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OUTLINE

I 10:00 - 11:00 Introduction to Spatio-Temporal Modelling
I 14:30 - 15:30 Bayesian Inference
I 17:00 - 18:00 Examples of Spatial Modelling
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Title: Spatio-Temporal Methods in Environmental Epidemiology
Authors: Gavin Shaddick and Jim Zidek
Publisher: CRC Press
Resource Website:
http://www.stat.ubc.ca/~gavin/STEPIBookNewStyle/
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WEBSITE

http://stat.ubc.ca/~gavin/STEPIBookNewStyle/course_
toronto.html

http://stat.ubc.ca/~gavin/STEPIBookNewStyle/course_toronto.html
http://stat.ubc.ca/~gavin/STEPIBookNewStyle/course_toronto.html
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CONTACT INFORMATION

Dr. Gavin Shaddick, University of Bath
I Email: G.Shaddick@bath.ac.uk
I Webpage: http://people.bath.ac.uk/masgs/

http://people.bath.ac.uk/masgs/
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Session 1: Introduction to Spatio-Temporal
Modelling
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THE NEED FOR SPATIO-TEMPORAL MODELLING

I In recent years there has been an explosion of interest in
spatio–temporal modelling.

I One major area where spatio-temporal is developing is
environmental epidemiology, where interest is in the
relationship between human health and spatio–temporal
processes of exposures to harmful agents.



8/ 121

Introduction Session 1: Spatio-Temporal Modelling Session 2: Bayesian Inference Session 3: Applications of Spatial Modelling

THE NEED FOR SPATIO-TEMPORAL MODELLING

I Example include the relationship between deaths and air
pollution concentrations or future climate simulations, the latter
of which may involve 1000’s of monitoring sites that gather data
about the underlying multivariate spatio–temporal field of
precipitation and temperature.
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THE NEED FOR SPATIO-TEMPORAL MODELLING

I Spatial epidemiology is the description and analysis of
geographical data, specifically health data in the form of counts
of mortality or morbidity and factors that may explain variations
in those counts over space.

I These may include demographic and environmental factors
together with genetic, and infectious risk factors.

I It has a long history dating back to the mid-1800s when John
Snow’s map of cholera cases in London in 1854 provided an
early example of geographical health analyses that aimed to
identify possible causes of outbreaks of infectious diseases.
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EXAMPLE: JOHN SNOW’S CHOLERA MAP

Figure: John Snow’s map of cholera cases in London 1854. Red circles indicate locations of cholera
cases and are scaled depending on the number of reported cholera cases.Purple taps indicate
locations of water pumps.
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THE NEED FOR SPATIO-TEMPORAL MODELLING

I Advances in statistical methodology together with the increasing
availability of data recorded at very high spatial and temporal
resolution has lead to great advances in spatial and, more
recently, spatio–temporal epidemiology.

I These advances have been driven in part by increased awareness
of the potential effects of environmental hazards and potential
increases in the hazards themselves.
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THE NEED FOR SPATIO-TEMPORAL MODELLING

I In order to assess and manage risks there is a requirement for
monitoring and modelling the associated environmental
processes that will lead to an increase in a wide variety of
adverse health outcomes.

I Addressing these issues will involve a multi-disciplinary
approach and it is imperative that the uncertainties that will be
associated with each of the components can be characterised and
incorporated into statistical models used for assessing health
risks.
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DEPENDENCIES OVER SPACE AND TIME

I Environmental epidemiologists commonly seek associations
between a hazard Z and a health outcome Y .

I A spatial association is suggested if measured values of Z are
found to be large (or small) at locations where counts of Y are
also large (or small).

I A classical regression analysis might then be used to assess the
magnitude of any associations and to assess whether they are
significant.
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DEPENDENCIES OVER SPACE AND TIME

I However such an analysis would be flawed if the pairs of
measurements (of exposures), Z and the health outcomes, Y, are
spatially correlated.

I This results in outcomes at locations close together being more
similar than those further apart.

I In this case, or in the case of temporal correlation, the standard
assumptions of stochastic independence between experimental
units would not be valid.
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EXAMPLE: SPATIAL CORRELATION IN THE UK

I An example of spatial correlation can be seen in the next slide
which shows the spatial distribution of the risk of hospital
admission for chronic obstructive pulmonary disease (COPD) in
the UK.

I There seem to be patterns in the data with areas of high and low
risks being grouped together suggesting that there may be
spatial dependence that would need to be incorporated in any
model used to examine associations with potential risk factors.
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Figure: Map of the spatial distribution of risks of hospital admission for a respiratory condition,
chronic obstructive pulmonary disease (COPD), in the UK for 2001. The shades of blue correspond
to standardised admission rates, which are a measure of risk. Darker shades indicate higher rates of
hospitalisation allowing for the underlying age–sex profile of the population within the area.



17/ 121

Introduction Session 1: Spatio-Temporal Modelling Session 2: Bayesian Inference Session 3: Applications of Spatial Modelling

EXAMPLE: DAILY MEASUREMENTS OF PARTICULATE

MATTER

An example of temporal correlation in exposures can be seen below,
which shows daily measurements of particulate matter over 250 days
in London in 1997. Clear auto-correlation can be seen in this series of
data with periods of high and low pollution.

Figure: Time series of daily measurements of particulate matter (PM10) for 250 days in 1997 in
London. Measurements are made at the Bloomsbury monitoring site in central London. Missing
values are shown by triangles. The solid black line is a smoothed estimate produced using a
Bayesian temporal model and the dotted lines show the 95% credible intervals associated with the
estimates.



