
STAT 545A
Class meeting #6
Monday, September 24, 2012

Dr. Jennifer (Jenny) Bryan

Department of Statistics and Michael Smith Laboratories

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/

Review of last class
Quantitative summaries of a quantitative variable X (e.g.
mean, median, variance, MAD, min, max,)

Above especially interesting when executed for levels of
categorical variable(s) Y(, Z) via data aggregation
techniques (e.g. tapply, by, or the plyr package?)

For small to medium datasets, stripplot is the way to go;
SHOW ME THE DATA! SHOW ME THE DATA!

stripplot bells & whistles: jitter, type = “a” to add, e.g. the
median, groups to superpose another categorical
variable, auto.key = TRUE to get basic legend

Review of last class
For medium-to-large datasets, stripplot is either not
enough or not even useful ➙ densityplot is my favorite
way to convey an empirical distribution

Kernel density estimate at x = sum of bumps centered at
observed data xi. Shape of bumps = kernel; surprisingly
not that important. Width of bumps = bandwidth; main
tuning parameter.

Other options include boxplot, violin plot, histogram,
ecdfplot

Sidebars: “<-” for assignment, formula interface

Sources for further study of topics covered:

Chapter 4 (“Graphics”) of Venables & Ripley
(2002) has some good material on base R
graphics. Sadly not available via SpringerLink.

http://www.stats.ox.ac.uk/pub/MASS4/
http://www.stats.ox.ac.uk/pub/MASS4/
http://www.stats.ox.ac.uk/pub/MASS4/
http://www.stats.ox.ac.uk/pub/MASS4/
http://www.springerlink.com/mathematics-and-statistics/statistics/
http://www.springerlink.com/mathematics-and-statistics/statistics/

Sources for further study of topics covered:

Chapters 2 (“Simple Usage of Traditional
Graphics”) and 3 (“Customizing Traditional
Graphics”) of Murrell (2006). This whole book
is extremely valuable. Author’s webpage* (for
example, code to produce all figs in book is
here). Google books search.

I’m sure there are others -- I learned what I
know about base R graphics a long time ago. So
I’d welcome feedback if students find more or
better references that are more current.

* An issue with exporting from Keynote to PDF breaks this link.
Use The Google and “Paul Murrell R graphics” to find the page. Also
the relevant chapter(s) may have different number(s) in the 2nd
edition, which now exists.

http://www.crcnetbase.com/isbn/9781584884866
http://www.crcnetbase.com/isbn/9781584884866
http://www.stat.auckland.ac.nz/%257Epaul/RGraphics/rgraphics.html
http://www.stat.auckland.ac.nz/%257Epaul/RGraphics/rgraphics.html
http://books.google.com/books?id=78P4zntHHVQC&lpg=PP1&dq=inauthor%25253APaul%252520inauthor%25253AMurrell&lr=&as_drrb_is=q&as_minm_is=0&as_miny_is=&as_maxm_is=0&as_maxy_is=&as_brr=0&pg=PP1%23v=onepage&q=&f=false
http://books.google.com/books?id=78P4zntHHVQC&lpg=PP1&dq=inauthor%25253APaul%252520inauthor%25253AMurrell&lr=&as_drrb_is=q&as_minm_is=0&as_miny_is=&as_maxm_is=0&as_maxy_is=&as_brr=0&pg=PP1%23v=onepage&q=&f=false

Code you see in this lecture can be found in these files:

bryan-a01-10-baseGraphicsStepByStep.R

bryan-a01-11-baseGraphicsPlotGapminderOneYear.R

bryan-a01-12-baseGraphicsSoln.R

bryan-a01-30-makeGapminderColorScheme.R

bryan-a01-50-basicColorDemo.R

in this directory:
http://www.stat.ubc.ca/~jenny/notOcto/STAT545A/examples/gapminder/code/

http://www.stat.ubc.ca/~jenny/notOcto/STAT545A/examples/gapminder/code/
http://www.stat.ubc.ca/~jenny/notOcto/STAT545A/examples/gapminder/code/

The animation is lost when exported to PDF.

