Data Science and Statistics in Research: unlocking the
power of your data

Session 2.7: When and how to use non-parametric statistics

Introduction

In this session we will be performing non-parametric tests on some example data.

Preliminaries

We need the following packages

e ggplot2 - Package to implement the ggplot language for graphics in R
e MASS - Package for support functions and extra datasets.

Make sure that these packages are downloaded and installed in R. We use the require() function to load it
into the R library.

# Loading packages
require(ggplot2)
require (MASS)

Non-parametric tests

The statistical tests you have seen so far require that the data can be assumed to follow a particular
distribution, often the Normal distribution. This type of testing is called parametric.

There may be situations where we have data that is clearly non-Normal or it might be Normal, but there is
not enough data to establish this. Parametric methods are usually fine to use with reasonably-sized samples
as long as the data are unimodal and roughly symmetric about the mean. If data are severely non-Normal
and sample sizes are small, these methods may be unreliable.

Non-parametric tests essentially compare medians rather than means, and use a rank order of observations.
They make no assumptions about the underlying distributions of the data. They may also be suitable for
comparing nominal (categorical) and ordinal (ordered categorical) data.

Checking for Normality

There are a few visual checks you can do to decide whether parametric and non-parametric tests are most
appropriate.

We can use histograms and Q-Q Plots to look at the distribution of your data. If a histogram is symmetric
around a value then you can consider your data normally distributed. If the dots on a Q-Q plot follow the
straight line then your data is normally distributed.

We now look at two examples, one where normality is a good assumption for the sample and one where it is
not.



Fuel consumption in mtcars dataset

The mtcars dataset comprises of fuel consumption and 10 other aspects of automobile design and performance
of 32 cars from 1973-74. We load these datasets, which are stored within R, using the data() function.

# Loading mtcar datasets
data(mtcars)

Make sure you are familiar with the contents of this dataset before continuing on with the rest of this session.
Information on this dataset can be found by typing ?mtcars into R.

We are interested in whether normality is a good assumption in the fuel consumption (in miles per gallon) for
32 cars in mtcars datasets. We plot a histogram of the fuel consumption to check the distribution. To do
this, we use the ggplot2 package.

# Creating a histogram plot of fuel consumption in the mtcars dataset
ggplot(mtcars, aes(mpg)) + # Specify the data
geom_histogram(binwidth = 5,
colour='black', fill='lightgreen') + # Specify we want a histogram
labs(x='Fuel consumption (in mpg)',y='Frequency') # Azes Labels
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Information on the ggplot2 package can be found in the ‘Packages’ pane.

We can see that the fuel consumption is roughly symmetric around the mean, so we can assume that it is
Normally distributed.

We can also create a Q-Q plot to check the distribution further. To do this, we use the qgnorm() and
qqline () functions.
# Creating a -0 plot of fuel consumption in the mtcars dataset
qqnorm(mtcars$mpg)
qqline (mtcars$mpg,
col = 'red',
lwd = 1.5)



Normal Q-Q Plot
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Theoretical Quantiles

More information on the qgqnorm() and qgline() functions can be found by typing ?qgnorm and ?qqline
into R.

We can see that the dots roughly follow the line. There are some deviations at the lower and higher values,
but as the data is fairly symmetric and the points at the middle of the line follow the qgline, we can assume
it is Normally distributed.

Prices in diamonds dataset

The diamonds dataset contains prices and other attribures for 53,940 diamonds. We load these datasets,
which are stored within R, using the data() function.

# Loading diamonds datasets
data(diamonds)

Make sure you are familiar with the content of this dataset before continuing on with the rest of this session.
Information on this dataset can be found by typing ?diamonds into R.

We are interested in whether normality is a good assumption in the prices of diamonds in the diamonds
datasets. We plot a histogram of the prices to check the distribution. To do this, we use the ggplot2 package.

# Creating a histogram plot of price in the diamonds dataset

ggplot(diamonds, aes(price)) + # Specify the data
geom_histogram(colour='black', fill='lightgreen') + # Specify we want a histogram
labs(x='Price',y='Frequency') # Azes Labels
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Information on the ggplot2 package can be found in the ‘Packages’ pane.



We can see the distributions are heavily skewed, and can’t be negative, so we conclude that Normality cannot
be assumed here.

We can further study the Normality of the distribution using a qqplot.To do this, we use the ggnorm() and
qqline () functions.