18/ 121

Introduction Session 1: Spatio-Temporal Modelling Session 2: Bayesian Inference Session 3: Applications of Spatial Modelling

DEPENDENCIES OVER SPACE AND TIME

I Environmental exposures will vary over both space and time
and there will potentially be many sources of variation and
uncertainty.

I Statistical methods must be able to acknowledge this variability
and uncertainty and be able to estimate exposures at varying
geographical and temporal scales in order to maximise the
information available that can be linked to health outcomes in
order to estimate the associated risks.

I In addition to estimates of risks, such methods must be able to
produce measures of uncertainty associated with those risks.
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DEPENDENCIES OVER SPACE AND TIME

I These measures of uncertainty should reflect the inherent
uncertainties that will be present at each of the stages in the
modelling process.

I This has led to the application of spatial and temporal modelling
in environmental epidemiology, in order to incorporate
dependencies over space and time in analyses of association.
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BAYESIAN HIERARCHICAL MODELS

Bayesian hierarchical models are an extremely useful and flexible
framework in which to model complex relationships and
dependencies in data and they are used extensively throughout the
course. In the hierarchy we consider, there are three levels;
(1) The observation, or measurement, level; Y|Z,X1, θ1.

Data, Y, are assumed to arise from an underlying process, Z,
which is unobservable but from which measurements can be
taken, possibly with error, at locations in space and time.
Measurements may also be available for covariates, X1. Here θ1
is the set of parameters for this model and may include, for
example, regression coefficients and error variances.
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BAYESIAN HIERARCHICAL MODELS

(2) The underlying process level; Z|X2, θ2.
The process Z drives the measurements seen at the observation
level and represents the true underlying level of the outcome. It
may be, for example, a spatio–temporal process representing an
environmental hazard. Measurements may also be available for
covariates at this level, X2. Here θ2 is the set of parameters for
this level of the model.

(3) The parameter level; θ = (θ1, θ2).
This contains models for all of the parameters in the observation
and process level and may control things such as the variability
and strength of any spatio–temporal relationships.
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A HIERARCHICAL APPROACH TO MODELLING

SPATIO–TEMPORAL DATA

I A spatial–temporal random field, Zst, s ∈ S, t ∈ T , is a stochastic
process over a region and time period.

I This underlying process is not directly measurable, but
realisations of it can be obtained by taking measurements,
possibly with error.

I Monitoring will only report results at NT discrete points in time,
T ∈ T where these points are labelled T = {t0, t1, . . . , tNT}.

I The same will be true over space, since where air quality
monitors can actually be placed may be restricted to a relatively
small number of locations, for example on public land, leading to
a discrete set of NS locations S ∈ S with corresponding labelling,
S = {s0, s1, . . . , sNT}.
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A HIERARCHICAL APPROACH TO MODELLING

SPATIO–TEMPORAL DATA

I There are three levels to the hierarchy that we consider.
I The observed data, Yst, s = 1, ...,NS, t = 1, ...,NT, at the first level

of the model are considered conditionally independent given a
realisation of the underlying process, Zst.

Yst = Zst + vst

where vst is an independent random, or measurement, error term
I The second level describes the true underlying process as a

combination of two terms: (i) an overall trend, µst and (ii) a
random process, ωst.

Zst = µst + ωst
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A HIERARCHICAL APPROACH TO MODELLING

SPATIO–TEMPORAL DATA

I The trend, or mean term, µst represents broad scale changes over
space and time which may be due to changes in covariates that
will vary over space and time.

I The random process, ωst has spatial–temporal structure in its
covariance.

I In a Bayesian analysis, the third level of the model assigns prior
distributions to the hyperparameters from the previous levels.
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DEALING WITH ‘BIG’ DATA

I Due to both the size of the spatio–temporal components of the
models that may now be considered and the number predictions
that may be be required, it may be computationally impractical
to perform Bayesian analysis using packages such as WinBUGS
or MCMC in any straightforward fashion.

I This can be due to both the requirement to manipulate large
matrices within each simulation of the MCMC and issues of
convergence of parameters in complex models.

I During this course, we will show examples of recently developed
techniques that perform ‘approximate’ Bayesian inference.

I This is based on integrated nested Laplace approximations
(INLA) and thus do not require full MCMC sampling to be
performed.

I INLA has been developed as a computationally attractive
alternative to MCMC.
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DEALING WITH ‘BIG’ DATA

I In a spatial setting such methods are naturally aligned for use
with areal level data rather than the point level.

I This is available within the R-INLA package and an example of
its use can be seen in the Figure on the next slide

I This shows a triangulation of the locations of black smoke (a
measure of particulate air pollution) monitoring sites in the UK.

I The triangulation is part of the computational process which
allows Bayesian inference to be performed on large sets of
point-referenced spatial data.
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DEALING WITH ‘BIG’ DATA

Figure: Triangulation for the locations of black smoke monitoring sites within the UK for use with
the SPDE approach to modelling point-referenced spatial data with INLA. The mesh comprises
3799 edges and was constructed using triangles that have minimum angles of 26 and a maximum
edge length of 100 km. The monitoring locations are highlighted in red.
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EXAMPLE: GLOBAL MODELLING OF PM2.5 USING

MULTIPLE DATA SOURCES

I Air pollution is an important determinant of health and poses a
significant threat globally.

I It is known to trigger cardiovascular and respiratory diseases in
addition to some cancers.

I Particulate Matter (PM2.5) is estimated to be
I 4th highest health risk factor in the world
I attributable to 5.5 million premature deaths

I There is convincing evidence for the need to model air pollution
effectively.
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EXAMPLE: GLOBAL MODELLING OF PM2.5 USING

MULTIPLE DATA SOURCES

I WHO and other partners plan to strengthen air pollution
monitoring globally.

I This will produce accurate and convincing evidence of risks
posed.