A JB ‘solution’ using base or traditional R graphics.

http://www.stat.ubc.ca/~jenny/notOcto/STAT545A/examples/gapminder/figs/animation/gapminder.gif
http://www.stat.ubc.ca/~jenny/notOcto/STAT545A/examples/gapminder/figs/animation/gapminder.gif

step-by-step development of the Gapminder
figure/animation using base R graphics commands

(jYear <- max(gDat$year))
plot(lifeExp ~ gdpPercap, gDat,
 subset = year == jYear)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

0 10000 20000 30000 40000 50000

40
50

60
70

80

gdpPercap

life
Ex
p

take control of whitespace around plot
op <- par(mar = c(5, 4, 1, 1) + 0.1)
plot(lifeExp ~ gdpPercap, gDat,
 subset = year == jYear)
par(op)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 10000 20000 30000 40000 50000

40
50

60
70

80

gdpPercap

life
Ex
p

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

0 10000 20000 30000 40000 50000

40
50

60
70

80

gdpPercap

life
Ex
p

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 10000 20000 30000 40000 50000

40
50

60
70

80

gdpPercap

life
Ex
p

plot(lifeExp ~ gdpPercap, gDat,
 subset = year == jYear)

take control of whitespace around plot
op <- par(mar = c(5, 4, 1, 1) + 0.1)
plot(lifeExp ~ gdpPercap, gDat,
 subset = year == jYear)
par(op)

By default, base R graphics commands leave an excessive
amount of whitespace around the plot. This -- and many other
things -- will need explicit management via the par() command.

par() is used to set and query base R graphics parameters.

Read the documentation for par()!

To exert fine control over base R graphics, you will use
par() alot. Which should tip you off why most figure-lovers
are turning to lattice and ggplot2 these days.

Nonetheless, let’s keep going. It’s “best practice” to capture
the current value of par when you begin to modify (current
value is returned by the modification / new assignment) and
then to restore that value when you’re done. I will
suppress this repetitive bit of code from here on.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 10000 20000 30000 40000 50000

40

50

60

70

80

Income per person (GDP/capita, inflation−adjusted $)

Li
fe

 e
xp

ec
ta

nc
y

at
 b

irt
h

(y
ea

rs
)

take control of axis labels, orientation of tick labels
jXlab <- "Income per person (GDP/capita, inflation-adjusted $)"
jYlab <- "Life expectancy at birth (years)"
plot(lifeExp ~ gdpPercap, gDat,
 subset = year == jYear,
 las = 1, xlab = jXlab, ylab = jYlab)

take control of axis labels
jXlab <- "Income per person (GDP/capita, inflation-adjusted $)"
jYlab <- "Life expectancy at birth (years)"
plot(lifeExp ~ gdpPercap, gDat,
 subset = year == jYear,
 las = 1, xlab = jXlab, ylab = jYlab)

If you give good variable names, the default axis labels will
be good enough most of the time.

When preparing a figure for a talk or paper, you will want
to exert greater control.

Collect these sorts of Magic Text Strings at the top of a
script that makes a Very Important Figure, for ease of
modification and code re-use.

take control of axis labels, orientation of tick labels
jXlab <- "Income per person (GDP/capita, inflation-adjusted $)"
jYlab <- "Life expectancy at birth (years)"
plot(lifeExp ~ gdpPercap, gDat,
 subset = year == jYear,
 las = 1, xlab = jXlab, ylab = jYlab)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 10000 20000 30000 40000 50000

40

50

60

70

80

Income per person (GDP/capita, inflation−adjusted $)

Li
fe

 e
xp

ec
ta

nc
y

at
 b

irt
h

(y
ea

rs
)

The X axis is not uniformly distributed

Also, I could not figure out how display the countries which have small
populations on the graphs. I did not find out the actual range of Income per
Person, I just applied the Logarithmic function on Income per Person.

some countries have an extreme amount of income
relative to the other countries

For example, I do not know how to use log scale but still label the
axis with original values.

For example, it would be nice if there can be more grid lines on the x-
axis. It is easy to do on the original scale, but not on the log scale.

Recall your frustrations with axis manipulation?