# Create a (-@ plot of prices in the diamonds dataset
qgnorm(diamonds$price)
gqline(diamonds$price,

col = 'red',
lud = 1.5)
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More information on the qqnorm() and qqline() functions can be found by typing ?qgnorm and ?qqline
into R.

We can see that the points of the data severely deviate from the qqline. Because of this, we cannot assume
Normality in this case.

One-sample Wilcoxon Signed Rank test

A one-sample Wilcoxon Signed Rank Test is used to determine whether the median of a sample significantly
differs from a specified value when there is evidence of non-normality.

To demonstrate how to perform a one-sample Wilcoxon Signed Rank test in R, we will use the immer dataset.
The immer dataset comprises of yields of five varieties of barley that were grown in six locations in 1931 and
1932. We load this dataset, which is stored within R, using the data() function.

# Loading mtcar dataset
data(immer)

Make sure you are familiar with the contents of this dataset before continuing on with the rest of this session.
Information on this datasets can be found by typing ?immer into R.

A farmer grows five varieties of barley in six locations in 1931 and 1932 and measures the yearly yield. The
farmer thinks the true median yield of barley in 1931 is 117. We use the median() function to calculate the
sample median barley yield in 1931.

# Calculating the median miles per gallon
median (immer$Y1)
[1] 102.95

Let’s test whether there is a significant difference between the sample median and the hypothesised median.
We construct the hypotheses



e null: the true median barley yield in 1931 is 117
o alternative: the true median barley yield in 1931 is not 117.

We choose a significance level of 0.05 and construct the statistical decision rule

o IF the p-value is less than 0.05
o \item {THEN} we have enough evidence to reject the null hypothesis
o \item {OTHERWISE} there is not enough evidence to reject the null hypothesis.

There are not enough observations to deduce whether the data is normally distributed so we use a non-
parametric test. As we are testing for the true median using one sample, we use a one-sample Wilcoxon
Signed Rank test. To do this, we use the wilcox.test() function.

# One sample Wilcox Rank test
wilcox.test (immer$Y1,

mu=117,

alternative = 'two.sided')

Wilcoxon signed rank test

data: immer$Yl
V = 145, p-value = 0.07324
alternative hypothesis: true location is not equal to 117

More information on the wilcox.test () function can be found by typing ?wilcox.test into R.

As the p-value is less than 0.05 we do not have enough evidence to reject the null hypothesis and conclude
that there is no evidence to show the true median barley yield is not 117 in 1931.

Activities

e Suppose we performed this test with significance of 0.1, 0.025 and 0.01. Would our conclusions have
changed?

e Suppose we want to test that the true median barley yield in 1931 is less than 117. Reformulate the
hypothesis and alter the code above to perform the one-tailed one sample Wilcoxon Signed Rank Test.
Would our conclusions have changed?

Mann Whitney U Test

A two-sample Mann Whitney U test is used to compare the distribution of a numeric variable between two
groups when there is evidence of non-Normality.

To demonstrate how to perform a two-sample Wilcoxon Signed Rank test in R, we will use the diamonds
dataset. The diamonds dataset comprises of prices and other attributes of 53,940 diamonds. We load this
dataset, which is stored within R, using the data() function.

# Loading mtcar dataset
data(diamonds)

Make sure you are familiar with the contents of this dataset before continuing on with the rest of this session.
Information on this datasets can be found by typing ?diamonds into R.

A jeweller sells diamonds and records the price that they sold for in addition to attributes of the diamond
such as a cut grading which are either ‘Fair’ ‘Good’, ‘Very Good’, ‘Premium’ or ‘Ideal’. The jeweller wants to
test whether the median prices of diamonds with a ‘Fair’ cut are different from those with a ‘Good’ cut.

Let’s calculate the sample median prices of diamonds with a ‘Fair’ cut are different from those with a ‘Good’
cut. We first need to subset the data to extract ‘Fair’ cut diamonds and ‘Good’ cut diamonds from the



data. To do this, we use the subset () function. We then use the median() function, to calculate the sample
medians.

# Extracting all the 'Fair' cut diamonds
datl <- subset(diamonds, cut == 'Fair')

# Extracting all the 'Good' cut diamonds
dat2 <- subset(diamonds, cut == 'Good')

# Median price for 'Fair' cut diamonds
median(dati$price)
[1] 3282

# Median price for 'Good' cut diamonds
median(dat2$price)
[1] 3050.5

More information on the subset () function can be found by typing ?subset into R.