I Allow data integration from different sources.
I This will allow borrowing from each methods respective

strengths.
I Currently, three methods are considered:

I Ground Monitoring,
I Satellite Remote Sensing and
I Atmospheric Modelling
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EXAMPLE: GLOBAL MODELLING OF PM2.5 USING

MULTIPLE DATA SOURCES

Figure: World map with ground monitor locations, coloured by the estimated level of PM2.5
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EXAMPLE: GLOBAL MODELLING OF PM2.5 USING

MULTIPLE DATA SOURCES

Figure: Global satellite remote sensing estimates of PM2.5 for 2014.
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EXAMPLE: GLOBAL MODELLING OF PM2.5 USING

MULTIPLE DATA SOURCES

Figure: Global chemical transport model estimates of PM2.5 for 2014.
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STRATEGIES FOR SPATIO–TEMPORAL MODELLING

I There are many ways in which space and time can be
incorporated into a statistical model and we now consider a
selection. One must first choose the model’s spatio-temporal
domain.

I Is it to be a continuum in both space and time?
I Or a discrete space with a finite number of locations at which

measurements may be made?
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STRATEGIES FOR SPATIO–TEMPORAL MODELLING

I Time is obviously different than space.
I For one thing, it is directed, whereas any approach to adding

direction in space is bound to be artificial.
I A major challenge in the development of spatio–temporal theory

has been combining these fundamentally different fields in a
single modelling framework.

I Much progress has been made in this area over the last three or
four decades to meet the growing need in applications of societal
importance, including those in epidemiology.
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STRATEGIES FOR SPATIO–TEMPORAL MODELLING

I There are competing advantages to using finite (discrete) and
continuous domains.

I Indeed a theory may be easier to formulate over a continuous
domain, but practical use may entail projecting them onto a
discrete domain.

I Time is regarded as discrete because measurements are made at
specified, commonly equally spaced, time points.

I The precise methodology will be determined by the nature of the
data that is available over space, for example is it
point-referenced or collected on a lattice?
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STRATEGIES FOR SPATIO–TEMPORAL MODELLING

Some general approaches to incorporating time are as follows:

Approach 1: Treat continuous time as another spatial dimension,
I For example, spatio–temporal Kriging
I There is extra complexity in constructing covariance models

compared to purely spatial process modelling and possible
reductions in the complexity based on time having a natural
ordering (unlike space) are not realised.
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STRATEGIES FOR SPATIO–TEMPORAL MODELLING

Approach 2: Represent the spatial fields represented as vectors
Zt : NS × 1, and combine them across time to get a multivariate time
series.

Approach 3: Represent the time series as vectors, Zs : 1×NT, and use
multivariate spatial methods

I For example, co-kriging

Approach 4: Build a statistical framework based on deterministic
models that describe the evolution of processes over space and time.
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STRATEGIES FOR SPATIO–TEMPORAL MODELLING

I Approach 1 may appeal to people used to working in a
geostatistical framework.

I Approach 2 may be best where temporal forecasting is the
inferential objective while Approach 3 may be best for spatial
prediction of unmeasured responses.

I Approach 4 is an important new direction that has promise
because it includes background knowledge through numerical
computer models.
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STRATEGIES FOR SPATIO–TEMPORAL MODELLING

I If the primary aim is spatial prediction then you would want to
preserve the structure of the spatial field.

I However if the primary interest is in forecasting this would lead
to an emphasis in building time series models at each spatial
location.

I The exact strategy for constructing a spatio–temporal model will
also depend on the purpose of the analysis.
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STRATEGIES FOR SPATIO–TEMPORAL MODELLING

I Interest may lie in forecasting an ambient measurement
twenty-four hours ahead of time. Or to spatially predict such
levels at unmonitored sites to get a better idea of the exposure of
susceptible school children in a school far from the nearest
ambient monitor.

I In deciding how to expand or contract an existing network of
monitoring sites in order to improve prediction accuracy or to
save resources, a spatio–temporal model will be required
together with a criterion on which to evaluate the changes you
recommend.
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SPATIO–TEMPORAL PROCESSES

We can represent the spatio-temporal random field Zst in terms of a
hierarchical model for the measurement and process models

Yst = Zst + vst

Zst = µst + ωst

where
I vst represents independent random measurement error.
I µst is a spatio–temporal mean field (trend) that is often

represented by a model of the form µst = xstβst.
I ωst is the underlying spatio–temporal process
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SPATIO–TEMPORAL PROCESSES

I For many processes the mean term µst represents the largest
source of variation in the responses.

I Over a broad scale it might be considered as deterministic if it
can be accurately estimated,

I An average of the process over a very broad geographical area.
I However where there is error in modelling µst the residuals ωst

play a vital role in capturing the spatial and temporal
dependence of the process.
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SPATIO–TEMPORAL PROCESSES

I The spatio–temporal process modelled by ω can be broken down
into separate components representing space, m, time, γ and the
interaction between the two, κ.

ωst = ms + γt + κst

I Here, m would be a collection of zero mean, site-specific
deviations (spatial random effects) from the overall mean, µst
that are common to all times.

I For time, γ would be a set of zero mean time-specific deviations
(temporal random effects) common to all sites.

I The third term κst represents the stochastic interaction between
space and time.
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SPATIO–TEMPORAL PROCESSES

I For example, the effect of latitude on temperature depends on
the time of year.

I The mean term, µst may constitute a function of both time and
space but the interaction between the two would also be
manifest in κst.

I This would capture the varying intensity of the stochastic
variation in the temperature field over sites which might also
vary over time. In a place such as California the temperature
field might be quite flat in summer but there will be great
variation in winter.