*Note: These frustrations expressed by past STAT 545A students. Your mileage may vary.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

500 1000 2000 5000 10000 20000 50000

40

50

60

70

80

Income per person (GDP/capita, inflation−adjusted $)

Li
fe

 e
xp

ec
ta

nc
y

at
 b

irt
h

(y
ea

rs
) ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

6 7 8 9 10 11

40

50

60

70

80

Income per person (GDP/capita, inflation−adjusted $)

Li
fe

 e
xp

ec
ta

nc
y

at
 b

irt
h

(y
ea

rs
)

log transform the x = gdpPercap
axis using the 'log' argument
plot(lifeExp ~ gdpPercap, gDat,
 subset = year == jYear,
 las = 1, xlab = jXlab, ylab = jYlab,
 log = 'x')

log transform the x = gdpPercap
axis 'by hand'
plot(lifeExp ~ log(gdpPercap), gDat,
 subset = year == jYear,
 las = 1, xlab = jXlab, ylab = jYlab)

log transform the x = gdpPercap
axis 'by hand'
plot(lifeExp ~ log(gdpPercap), gDat,
 subset = year == jYear,
 las = 1, xlab = jXlab, ylab = jYlab)

log transform the x = gdpPercap
axis using the 'log' argument
plot(lifeExp ~ gdpPercap, gDat,
 subset = year == jYear,
 las = 1, xlab = jXlab, ylab = jYlab,
 log = 'x')

This is the preferred way to log transform the x
variable. Works same way for y variable.
Results in axis tick marks and labels that are
easier for reader to understand, i.e. are based on
the original scale.

When I was trying to relate the population size to the size of points, it takes me about 1 hour,
because I need to scale the population properly. I use two scale method.
1) size=10*[pop-min(pop)]/[max(pop)-min(pop)]
2) size= sqrt(pop)/4000

Method(2) works better.

Found the use of "symbols" and its documentation helps me to set circles and
colors!!! I can set different colors for different countries, but the same
country always uses the same color. The size of circles is increasing function
of its population of "current data" or "the most recent available data".... I feel
very lucky to find 'symbols'.

Finally, I tried to vary the size of the dots. The basic principle was simple, because there is a parameter to
the 'points' function to scale the size of the marker ('cex'). What took me a surprisingly long time was
getting the formula for the size of the marker 'right'.

I tried various ratios, scalings, and log transforms, and most of them yielded points that were far too
uniform in size. Eventually, I decided that making this proportional to the ratio of population to the
smallest value was the right approach, but that the proportion should be in area of the marker. Taking a
square root and scaling it to keep the circles from getting too big ended up with effect pretty similar to
GapMinder. This feature alone probably took me an hour.

Find the right function or parameter to determine
the radius of the circle symbols

Recall the frustration over drawing and sizing circles?

*Note: These frustrations expressed by past STAT 545A students. Your mileage may vary.

The next task: conveying two more pieces of
information
• color ↔ continent / country

• circle size ↔ population

Big picture: It’s quite easy to depict a 4-
dimensional dataset with a scatterplot.

map pop into circle radius
jPopRadFun <- function(jPop) { # make area scale with pop
 sqrt(jPop/pi)
}
plot(jPopRadFun(pop) ~ pop, gDat) # looks promising

with(subset(gDat, year == jYear),
 symbols(x = gdpPercap, y = lifeExp,
 circles = jPopRadFun(pop), add = TRUE,
 inches = 0.7,
 fg = jDarkGray, bg = color))

It can be surprisingly vexing to transform a variable into ... for
example, circle radii or colors ... for an effective display!
Expect to give this careful attention.

map pop into circle radius
jPopRadFun <- function(jPop) { # make area scale with pop
 sqrt(jPop/pi)
}

Try to find a principled way to proceed. In this case, I claim
that area of circle should correspond to population, which
implies the above transformation.

area = πr2

area⇔ pop

r = pop /π

map pop into circle radius
jPopRadFun <- function(jPop) { # make area scale with pop
 sqrt(jPop/pi)
}
plot(jPopRadFun(pop) ~ pop, gDat) # looks promising

Plot this for a sanity check before throwing into main figure
command.

