Data Science and Statistics in Research:
unlocking the power of your data

Session 2.3: How significant are your results?

Introduction

In this session we will be creating confidence intervals and performing hypothesis tests on some example data.

Preliminaries

We need the following package
e Rmisc - Package to create confidence intervals from samples.

Make sure that this package is downloaded and installed in R. We use the require () function to load it into
the R library.

# Loading packages
require(Rmisc)

Sampling Variability

Sample statistics can be used to estimate the characteristics of the underlying population or process from
which the samples are drawn. We must be aware of two factors when attempting to make generalisations
from a sample to a population of interest; bias and chance.

Suppose that we measure height (in centemetres) of the adult population of Bath, which is 100,000 residents.
The true population mean height is 177cm and true standard deviation of 10. We simulate this data using
the rnorm() function.

# Creating Simulated heights

heights <- rnorm(100000, # Population of one hundred thousand
mean = 177, # True mean height
sd=10) # True standard deviation

More information about the rnorm() function can be found by typing ?rnorm into R.

Suppose we are studying heights of adults in Bath and take a sample of 50 people. We can take a sample of
50 people from the population of Bath using the sample() function.

# Taking a sample of the population
samp <- sample(heights, # Dataset of heights
size=50) # Take 50 samples

We can calculate the sample mean, x, which will be an estimate of the true population mean height in Bath.
In turn the sample standard deviation, s, is an estimate of the true standard deviation of heights in Bath.
We can calculate these statistics using the mean() and sd() functions respectively.

# Sample Mean
mean (samp)
[1] 179.4453



# Sample Standard Deviation
sd (samp)
[1] 12.16892

More information about the sample() function can be found by typing ?sample into R.

This sample has sample mean 179.4 and sample standard deviation 12.2. We can see that the sample and the
population means differ. Let’s repeat this by taking another sample to see if we have similar results.

# Taking a sample of the population

samp <- sample(heights, # Dataset of heights
size=50) # Take 50 samples

# Sample Mean

mean (samp)

[1] 176.5872

# Sample Standard Deviation
sd (samp)
[1] 8.986289

This sample has sample mean 176.6 and sample standard deviation 9. Again we can see that the sample and
the population means differ.

We must be aware of two factors when attempting to make generalisations from these samples to population
of Bath; bias and chance.

Bias is important in the planning of a study, where we must be clear about any possible selection effects
that may bias a sample. If a sample is biased it will not representative of the population as a whole. For
example, if our sample is from the basketball team where players are generally taller we cannot say this is
representative of the population of Bath.

Chance is unavoidable. Where variability is present, the sample statistics calculated from any particular
sample will be different to those calculated from another independent sample.

If we repeatedly take random samples from the overall population and each time record the mean and the
standard deviation we would find that the sample mean and standard deviation vary from sample to sample,
which is what we observe here.

Confidence Intervals

When using samples of data, the sample mean will be the best estimate of the true population mean although
there will be some uncertainty associated with this. A confidence interval quantifies this uncertainty and
gives a range of values in which we are ‘confident’ the true population value will lie.

It is use to indicate the level of precision of an estimate from a sample, with larger samples giving more
precision. A wider interval means that there is more uncertainty and often they are used to assess whether a
particular value is likely or not.

To demonstrate how to construct confidence intervals in R, we will use the mtcars dataset. The mtcars
dataset comprises of fuel consumption and other aspects of automobile design and performance for 32 cars
recorded in the 1974 Motor Trend US magazine. We load this dataset, which is stored within R, using the
data() function.

# Loading mtcar dataset
data(mtcars)



Make sure you are familiar with the contents of this dataset before continuing on with the rest of this session.
Information on this dataset can be found by typing ?mtcars into R.

Suppose a car company wants to estimate the mean fuel consumption (in miles per gallon) of the 32 cars
tested. We can do this using the mean() function.

# Sample mean fuel consumption
mean (mtcars$mpg)
[1]1 20.09062

This sample mean is the best estimate of the true population mean, but we want to construct a 95% confidence
interval to give a range of values in which we am confident the true mean fuel consumption of cars in 1973-74
lie. To do this, we use the CI() function.

# Calculating a 95) confidence interval for fuel

# consumption in miles per gallon

CI(mtcars$mpg, # Data to create a confidence interval from
0.95) # Level of confidence interval
upper mean lower

22.26357 20.09062 17.91768

More information about the CI() function can be found by typing ?CI into R.

Using this ouput we are 95% ‘confident’ the true mean fuel consumption of cars in 1973-74 is between 17.92
and 22.26.

Note that the confidence interval for the fuel consumption is symmetric around the sample mean.

# Calculating the confidence interval
CI <- as.vector(CI(mtcars$mpg,0.95))

# Mean minus the lower confidence interval
CI[2] - CI[1]
[1] -2.172946

# Upper confidence interval minus the mean
CI[3] - CI[2]
[1] -2.172946

Activities

o Find 80%, 90% and 99% confidence intervals for the fuel consumption. You should see that the
confidence intervals get wider as we increase the confidence. Why?

o Choose another continuous variable (for example weight) from mtcars datasets and adapt the above
code to create confidence intervals.