I It is likely that there will be interaction acting both through the
mean and covariances of the model.
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SEPARABLE MODELS

I In most applications, modelling the entire spatial–temporal
structure will be impractical because of high dimensionality.

I A number of approaches have been suggested to deal with this
directly and we now discuss the most common of these, that of
assuming that space and time are separable.

I This is in contrast to cases where the spatio-temporal structure is
modelled jointly which are known as non-separable models.
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SEPARABLE MODELS

I Separable models impose a particular type of independence
between space and time components. It is assumed the
correlation between Zst and Zs′t is ρss′ at every time point t while
the correlation between Zst and Zt′s is ρtt′ at all spatial time
points s.

I The covariance for a separable process is therefore defined as

Cov(Zst,Zs′t′) = σ2ρss′ρtt′

for all (s, t), (s′, t′) ∈ S × T .
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NON-SEPARABLE MODELS

I The complexity of non-separable spatio–temporal processes
often combined with computational issues has resulted in the
development of a number of different approaches to modelling
them.

I We now provide a brief description of a selection of the available
approaches.
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NON-SEPARABLE MODELS

I A spatio–temporal model for hourly ozone measurements was
developed by Carroll et al. (1997).

I The model,
Zst = µt + ωst

combines a trend term incorporating temperature and
hourly/monthly effects,

µt = αhour + βmonth + β1tempt + β2temp2
t ,

which is constant over space, and an error model in which the
correlation in the residuals was a nonlinear function of time and
space.
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NON-SEPARABLE MODELS

I In particular the spatial structure was a function of the lag
between observations,

COV(vst, vs′t′) = σ2ρ(d, v),

where d is the distance between sites and v = |t′ − t′| is the time
difference, with the correlation being given by

ρ(d, v) =

{
1 d = v = 0
φd

vψv d otherwise

where

log(ψv) = a0 + a1v + a2v2 and log(φv) = b0 + b1v + b2v2
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NON-SEPARABLE MODELS

I The correlation of the random field is thus a product of two
factors, the first, ψd

v depends on both the time and space, the
second only on the time difference.

I Unfortunately, as Carroll et al. (1997) pointed out, this correlation
function is not positive definite.

I Using results from the model, there were occasions when

Cov(Zst,Zs′t) > Cov(Zst,Zst).

I This highlights a genuine lack of a rich set of functions that can
be used as spatio-temporal correlation functions.
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SUMMARY

In this section we have seen the many ways in which the time can be
added to space in order to characterise random exposure fields. In
particular we have looked at the following topics:

I Additional power that can be gained in an epidemiological study
by combining the contrasts in the process over both time and
space while characterising the stochastic dependencies across
both space and time for inferential analysis.

I Criteria that good approaches to spatio–temporal modelling
should satisfy.

I General strategies for developing such approaches.
I Separability and non-separability in spatio–temporal models,

and how these could be characterised using the Kronecker
product of correlation matrices.

I Examples of the use of spatio–temporal models in modelling
environmental exposures.
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Session 2: Bayesian Inference
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BAYES’ THEOREM

I Bayes’ theorem:

p(Y|X) =
p(X|Y)p(Y)

p(X)

I For some it is just a theorem,
I For others, it is a way of life!
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BAYESIAN INFERENCE

I It allows us to specify a model for some data Y in terms of some
parameters θ in a Likelihood function:

p(Y|θ)

and any a-priori knowledge about the model parameters in a
prior probability distribution

p(θ)

I Combining these, we can obtain the posterior distribution

p(θ|Y) =
p(Y|θ)p(θ)

p(Y)
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BAYESIAN INFERENCE

I The denominator p(Y) is the marginal distribution of the
observation Y

I This a normalisation constant so we often take proportionality
with respect to θ

Posterior ∝ Likelihood× Prior
p(θ|Y) ∝ p(Y|θ)× p(θ)

I p(Y) will be of the form

p(Y) =

∫
p(Y|θ)p(θ) dθ

I This integral is often analytically intractable and thus we must
use other techniques to be able to find the posterior
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LATENT GAUSSIAN MODELS

I Suppose we have observation vector Y that arises from some
distribution.

I We are often interested in estimating the mean µ which is related
to the linear predictor,

ηi = g(µi) = β0 +

p∑
j=1

βjXji +

q∑
k=1

fk(Uki) + εi, i = 1, . . . ,n

where
I β0 is an intercept term
I βj is the linear effect of covariates Xji
I εi is the iid noise term (i.e. εi ∼ N(0, σ2

ε))
I fk(·) is non-linear function of covariate Uji. We often represent this

function as fk(s) =
∑

m γkmψkm(s) where ψkm(·) are the basis
functions and γkm are the weights.
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LATENT GAUSSIAN MODELS

I By letting,

η = (η1, . . . , ηn)T Z = (β0, . . . , βp, {γkm})T

we can write this as a linear system

η = AZ

I A model is then classed as a latent Gaussian model if we assign a
Gaussian distribution to the vector Z i.e.

Z ∼ N(µ,Σ)

where µ is the mean vector and Σ is a positive-definite
covariance matrix.

I We then define hyperparameters θ to account for scale of
dependency and variability.
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I This offers a very flexible framework so that we can work with a
large range of models.