●

●

●

●●
●

●
●●●●●

●●

●

●

●

●●

●●
●●●●●

●●
●●●●●●●●●●●●●●●●●

●●●

●

●

●

●●

●●

●●●●●
●●
●●●●●●●●●●●●●●●●●

●●●

●

●

●

●
●

●
●

●●●●●●●
●●●●●●●●●●●●●●●●●

●●●

●

●

●

●
●●

●
●●

●●●●●
●●●●●●●●●●●●●●●●●

●●●

●

●

●

●

●●

●●●
●●
●●●●●●●●●●●●●●

●●●

●

●

●

●

●
●

●●
●●●

●●●

●

●

●

●

●
●

●●

●●●
●●●●●●●●●

●●●●●●●●●
●●●

●

●

●

●

●

●●●

●●
●

●●
●●●●●●●●

●●●●●●●●
●●●

●

●

●

●

●

●
●●

●
●

●●●
●●●●●●●●

●●●

●

●

●

●

●

●
●●●

●

●●●
●●●●●●●●●

●●●●●●●●●●●●●
●●●

●

●

●

●

●
●

●
●●

●
●●●●●●●●●●●●

●●

0.0e+00 2.0e+08 4.0e+08 6.0e+08 8.0e+08 1.0e+09 1.2e+09

0
50
00

10
00
0

15
00
0

20
00
0

pop

jP
op
R
ad
Fu
n(
po
p)

map pop into circle radius
jPopRadFun <- function(jPop) { # make area scale with pop
 sqrt(jPop/pi)
}
plot(jPopRadFun(pop) ~ pop, gDat) # looks promising

with(subset(gDat, year == jYear),
 symbols(x = gdpPercap, y = lifeExp,
 circles = jPopRadFun(pop), add = TRUE,
 inches = 0.7,
 fg = jDarkGray, bg = color))

The symbols() command plots ... symbols! You can specify a
shape, e.g. circle, and more, e.g. size.
I won’t talk about this a lot because we risk getting hyper-
specific about the Gapminder example.
Frankly, this doesn’t come up often in real life for me.

with(subset(gDat, year == jYear),
 symbols(x = gdpPercap, y = lifeExp,
 circles = jPopRadFun(pop),
 inches = 0.7,
 fg = jDarkGray, bg = color,
 las = 1, xlab = jXlab, ylab = jYlab,
 log = 'x'))

Error in plot.window(...) : Logarithmic
axis must have positive limits

with(subset(gDat, year == jYear),
 symbols(x = gdpPercap, y = lifeExp,
 circles = jPopRadFun(pop),
 inches = 0.7,
 fg = jDarkGray, bg = color,
 las = 1, xlab = jXlab, ylab = jYlab,
 log = 'x'))

Morally, the above should work. But, in practice,
it does not. I suppose due to the fact that the
circle centres are in ‘legal’ places, but the entire
circle is not.
More hints about what’s irritating about base
graphics You have to do everything yourself.

500 1000 2000 5000 10000 20000 50000

40

50

60

70

80

Income per person (GDP/capita, inflation−adjusted $)

Li
fe

 e
xp

ec
ta

nc
y

at
 b

irt
h

(y
ea

rs
)

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

use 'plot()' to set things up and then add other elements
plot(lifeExp ~ gdpPercap, gDat, subset = year == jYear,
 las = 1, xlab = jXlab, ylab = jYlab,
 log = 'x', type = "n")
with(subset(gDat, year == jYear),
 symbols(x = gdpPercap, y = lifeExp,
 circles = jPopRadFun(pop), add = TRUE,
 inches = 0.7,
 fg = jDarkGray, bg = color))

use 'plot()' to set things up and then add other elements
plot(lifeExp ~ gdpPercap, gDat, subset = year == jYear,
 las = 1, xlab = jXlab, ylab = jYlab,
 log = 'x', type = "n")
with(subset(gDat, year == jYear),
 symbols(x = gdpPercap, y = lifeExp,
 circles = jPopRadFun(pop), add = TRUE,
 inches = 0.7,
 fg = jDarkGray, bg = color))

This is a typical workflow in ambitious plots made with
base R graphics commands: call plot() to set up a
coordinate system and do precious little else. Then call
other functions to add desired elements.

Sort by year (increasing) and population (decreasing)
Why? So larger countries will be plotted "under" smaller ones.
gDat <- with(gDat, gDat[order(year, -1 * pop),])

Sidebar: I changed the order of the rows in the
dataset to address overplotting. Example
where the result (a figure) is unavoidably
sensitive to the row order of the input data.