Hypothesis Testing

To test hypotheses in research, two alternative conclusions are set up, and on the basis of the experiment one
is accepted and the other rejected. This acceptance and rejection is always on the basis of some pre-specified
levels of confidence. There are 2 hypotheses constructed, the null and alternative.

The null hypothesis, Hy: we hypothesise that there is no difference between

e your sample and a population mean
e the mean of 2 groups.

The alternative hypothesis, Hi: we hypothesise that there is a difference between



e your sample and a population mean
e the mean of 2 groups.

The hypotheses are always stated so that either one or the other (but not both) can be true. On the basis of
the hypotheses a statistical decision rule is constructed

o IF the observed value of a statistic takes on a certain range of values
e THEN we have enough evidence to reject the null hypothesis
e OTHERWISE there is not enough evidence to reject the null hypothesis.

There are two types of hypothesis test; one-tailed and two-tailed. One-tailed tests allow for the possibility of
an effect in just one direction. For example, we would like to test whether true population mean is significantly
higher or lower than a particular value. Two-tailed tests, you are testing for the possibility of an effect in
two directions — both positive and negative.

One-sample t-tests

A one sample t-test is used to determine whether the mean of a sample significantly differs from a known
population mean.

To demonstrate how to perform a one-sample t-test in R, we will use the mtcars dataset. The mtcars dataset
comprises of fuel consumption and 10 other aspects of automobile design and performance of 32 cars from
1973-74. We load this dataset, which is stored within R, using the data() function.

# Loading mtcar dataset
data(mtcars)

Make sure you are familiar with the contents of this dataset before continuing on with the rest of this session.
Information on this datasets can be found by typing ?mtcars into R.

Suppose a car company has tested 32 cars and thinks that the true mean fuel consumption (in miles per
gallon) is 22.5. We use the mean() function to calculate the sample mean.

# Sample mean fuel consumption
mean (mtcars$mpg)
[1] 20.09062

Let’s test whether there is a significant difference between the sample mean and the hypothesised mean. We
construct the hypotheses

e null: the true mean fuel consumption in 1973-74 is 22.5
e alternative: the true mean fuel consumption in 1973-74 is not 22.5.

We choose a significance level of 0.05 and construct the statistical decision rule

o IF the p-value is less than 0.05
e THEN we have enough evidence to reject the null hypothesis
« OTHERWISE there is not enough evidence to reject the null hypothesis.

To perform a one-sample t-test, we use the t.test () function.

# Perform a one-sample t-test.
t.test(x = mtcars$mpg, # Sample to be tested
mu = 22.5, # Hypothesised mean
significance = 'two.sided') # Option to test that the means are equal

One Sample t-test

data: mtcars$mpg



t = -2.2614, df = 31, p-value = 0.0309
alternative hypothesis: true mean is not equal to 22.5
95 percent confidence interval:
17.91768 22.26357
sample estimates:
mean of x
20.09062

Information on the t.test () function can be found by typing ?t.test into R.

The p-value is less than 0.05, therefore there is enough evidence to reject the null hypothesis. We conclude
the true population mean is not 22.5.

Activities

e Suppose we performed this test with significance of 0.1, 0.025 and 0.01. Would our conclusions have
changed?

e To ensure you are comfortable with performing t-tests, perform a one-sample t-test but with different
hypothesised means.

Suppose a car company has tested 32 cars and thinks that the true mean fuel consumption (in miles per
gallon) is less than 22.5. We can reformulate the hypothesis used above to test for this

e null: the true mean fuel consumption in 1973-74 is 22.5
e alternative: the true mean fuel consumptionin 1973-74 is less than 22.5.

We choose a significance level of 0.05 and construct the statistical decision rule

e IF the p-value is less than 0.05
e THEN we have enough evidence to reject the null hypothesis
e OTHERWISE there is not enough evidence to reject the null hypothesis.

As before we perform a one-sample t-test, using the t.test () function but instead specify the option to say
that we want to test whether the true mean is significantly less than the hypothesised mean.

# Perform a one-sample t-test.
t.test(x = mtcars$mpg, # Sample to be tested
mu = 22.5, # Hypothesised mean
alternative = 'less') # Specifying less than

One Sample t-test

data: mtcars$mpg
t = -2.2614, df = 31, p-value = 0.01545
alternative hypothesis: true mean is less than 22.5
95 percent confidence interval:
-Inf 21.89707

sample estimates:
mean of x

20.09062

More information on the t.test () function can be found by typing ?t.test into R.

The p-value is less than 0.05, therefore there is enough evidence to reject the null hypothesis. We conclude
the true population mean is less than 22.5.

Activities

e Suppose we performed this test with significance of 0.1, 0.025 and 0.01. Would our conclusions have
changed?



o Perform a hypothesis test to test that the true fuel consumption (in miles per gallon) is greater than
22.5.
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