We observe that the sample median of diamonds with a ‘Fair’ cut are different from those with a ‘Good’ cut.
Let’s test whether this is significant. We construct the hypotheses

e null: the true median price between diamonds with a ‘Fair’ cut is the same from those with a ‘Good’
cut

o alternative: the true median price between diamonds with a ‘Fair’ cut is different from those with a
‘Good’ cut

We choose a significance level of 0.05 and construct the statistical decision rule

e IF the p-value is less than 0.05
e THEN we have enough evidence to reject the null hypothesis
e OTHERWISE there is not enough evidence to reject the null hypothesis.

The prices are severely skewed so we use non-parametric tests. The sampled diamonds with a ‘Fair’ cut are
not related to those with a ‘Good’ cut, so the samples are independent, therefore we use a Mann Whitney U
test to test this hypothesis. To do this, we use the wilcox.test () function.

# Mann Whitney U Test
wilcox.test(dat1$price, # Prices of ‘Fair' cut diamonds
dat2$price, # Prices of ‘Good' cut diamonds
paired = FALSE, # Data 7s not paired
alternative = 'two.sided') # Say we want a two-tailed test

Wilcoxon rank sum test with continuity correction

data: datl$price and dat2$price
W = 4441700, p-value = 5.551le-14
alternative hypothesis: true location shift is not equal to O

More information on the wilcox.test () function can be found by typing ?wilcox.test into R.

The p-value is less than 0.05 we have enough evidence to reject the null hypothesis and conclude that that the
true median price between diamonds with a Fair ' cut are different from those with aGood’ cut.

Activities

o Test the same hypothesis using an independent t-test rather than a Mann Whitney U-test. Do you
come to the same conclusion?



e Suppose we want to test that diamonds with a ‘Fair’ cut are less than those with a ‘Good’ cut.
Reformulate the hypothesis and alter the code above to perform the one-tailed one-sample Wilcoxon
Signed Rank Test.

Two-sample Wilcoxon Signed Rank test

A two-sample Wilcoxon Signed Rank Test is used to compare the distribution of a numeric variable of two
groups when there is evidence of non-Normality. The two groups must be of equal size and subjects in one
sample are paired with one in the other.

To demonstrate how to perform a two-sample Wilcoxon Signed Rank test in R, we will use the immer dataset.
The immer dataset comprises of yields of five varieties of barley that were grown in six locations in 1931 and
1932. We load this dataset, which is stored within R, using the data() function.

# Loading mtcar dataset
data(immer)

Make sure you are familiar with the contents of this dataset before continuing on with the rest of this session.
Information on this datasets can be found by typing ?immer into R.

A farmer grows five varieties of barley in six locations in 1931 and 1932 and measures the yearly yield and
wants to test if the amount yields in 1931 and 1932 are different.

e null: there is no difference in the true median yield between 1931 and 1932
« alternative: there is a difference in the true median yield between 1931 and 1932.

We choose a significance level of 0.05 and construct the statistical decision rule

e IF the p-value is less than 0.05
e THEN we have enough evidence to reject the null hypothesis
e OTHERWISE there is not enough evidence to reject the null hypothesis.

There are not enough observations to deduce whether the data is normally distributed so we use a non-
parametric test. The yields are of the same five varieties of barley grown in the same six locations in 1931
and 1932, this data is paired. Therefore we should use a two-sample Wilcoxon Signed Rank test to test this
hypothesis. To do this, we use the wilcox.test () function.

# Two sample Wilcox Rank test
t.test(immer$Y1l, # Yield from 1931
immer$Y2, # Yield from 1932
paired = TRUE, # Data 7s not paired
alternative = 'two.sided') # Say we want a two-tailed test

Paired t-test

data: immer$Yl and immer$Y2
t = 3.324, df = 29, p-value = 0.002413
alternative hypothesis: true difference in means is not equal to O
95 percent confidence interval:
6.121954 25.704713
sample estimates:
mean of the differences
15.91333

More information on the wilcox.test () function can be found by typing ?wilcox.test into R.

The p-value is less than 0.05 we have enough evidence to reject the null hypothesis and conclude that that
there is a difference in the true median yield between 1931 and 1932.



Activities

e Test the same hypothesis using an independent t-test rather than a Mann Whitney U-test. Do you
come to the same conclusion?

e Suppose we want to test that the yield in 1931 is less than the yield in 1932. Reformulate the hypothesis
and alter the code above to perform the one-tailed two-sample Wilcoxon Signed Rank Test.
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