500 1000 2000 5000 10000 20000 50000

40

50

60

70

80

Income per person (GDP/capita, inflation−adjusted $)

Li
fe

 e
xp

ec
ta

nc
y

at
 b

irt
h

(y
ea

rs
)

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

500 1000 2000 5000 10000 20000 50000

40

50

60

70

80

Income per person (GDP/capita, inflation−adjusted $)

Li
fe

 e
xp

ec
ta

nc
y

at
 b

irt
h

(y
ea

rs
)

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

use 'plot()' to set things up and then add other elements
plot(lifeExp ~ gdpPercap, gDat, subset = year == jYear,
 las = 1, xlab = jXlab, ylab = jYlab,
 log = 'x', type = "n")
with(subset(gDat, year == jYear),
 symbols(x = gdpPercap, y = lifeExp,
 circles = jPopRadFun(pop), add = TRUE,
 inches = 0.7,
 fg = jDarkGray, bg = color))

use 'plot()' to set things up and then add other elements
plot(lifeExp ~ gdpPercap, gDat, subset = year == jYear,
 las = 1, xlab = jXlab, ylab = jYlab,
 log = 'x', type = "n")
with(subset(gDat, year == jYear),
 symbols(x = gdpPercap, y = lifeExp,
 circles = jPopRadFun(pop), add = TRUE,
 inches = 0.7,
 fg = jDarkGray, bg = color))

> peek(gDat)
 continent country color year pop lifeExp gdpPercap
1356 Europe Belgium #6DAD35 1962 9218400 70.250 10991.207
137 Africa Congo, Rep. #F7AE55 1967 1179760 52.040 2677.940
418 Africa Namibia #FDBA67 1972 821782 53.867 3746.081
118 Africa Comoros #FDD6A2 1992 454429 57.939 1246.907
168 Africa Djibouti #FDDCAF 1992 384156 51.604 2377.156
1319 Asia Yemen, Rep. #A883B8 2007 22211743 62.698 2280.770
963 Asia Cambodia #B797C6 2007 14131858 59.723 1713.779

I have added a variable that holds the color I wish each circle to be filled with.
Telling symbols() to use that color is trivial. Creating the color scheme and
constructing this color variable is not. Shown later.

Income per person (GDP/capita, inflation−adjusted $)

Li
fe

 e
xp

ec
ta

nc
y

at
 b

irt
h

(y
ea

rs
)

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

suppress the automatic axes (tick marks)
in anticipation of taking direct control
plot(lifeExp ~ gdpPercap, gDat, subset = year == jYear,
 las = 1, xlab = jXlab, ylab = jYlab,
 log = 'x', type = "n",
 xaxt = "n", yaxt = "n")
with(subset(gDat, year == jYear),
 symbols(x = gdpPercap, y = lifeExp,
 circles = jPopRadFun(pop), add = TRUE,
 inches = 0.7,
 fg = jDarkGray, bg = color))

suppress the automatic axes (tick marks)
in anticipation of taking direct control
plot(lifeExp ~ gdpPercap, gDat, subset = year == jYear,
 las = 1, xlab = jXlab, ylab = jYlab,
 log = 'x', type = "n",
 xaxt = "n", yaxt = "n")
with(subset(gDat, year == jYear),
 symbols(x = gdpPercap, y = lifeExp,
 circles = jPopRadFun(pop), add = TRUE,
 inches = 0.7,
 fg = jDarkGray, bg = color))

Another example of suppressing default plot
elements. Fancy figures made with R graphics often
have this counter-intuitive feel: two steps backward,
then one step forward. Then another forward and
so on. More ways to suppress stuff include ‘ann =
FALSE’ and ‘bty = “n”’.

Income per person (GDP/capita, inflation−adjusted $)

Li
fe

 e
xp

ec
ta

nc
y

at
 b

irt
h

(y
ea

rs
)

200 400 1000 2000 4000 10000 20000 40000

20

25

30

35

40

45

50

55

60

65

70

75

80

85

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Axis tick marks & labels are back!
Reference grid has appeared.