Hyperparameters: θ Data: Y

Hyperparameters: θ Data: Y

Latent process: Z
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BAYESIAN HIERARCHICAL MODELS

I The observation level Y|Z, θ - Data Y, are assumed to arise from
the underlying latent (Gaussian) process Z, which is
unobservable, although may be measured with error. For
example consider,

Y|Z, θ ∼ N(AZ, σ2
ε I)

I The underlying process level Z|θ - The latent process Z assumed
to drive the observable data and represents the true value of the
quantity of interest. For example consider,

Z|θ ∼ N(µ, σ2
z Σ)
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BAYESIAN HIERARCHICAL MODELS

I The prior level θ - This level describes known prior information
about the model parameters θ and controls the scale and
variability of the data and the latent process. For example
consider,

θ = (σε, σz)
T ∼ p(θ)

I Inference on all model parameters in a hierarchical model such
as these can be done as follows.
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INFERENCE

I We can write the posterior of the model parameters in a similar
way as before

p(θ,Z|Y) ∝ p(Y|Z, θ)p(Z, θ) = p(Y|Z, θ)p(Z|θ)p(θ)

I We are interested in the marginal effects of all the latent process
parameters and the hyperparameters

p(θi|Y) =

∫∫
p(θ,Z|Y) dZ dθ−i, p(zi|Y) =

∫∫
p(θ,Z|Y) dZ−i dθ

I Typically dim(Z) = 102 − 106 and dim(θ) ≤ 10 so these are,
high-dimensional integrals, so we simplify
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INFERENCE

I Using the fact that p(θ,Z|Y) = p(Z|θ,Y)p(θ|Y) then we see that

p(θi|Y) =

∫∫
p(θ,Z|Y) dZ dθ−i =

∫
p(θ|Y) dθ−i

p(Zi|Y) =

∫∫
p(θ,Z|Y) dZ−i dθ =

∫
p(Zi|θ,Y)p(θ|Y)dθ

I So instead of having to find p(Z, θ|Y) and do very high
dimensional integrals we just need distributions p(θ|Y) and
p(Zi|θ,Y) (lower dimensional numerical integration).
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MARKOV CHAIN MONTE CARLO

I Markov Chain Monte Carlo (MCMC) methods are based on
sampling, and are extensively used in Bayesian inference. We
aim to sample from the posterior

p(θ|Y) ∝ p(Y|θ)× p(θ)

to estimate such as mean and variance.
I Some advantages and disadvantages:

I Very flexible with well-known algorithms
I Software available (JAGS, WinBUGS, etc.)
I May be computationally infeasible in large-scale problems

I Techniques for performing Bayesian inference can be extremely
useful.
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INTEGRATED NESTED LAPLACE APPROXIMATIONS

I Integrated Nested Laplace Approximations (INLA) is a recent
development in approximate Bayesian Inference.

I It was introduced as an alternative to methods such as MCMC
for a general set of statistical models called latent Gaussian
models.

I Posterior distributions are approximated using a series of
Laplace approximations meaning we do not need to sample from
the posterior.

I It has been shown to be accurate in all but extreme cases and can
substantially reduce computational burden compared to MCMC
in many cases.

I Software suite called R-INLA suite allows implementation in R.
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LAPLACE APPROXIMATION

I Laplace approximation is an technique that can be used to
perform inference by approximating a posterior distribution by a
Gaussian distribution.

I To make a Laplace approximation we take a Taylor expansion of
the density log p(θ|Y) around its mode θ̂, i.e.

log p(θ|Y) = log p(θ̂|Y) + (θ − θ̂)T ∂

∂θ
log p(θ|Y)

∣∣∣∣
θ=θ̂

+
1
2

(θ − θ̂)T ∂

∂θ∂θT log p(θ|Y)

∣∣∣∣
θ=θ̂

(θ − θ̂) + h.o.t.

I As the mode is the maximum of p(θ|Y) then the second term will
be zero, i.e.

∂

∂θ
log p(θ|Y)

∣∣∣∣
θ=θ̂

= 0
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LAPLACE APPROXIMATION

I Letting

H(θ̂|Y) = − ∂

∂θ∂θT log p(θ|Y)

∣∣∣∣
θ=θ̂

and omit higher order terms then we see that

p(θ|Y) ∝ exp
(
−1

2
(θ − θ̂)TH(θ̂|Y)(θ − θ̂)

)
which is the kernel of a Gaussian distribution and therefore,

θ|Y ∼ N(θ̂,H(θ̂|Y)−1)

I In general, the mode will have to found numerically (often
performed using Newton optimisation)
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GAUSSIAN RANDOM FIELDS

I A random vector Z = (z1, . . . , zn)T is called a Gaussian Markov
Field if it has mean µ and positive definite covariance matrix Σ,
with density

p(Z) =
1

(2π)n/2|Σ|1/2 exp
(
−1

2
(Z− µ)TΣ−1(Z− µ)

)
I There are some issues with working with this parameterisation

in practice, especially when n is large.
I Covariance matrix has O(n2) elements.
I Computation often rises O(n3) (determinants, inverse, etc.)
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GAUSSIAN RANDOM FIELDS

I In some cases it may be advantegeous to parameterise the
distribution in terms of the precision matrix Q = Σ−1 (inverse of
the covariance),

p(Z) =
|Q|1/2

(2π)n/2 exp
(
−1

2
(Z− µ)TQ(Z− µ)

)
I This often reduces computation.
I The non-zero pattern in the precision matrix tells us a lot about

the conditional distributional structure.
I The Markov property states that if Qij = 0 if and only if zi and zj

are conditionally independent given all other elements Z−ij
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GAUSSIAN MARKOV RANDOM FIELD

I A random vector Z = (z1, . . . , zn)T is called a Gaussian Markov
Random Field (GMRF) with mean µ and positive definite
precision matrix Q, if

p(Z) =
|Q|1/2

(2π)n/2 exp
(
−1

2
(Z− µ)TQ(Z− µ)

)
Qij = 0 ⇐⇒ (i, j) /∈ E

I To reduce computation, we assume that latent variables follow a
GMRF.

