 | 3 |
| Valiant | 18.1 | 6 | 105 | 3.460 | 0 | 3 |

## Example: Motor Trend Car Road Tests

- mpg - Miles per Gallon.
- cyl-Number of cylinders.
- hp - Horsepower.
- wt - Weight (1000 lbs).
- am-Automatic or manual.
- gear - Number of gears.


## Example: Motor Trend Car Road Tests

- mpg - Miles per Gallon (Continuous).
- cyl - Number of cylinders (Categorical).
- hp - Horsepower (Discrete).
- wt - weight (1000 lbs) (Continuous).
- am - Automatic or manual (Binary).
- gear - Number of gears (Discrete).


## Example: Motor Trend Car Road Tests

- We can also group continuous quantitative variables into classes and present as discrete/ordered categorical variables.
- Lets categorise the horsepower of the cars into three groups: (i) 1-100, (ii) 101-200 and (iii) 201+.

| Horsepower | Frequency | Percentage |
| :---: | :---: | :---: |
| $1-100$ | 9 | $28.1 \%$ |
| $101-200$ | 16 | $50.0 \%$ |
| $201+$ | 7 | $21.9 \%$ |
| Total | 32 | $100 \%$ |

## Presentation of data

## Presenting Data

- We may want to describe data using
- tabulation
- visualisation.
- The most appropriate type of presentation will depend on
- the variable type (qualitative/quantitative)
- number of variables being presented.


## TABULATION

- Tables can be used to describe almost any type of data (provided there is not too much!).

Table: Years of smoking and lung capacity (on a scale 0-100) for emphysema patients.

| Patient | Years Smoked | Lung Capacity |
| :---: | :---: | :---: |
| 1 | 25 | 55 |
| 2 | 36 | 60 |
| 3 | 22 | 50 |
| 4 | 15 | 30 |
| 5 | 48 | 75 |
| 6 | 39 | 70 |

## VISUALISATION

- You can visualise your data using pie charts, bar charts, histograms, scatter plots, box plots, line plots and maps.



## Tables

## Using TABLES TO PRESENT DATA

- The way that you present data in tables are very important.
- Readers are often drawn towards tables and figures, because it is an efficient way of obtaining information, as compared to reading a written account of the same content.
- Tables and figures add value to an analysis, if they can portray the relevant information and are concise.
- Tables and figures can provide readers with a large amount of information in a short time span.


## Using TABLES TO PRESENT DATA

- Ensure that tables are self-explanatory by using clear, informative captions and titles.
- Be careful consistent in the way that you display information
- remove repetition
- set amount of decimal places
- be careful of scientific notation.
- Make sure your table only contains information that adds value to your analysis.
- Always review a table as if you are a non-expert!


## Example: Using Tables to Present Data

- Consider an analysis that tests whether a new pesticide affects the growth of wheat plants.
- Half of the wheat plants are given the new pesticide (Treatment) with the other half not given any (Control).
- Some plants regardless of their treatment are given 12 hours of light per day and the rest 16 hours of light per day.
- The height of the wheat plants are measured after 5 and 10 days of treatment.
- For the initial data analysis, the means and variance of the wheat plants height are produced.
- The results are presented in a table.


## Example: Using Tables to Present Data

Table: Height after treatment

| Group | light | 5 days | 10 days |
| :--- | :---: | :---: | :---: |
| control | 12 | $70.3(2)$ | $90(5)$ |
| Control | 16 | $75.7(8)$ | $100(3)$ |
| treatment | 12 | $60.4(1.5)$ | $78(7.9)$ |
| Treatment | 16 | $52.2(2.01)$ | $81(6.7)$ |

- Is this the clearest way of portraying this information?


## Example: Using Tables to Present Data

## Comments

- Labels are not consistent - capitalised in some places but not others.
- There are too many borders in the table
- Many journals will not accept vertical borders.
- The way they are ordered suggests we should compare the affect of light on the height not the treatment.
- The number of decimal places are not consistent.
- We cannot see what type of descriptive statistics are being used.
- The amount of light is repeated.
- The caption does not give enough information to clearly understand the table without knowing the study information.


## Example: Using Tables to Present Data

## Comments

- Labels are not consistent - capitalised in some places but not others.
- There are too many lines in the table.
- The way they are ordered suggests we should compare the affect of light on the height not the treatment.
- The number of decimal places are not consistent.
- We cannot see what type of descriptive statistics are being used.
- The amount of light is repeated.
- The caption does not give enough information to clearly understand the table without knowing the study information.