Income per person (GDP/capita, inflation−adjusted $)

Li
fe

 e
xp

ec
ta

nc
y

at
 b

irt
h

(y
ea

rs
)

200 400 1000 2000 4000 10000 20000 40000

20

25

30

35

40

45

50

55

60

65

70

75

80

85

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

jXlim <- c(200, 50000)
jYlim <- c(21, 84)
gdpTicks <- c(200, 400, 1000, 2000, 4000, 10000, 20000, 40000)
lifeExpTicks <- seq(from = 20, to = 85, by = 5)
jGray <- 'grey80'
plot(lifeExp ~ gdpPercap, <same old stuff here>,
 xlim = jXlim, ylim = jYlim)
axis(side = 1, at = gdpTicks, labels = gdpTicks)
axis(side = 2, at = lifeExpTicks, labels = lifeExpTicks, las = 1)
abline(v = gdpTicks, col = jGray)
abline(h = lifeExpTicks, col = jGray)
with(subset(gDat, year == jYear),
 symbols(<same old stuff here>))

> sapply(gDat[c('gdpPercap','lifeExp')], range)
 gdpPercap lifeExp
[1,] 241.1659 23.599
[2,] 113523.1329 82.603
> sapply(gDat[c('gdpPercap','lifeExp')], quantile,
+ probs = c(0.9, 0.95, 0.98))
 gdpPercap lifeExp
90% 19449.14 75.0970
95% 26608.33 77.4370
98% 33682.22 79.3694

Once you take a certain amount of control, it’s almost
inevitable that you will have to finish the job. For
example, you may need to explicitly specify axis limits.
There will be some trial-and-error, but commands like
the above are helpful to get things rolling.

Recall your frustrations with a legend?

legend (colors do not correspond to the data points

I tried to add a legend for the colours and continents,
but it was quite the disaster. The function call seems
simple enough but it doesn't behave as I'd expect.

*Note: These frustrations expressed by past STAT 545A students. Your mileage may vary.

Income per person (GDP/capita, inflation−adjusted $)

Li
fe

 e
xp

ec
ta

nc
y

at
 b

irt
h

(y
ea

rs
)

2007
200 400 1000 2000 4000 10000 20000 40000

20

25

30

35

40

45

50

55

60

65

70

75

80

85

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Africa
Americas
Asia
Europe
Oceania

The year has been placed in the plot background. We
have a legend linking a color family to a continent.

Income per person (GDP/capita, inflation−adjusted $)

Li
fe

 e
xp

ec
ta

nc
y

at
 b

irt
h

(y
ea

rs
)

2007
200 400 1000 2000 4000 10000 20000 40000

20

25

30

35

40

45

50

55

60

65

70

75

80

85

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Africa
Americas
Asia
Europe
Oceania

place YEAR as a watermark in background,
include a legend
yearCex <- 15
plot(lifeExp ~ gdpPercap, ...)
text(x = sqrt(prod(jXlim)), y = mean(jYlim),
 jYear, adj = c(0.5, 0.5), cex = yearCex, col = jGray)
<snip, snip>
legend(x = 'bottomright', bty = 'n',
 legend = names(colorAnchors),
 fill = sapply(colorAnchors, function(z) z[1]))

Details on colorAnchors will
become clear when we go back
and construct the color scheme.

The really last frontier: conveying one more
piece of information
• time ↔ ‘frame’ in an animation

Big picture: It’s quite easy somewhat easy to
depict a 5-dimensional dataset with a series of
scatterplots.

writeToFile <- TRUE # write a figure file for each year?

for(jYear in sort(unique(gDat$year))) {
 plot(lifeExp ~ gdpPercap, ...)
 <snip, snip>
 symbols(gDat$gdpPercap[gDat$year == jYear],
 gDat$lifeExp[gDat$year == jYear],
 circles = sqrt(gDat$pop[gDat$year == jYear]/pi),
 add = TRUE, fg = jDarkGray,
 bg = gDat$color[gDat$year == jYear],
 inches = 0.7)
 legend(x = 'bottomright', bty = 'n',
 legend = names(colorAnchors),
 fill = sapply(colorAnchors, function(z) z[1]))
 if(writeToFile) {
 dev.print(pdf,
 file = paste0(whereAmI,"figs/animation/bryan-a01-baseGraphics-",
 jYear, ".pdf"),
 width = 9, height = 7)
 }
 Sys.sleep(0.5) # gives 'live' figures an
 # animated feel
}

Code developed earlier is easily inserted inside a loop
over year. Nice to build in a toggle for writing to file.
Construct informative file names programmatically.