I The conditional independence allows for computing with sparse
matrices.
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EXAMPLE: AR(1) PROCESS

I Suppose we have a Autoregressive process of order 1,

Z0 ∼ N(0, (1− α)−1σ2)

{Zt|Zs, s < t} ∼ N(αZt−1, σ
2); t = 1, . . . ,T

where α ∈ (0, 1) and σ > 0.
I The covariance and precision matrices of the joint distribution Z

has the form

Σij =
α|i−j|

1− α
σ2, Q =

1
σ2


1 −α
−α 1 + α2 −α

. . . . . . . . .
−α 1 + α2 −α

−α 1


so Σ is dense and Q is sparse.
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INTEGRATED NESTED LAPLACE APPROXIMATION

I As mentioned earlier, we have to find

p(θ|Y) and p(Zi|θ,Y)

to be able to find the marginal posterior distributions

p(θi|Y) =

∫
p(θ|Y) dθ−i, p(Zi|Y) =

∫
p(Zi|θ,Y)p(θ|Y)dθ

I This is done in three steps.
1. Find an approximation to the distribution p(θ|Y)
2. Find an approximation to the marginal distributions p(Zi|θ,Y)
3. Numerically integrate to get marginal distributions
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R-INLA

I The R–INLA package provides a practical implementation of
Integrated Nested Laplace Approximations (INLA).

I It can be used with hierarchical GMRF models
I The class of models that can be expressed in this form and thus

can be used with R–INLA is very large and includes, amongst
others, the following:

I Dynamic linear models.
I Stochastic volatility models.
I Generalised linear (mixed) models.
I Generalised additive (mixed) models.
I Spline smoothing.
I Semi–parametric regression.
I Disease mapping.
I Log–Gaussian Cox–processes.
I Model–based geostatistics.
I Spatio–temporal models.
I Survival analysis.
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THE SYNTAX OF R–INLA

I There are three main parts to fitting a model using R–INLA:
1. The data.
2. Defining the model formula.
3. The call to the INLA program.

I The basic syntax of running models in R–INLA is very similar in
appearance to that of glm in R and takes the general form
formula, data, family but with the addition of the
specification of the nature of the random effects, f().

I For the latter component, common examples include f(i,
model="iid") (independent), f(i, model="rw") (random
walk of order one) and f(i, model="ar") (autoregressive of
order p).
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FITTING A POISSON REGRESSION MODEL IN R–INLA

I An extension of the standard Poisson model to include
log–normal random effects in the linear predictor

I

logµl = β0 + β0i + β1Xl + βdXl + εl (1)

where βl represents the effect of exposure, βd is the effect of an
area-level covariate and β0i denotes the random effect for area i.

I The syntax of
the R–INLA code to fit this model is very similar to that of a
standard glm
in R.
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FITTING A POISSON REGRESSION MODEL IN R–INLA
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FITTING A POISSON REGRESSION MODEL IN R–INLA
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FITTING A POISSON REGRESSION MODEL IN R–INLA
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FITTING MODELS IN R–INLA

I Future details on R–INLA, including the latent process models
that can be
accommodated, can be found on the R–INLA webpage:
http://www.R-INLA.org.
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Session 3: Applications of Spatial Modelling
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SPATIAL DATA

Three main types of spatial data are commonly encountered in
environmental epidemiology:

(i) Lattice
(ii) Point-Referenced

(iii) Point-Process Data
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SPATIAL DATA: LATTICES

I Lattices refer to situations in which the spatial domain consists of
a discrete set of ‘lattice points’.

I These points may index the corners of cells in a regular or
irregular grid.

I Alternatively, they may index geographical regions such as
administrative units or health districts.

I We denote the set of all lattice points by Lwith data available at
a set of NL points, l ∈ L where L = l1, ..., lNL .

I In many applications, such as disease mapping, L is commonly
equal to L. A key feature of this class is its neighbourhood
structure; a process that generates the data at a location has a
distribution that can be characterised in terms of its neighbours.
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SPATIAL DATA: POINT-REFERENCED

I Point-referenced data are measured at a fixed, and often sparse,
set of ‘spatial points’ in a spatial domain or region.

I That domain may be continuous, S but in the applications
considered in this course the domain will be treated as discrete
both to reduce technical complexity and to reflect the
practicalities of siting monitors of environmental processes.

I For example, when monitoring air pollution, the number of
monitors may be limited by financial considerations and they
may have to be sited on public land.

I Measurements are available at a selection of NS sites, s ∈ S where
S = s1, ..., sNS .

I Sites would usually be defined in terms of their geographical
coordinates such as longitude and latitude, i.e. sl = (al, bl).
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SPATIAL DATA: POINT PROCESSES

I Point-process data consists of a set of points, S, that are
randomly chosen by a spatial point process.

I These points could mark, for example, the incidence of a disease
such as childhood leukaemia.
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EXAMPLE: VISUALISING SPATIAL DATA

I Data visualisation is an important topic which encompasses
aspects of model building, including the assessment of the
validity of modelling assumptions, and the presentation of
results.

I We illustrate this by mapping measurement of lead
concentrations in the Meuse River flood plain.

I The Meuse River is one of the largest in Europe and the subject
of much study.

I A comprehensive dataset was collected in its flood plain in 1990
and provides valuable information on the concentrations of a
variety of elements in the river.

I The information is measured at 155 sampling sites within the
flood plain.
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EXAMPLE: VISUALISING SPATIAL DATA

Figure: Bubble plot showing the size of lead concentrations measured in samples taken at 155
locations in the Meuse River flood plain.
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EXAMPLE: VISUALISING SPATIAL DATA

I The figure on the next slide shows the result of using Google
maps to visualise data. It shows the sampling sites marked with
map tacks.