## Example: Using Tables to Present Data

Table: Means and variances of the height (in centimetres) of wheat plants after 5 and 10 days; for control and treatment groups.

|  | 5 Days |  | 10 Days |  |
| :--- | :---: | :---: | :---: | :---: |
| Group | Mean | Variance | Mean | Variance |
| 12 hours of light |  |  |  |  |
| $\quad$ Control | 70.3 | 2.2 | 90.2 | 5.0 |
| $\quad$ Treatment | 60.4 | 1.5 | 78.0 | 7.9 |
| 16 hours of light <br> $\quad$ Control | 75.7 | 7.6 | 99.9 | 2.9 |
| $\quad$ Treatment | 52.2 | 2.0 | 81.1 | 6.7 |

## Summarising Data

## Descriptive Statistics

- A statistic is calculated from the values of variable(s) in a sample.
- Various statistics are routinely used to describe samples.
- The following data refer to the total cost of drugs (in Burundi francs) received by 84 adults aged 20-29 visiting five different health centres in the Myinga province of Burundi in 1991-2.

| 2.0 | 4.0 | 6.2 | 8.0 | 8.0 | 8.0 | 12.0 | 15.0 | 15.0 | 18.0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 18.2 | 20.0 | 20.0 | 20.0 | 21.0 | 22.0 | 24.2 | 27.0 | 27.0 | 27.0 |
| 28.0 | 29.7 | 29.7 | 29.7 | 29.7 | 29.7 | 30.0 | 30.0 | 31.0 | 41.4 |
| 42.3 | 45.4 | 45.4 | 45.4 | 45.4 | 45.4 | 45.4 | 45.4 | 45.4 | 45.4 |
| 49.4 | 50.8 | 51.4 | 53.4 | 56.0 | 57.0 | 57.4 | 59.0 | 59.4 | 60.0 |
| 61.5 | 65.4 | 65.4 | 65.4 | 65.4 | 67.0 | 90.8 | 92.0 | 94.0 | 94.0 |
| 94.0 | 94.0 | 94.0 | 94.0 | 94.7 | 105.0 | 125.0 | 126.0 | 130.0 | 130.0 |
| 130.0 | 151.2 | 160.0 | 177.0 | 187.0 | 187.0 | 194.4 | 194.4 | 194.4 | 212.4 |
| 213.0 | 233.0 | 267.0 | 320.4 |  |  |  |  |  |  |

## Example: Drug Costs

- There are many statistics that could be calculated from these data.
- The values the more common ones discussed earlier are listed in the following table.

Table: Sample statistics for the drug cost data.

| Statistic | Value |
| :--- | :---: |
| Sample Size | 84 |
| Mean | 75.1 |
| Median | 51.1 |
| Variance | 4494.9 |
| Standard Deviation | 67.0 |
| Minimum | 2 |
| Maximum | 320.4 |
| Range | 318.4 |
| Lower Quartile | 28 |
| Upper Quartile | 99.4 |
| Interquartile Range | 71.4 |

Figure: Density plot of the drug costs data.


## Median and Quartiles

- The median is a measure of the central value of the distribution of data. It halves the distribution; $50 \%$ of the values are below and $50 \%$ of the values above.
- The median by itself is of limited use, so we also find the, minimum, lower quartile $\left(Q_{u}\right)$, upper quartile $\left(Q_{l}\right)$ and maximum which with the median (the middle quartile) split the data into four intervals.

| Statistic |  | Quantile | List Position | R code |
| :--- | :--- | :---: | :---: | :---: |
| Minimum | $\min$ | $0 \%$ | 1 | $\min (x)$ |
| Lower quartile | $Q_{l}$ | $25 \%$ | $\frac{1}{4}(N+1)$ | quantile $(x$, probs $=0.25)$ |
| Median | median | $50 \%$ | $\frac{1}{2}(N+1)$ | median $(x)$ |
| Upper quartile | $Q_{u}$ | $75 \%$ | $\frac{3}{4}(N+1)$ | quantile $(x$, probs=0.75) |
| Maximum | $\max$ | $100 \%$ | $N$ | $\max (x)$ |

## Median and Quartiles

- Where the list position is not a whole number, the values above and below should be averaged together to give the relevant value.
- An idea of the spread is given by calculating the inter-quartile range

$$
\mathrm{IQR}=Q_{u}-Q_{l}=\operatorname{IQR}(\mathrm{x})
$$

or just by calculating the range

$$
\begin{aligned}
\text { Range } & =\max -\min \\
& =\max (x)-\min (x)
\end{aligned}
$$

- Advantage - extreme values do not affect the quartiles.
- Disadvantage - can be difficult to find if you have big data!


## Mean

- The mean is the most commonly used measure of the central value of a distribution.
- It is the sum of the observations divided by $N$ the number of observations

$$
\text { mean }=\bar{x}=\frac{1}{N} \sum_{i=1}^{N} x_{i}=\operatorname{sum}(\mathrm{x}) / \text { length }(\mathrm{x})
$$

- When the data is distributed symmetrically the mean will generally close to the mean.
- The median is far more robust to extreme values in your data.


## VARIANCE

- When using the mean, the we categorise the spread of the data using the standard deviation, which is based on the difference of the observations from the mean.
- The variance is calculated by dividing the sum of squares of these deviations by $N-1$

$$
\frac{1}{N-1} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}=\operatorname{sum}\left((\mathrm{x}-\operatorname{mean}(\mathrm{x}))^{2}\right) /(\text { length }(\mathrm{x})-1)
$$

- The standard deviation is equal to the square root of the variance.
- Advantage - uses all the information available and is therefore extensively used).
- Disadvantage - extreme values can affect the mean and standard deviation.


## Any Questions?