I Google’s Street View then lets an observer see the map tacks.
Clicking on one of the visible map tacks reveals the sample data
record for that site within Street View.
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EXAMPLE: VISUALISING SPATIAL DATA

(a) Sampling sites near Meuse River (b) Map tack opens to show sample

Figure: Here we see (a) the location at which samples were taken in the Meuse River flood plain
and (b) the information that was collected.
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GOOD APPROACHES TO SPATIO-TEMPORAL

MODELLING

I Often spatio–temporal models are purpose-built for a particular
application and then presented as a theoretical model.

I It is then reasonable to ask what can be done with that model in
settings other than those in which it was developed.

I More generally, can it be extended for use in other applications?
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GOOD APPROACHES TO SPATIO-TEMPORAL

MODELLING

There are a number of key elements which are common to good
approaches to spatio–temporal modelling. The approaches should do
the following:

I Incorporate all sources of uncertainty. This has led to the
widespread use of Bayesian hierarchical modelling in theory and
practice.

I Have an associated practical theory of data-based inference.
I Allow extensions to handling multivariate data. This is vital as it

may be a mix of hazards that cause negative health impacts.
Even in the case where a single hazard is of interest, the
multivariate approach allows strength to be borrowed from the
other hazards which are correlated with the one of concern.
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GOOD APPROACHES TO SPATIO-TEMPORAL

MODELLING

I Be computationally feasible to implement. This is of increasing
concern as we see increasingly large domains of interest. One
might now reasonably expect to see a spatial domain with
thousands of sites and thousands of time points.

I Come equipped with a design theory that enables measurements
to be made optimally for estimating the process parameters or
for predicting unmeasured process values. Good data are
fundamental to good spatio–temporal modelling, yet this aspect
is commonly ignored and can lead to biased estimates of
exposures and thus risk.
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GOOD APPROACHES TO SPATIO-TEMPORAL

MODELLING

I Produce well calibrated error bands. For example, a 95% band
should contain predicted values 95% of the time, i.e. they have
correct coverage probabilities. This is important not only in
substantive terms, but also in model checking.

I There may be questions about the formulation of a model, for
example of the precise nature of the spatio–temporal process that
is assumed, but that may be of secondary importance if good
empirical performance of the model can be demonstrated.
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VARIOGRAMS

I The covariance function and the semi–variogram are both
functions that summarise the strength of association as a
function of distance and, in the case of anisotropy, direction.

I When dealing with a purely spatial process where there are no
independent realisations, patterns in correlation and variances
from different parts of the overall region of study are used as if
they were replications of the underlying process.

I Under the assumption of stationarity, a common covariance
function for all parts of the regions can then be estimated.
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VARIOGRAMS

I The semi–variogram will be zero at a distance of zero as the
value at a single spot is constant and has no variance.

I It may then rise and reach a plateau, indicating that past a
certain distance, the correlation between two units is zero.

I This plateau will occur when the semi–variogram reaches the
variance.
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VARIOGRAM MODELS

Figure: Variograms for (a) log values of Nitrogen Dioxide (NO2) measured at monitoring sites
throughout Europe in 2001; (b) residuals after fitting a model with land–use covariates.
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MATERN CLASS

I A common class of models used for variogram models is the
Matern class: Matern class of models

γ(h|θ) =

{
0 h = 0

θ1
1

2θ2−1Γ(θ2)

(
2d
√
θ2

θ1

)θ2

Kθ2

(
2d
√
θ2

θ1

)
h > 0

(2)

I Where θ1 > 0 is a scalable parameter controlling the range of the
spatial correlation, and θ2 > 0 is the smoothness parameter.

I Kθ2 is a the modified Bessel function of order θ2.
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EXPONENTIAL MODEL

I The exponential model is a special case of this, with θ2 = 1/2.

γ(d|θ) =

{
0 d = 0
θ1 exp(−θ2d) d > 0

The limiting case of the Matern class of models, when θ2 →∞, is
the Gaussian model.
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INLA AND MODELLING IN A CONTINOUS DOMAIN

I The methods presented here are for use with point referenced
data, particularly cases where there is a Gaussian field (GRF)
with responses measured with error.

I A GRF doesn’t have a natural Markov structure and so INLA, as
originally developed, does not apply directly as it does with
GMRFs as would be the case when using areal data.

I It is possible to use a bridge between a GF and a GMRF, to which
INLA can be applied.
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INLA AND MODELLING IN A CONTINOUS DOMAIN

I We now describe the SPDE–GRMF approximation following
Lindgren (2011).

I INLA assumes the GF Zs, s ∈ S has a Matern spatial covariance
that is the solution of the SPDE

(κ2 −∆)α/2Zs = vs, α = ν + d/2, κ > 0, ν > 0 (3)

where (κ2 −∆)α/2 is a pseudo–difference operator, ∆ is the
Laplacian and v is spatial white noise with unit variance.

I The marginal variance of the process is given by

σ2 =
Γ(ν)

Γ(ν + d/2)(4π)d/2κ2ν (4)

Representing the process in this way is key to the developments
that follow; it provides the bridge over which we can cross from
the GF to the GMRF via an approximate solution to the SPDE.
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INLA AND MODELLING IN A CONTINOUS DOMAIN

I An infinite dimensional solution, Zs, of the SPDE over its
domain, S, is characterised by the requirement that for all
members of an appropriate class of test functions, φ,∫

φjs(κ
2 −∆)α/2ZsdZ =

∫
φjsvsds (5)

I However in practice, only approximate solutions are available
and Lindgren (2011) use the conventional finite element
approach, which uses a Delauney triangulation (DT) over S .

I Initially the triangles are formed with vertices at the points of the
sparse network where observations are available with additional
triangles added until S is covered, leading to an irregular array
of locations (vertices).
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INLA AND MODELLING IN A CONTINOUS DOMAIN

I The result is a GF model for the process but with an associated
GMRF that can be used (by INLA) for performing the
computations that would be computationally prohibitive using
the GF directly.

I The resulting algorithm is implemented in R-INLA
(www.r-inla.org).

I To best illustrate the SPDE approach in practice, we consider an
example.
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EXAMPLE: BLACK SMOKE IN THE UK

I The Great Smog was a severe air pollution event in London
during December 1952

I A large amount of snow in London led to more coal being burnt.
I An area of high pressure and light winds trapped the resulting

smog in London.
I This event led to over 4000 excess deaths in the following weeks
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EXAMPLE: BLACK SMOKE IN THE UK
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EXAMPLE: BLACK SMOKE IN THE UK

I Management of air pollution began in the middle of the 20th
century when serious concern arose about the possible effects of
air pollution on health.

I The Great Smog and other events led to the Clean Air Act in 1956
which established a large scale monitoring network and the
National Survey.
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EXAMPLE: BLACK SMOKE IN THE UK

I The National Survey measured black smoke and sulphur
dioxide.

I In mid-1960s 1000+ sites
I In mid-1990s 200 sites

I This was done to examine the changes over time and variations
in space.

I Also interested in effects of reduction in network over time.
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EXAMPLE: BLACK SMOKE IN THE UK

I Black smoke consists of fine particulate matter.
I Mainly emitted from fuel combustion.
I Following the large reductions in domestic coal use the main

source is diesel-engined vehicles.
I We can measure black smoke by its blackening effects on filters.
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EXAMPLE: BLACK SMOKE IN THE UK

Decrease in concentrations over time by site
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EXAMPLE: BLACK SMOKE IN THE UK

Overall decrease in concentrations over time.



108/ 121

Introduction Session 1: Spatio-Temporal Modelling Session 2: Bayesian Inference Session 3: Applications of Spatial Modelling

EXAMPLE: BLACK SMOKE IN THE UK

I We model the pollution field using a Bayesian hierarchical
model.

I The annual average (log) for each site is modelled as a function
of space and time

Yit = (β0 + β0i) + (βx + βxi)t + (βx2 + βx2i)t2 + βuUi + εit

where i is a the location of the ground monitor, t is time and Ui is
a urban/rural indicator.

I We use a linear and quadratic effect of time.
I Site random effects are assumed to be multivariate normal

βs ∼ N(0,Σ)

βs ∼ N(0,Q−1)
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EXAMPLE: BLACK SMOKE IN THE UK
I The next figure shows the mesh that was constructed using

Delauney triangulation for the locations of black smoke monitors
in the UK.

Figure: Triangulation for the black smoke network in the UK. The red dots show the
locations of black smoke monitoring sites.



110/ 121

Introduction Session 1: Spatio-Temporal Modelling Session 2: Bayesian Inference Session 3: Applications of Spatial Modelling

EXAMPLE: BLACK SMOKE IN THE UK
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EXAMPLE: BLACK SMOKE IN THE UK
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EXAMPLE: BLACK SMOKE IN THE UK

I Here we use the shapefile for the UK using the British National
Grid projection that provides the outline of the UK coastline and
are included in the online resources.

I In this case, the distance between the points is expressed in
metres and so the distances used in creating the mesh to ensure
the plots will overlay should also be in metres.

I In this case, there are 3799 edges and the mesh was constructed
using triangles that have minimum angles of 26 and a maximum
edge length of 100km.

I There are 1466 monitoring locations being considered over the
period of study and these are highlighted in red.
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EXAMPLE: BLACK SMOKE IN THE UK

I This lattice underlies the GMRF and gives a finite element
representation of the solution of the SPDE

Zs =

n∑
k=1

ψkswk (6)

where n is the number of vertices of the DT, {wk} are Gaussian
weights and ψks are piecewise linear in each triangle (1 at vertex
k and 0 at all other vertices).
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EXAMPLE: BLACK SMOKE IN THE UK

I Using the mesh set up above we now create the INLA SPDE
object that will be used as the model.

I The model is then fit by defining a formula and then running the
inla command using the SPDE object in a random effects term.
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EXAMPLE: BLACK SMOKE IN THE UK

I We are interested in the posterior marginals of the latent field,

π(xi|y) =

∫
π(xi|θ, y)π(θ|y)dθ (7)

π(θj|y) =

∫
π(θ|y)π(θ−j)dθ (8)

where i = 1, ...,NS + P where NS is the number of monitoring
locations and P the number of predictions to be made and
j = 1, . . . J is the number of parameters in the model.

I With regards to spatial prediction, the SPDE–INLA algorithm
provides the posterior conditional distribution of the random
effects terms at all the vertices of the triangulation.
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EXAMPLE: BLACK SMOKE IN THE UK

I Given these, there is a mapping to the response variable which
allows samples of predictions to be obtained.

I In order to produce a map displaying the spatial predictions of
the model we first need to define a lattice projection starting
from the mesh object back to the grid on which the data lies and
will be plotted.

I Then the posterior mean and standard deviations can be
extracted and then projected from the latent field space to the
grid, and then plotted as a map.



120/ 121

Introduction Session 1: Spatio-Temporal Modelling Session 2: Bayesian Inference Session 3: Applications of Spatial Modelling

EXAMPLE: BLACK SMOKE IN THE UK
I The example of the result can be seen below.

Figure: Map of predicted values of black smoke in the UK. Values are medians of posterior
predicted distributions on the logarithmic scale from an SPDE–INLA model.

I There are a number of ways of converting the output from
SPDE/R-INLA to a form that can produce maps and the package
geostatsp provides many routines for doing this.
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THE END

THANK YOU
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