After incremental, interactive development, figure-
making code is easily packaged in a function and
inserted inside a loop over year. Nice to build in a
toggle for writing to file. Construct informative file
names programmatically using paste() and relevant
variables, such as year.

writeToFile <- TRUE # write a figure file for each year?

for(jYear in sort(unique(gDat$year))) {
 op <- par(mar = c(5, 4, 1, 1) + 0.1)
 plotGapminderOneYear(jYear, gDat, continentColors)
 if(writeToFile) {
 dev.print(pdf,
 file = paste0(whereAmI,"figs/animation/bryan-a01-baseGraphics-",
 jYear, ".pdf"),
 width = 9, height = 7)
 }
 Sys.sleep(0.5) # gives 'live' figures an
 # animated feel
}
par(op)

Figures are created for each year.
Filename tells me what the figure is.

I cannot stress enough how useful it is to

[1] write figures to file with a line of R code, not a
casual spontaneous mouse event

[2] give figure files excruciatingly informative names,
not “figure1” or “final version” or “figure for
meeting” or “scatterplot”

Your ability to navigate your own work products in
the future will be GREATLY enhanced by these
practices. I have learned this the hard way.

For a final touch, stitch together the year-by-
year ‘stills’ into a dorky animated GIF.

To be clear, I know this is low-tech and has
lots of short-comings. But I think it has
good hassle:result ratio.

BEGIN: stitch figures together into an animation

setwd(paste0(whereAmI, "figs/animation/"))
system("convert -delay 100 -loop 0 *.pdf gapminder.gif")
NOTE: convert is part of ImageMagick
I view the resulting gif animation with a browser or Xee
most browsers work and it can also be pasted into Keynote, which
suggests it might work in PowerPoint too?

END: stitch figures together into an animation

plot(y ~ x, myData,
subset = sthgLogical) axis() legend()

par() abline()

symbols() text()
mtext()

Greatest hits of the base R solution

using colors in R

mostly focused on base/traditional R graphics

will revisit when we cover lattice

> jDat
 country year pop continent lifeExp gdpPercap
336 Congo, Dem. Rep. 2007 64606759 Africa 46.462 277.5519
1356 Sierra Leone 2007 6144562 Africa 42.568 862.5408
108 Bangladesh 2007 150448339 Asia 64.062 1391.2538
816 Jordan 2007 6053193 Asia 72.535 4519.4612
1416 South Africa 2007 43997828 Africa 49.339 9269.6578
732 Iran 2007 69453570 Asia 70.964 11605.7145
948 Malaysia 2007 24821286 Asia 74.241 12451.6558
672 Hong Kong, China 2007 6980412 Asia 82.208 39724.9787

I randomly drew 8 countries and kept their
Gapminder data from 2007.

I sorted the rows by gdpPercap, so the
points are added to plots from left to right.

●

●

●

●

●

●

●

●

200 500 2000 10000 50000
20

30

40

50

60

70

80

Start your engines ...

gdpPercap

life
Ex
p

plot(lifeExp ~ gdpPercap, jDat, log = 'x',
 xlim = jXlim, ylim = jYlim,
 main = "Start your engines ...")

plot(lifeExp ~ gdpPercap, jDat, log = 'x',
 xlim = jXlim, ylim = jYlim,
 col = "red", main = 'col = "red"')

●

●

●

●

●

●

●

●

200 500 2000 10000 50000
20

30

40

50

60

70

80

col = "red"

gdpPercap

life
Ex
p

You can tell R the color
you want by name.

Recycling happens.

●

●

●

●

●

●

●

●

200 500 2000 10000 50000
20

30

40

50

60

70

80

col = c("red", "green")

gdpPercap

life
Ex
p

plot(lifeExp ~ gdpPercap, jDat, log = 'x',
 xlim = jXlim, ylim = jYlim,
 col = c("red", "green"),
 main = 'col = c("red", "green")')

You can specify a color
via an integer.

This specifies colors
within the current
palette.

You’re looking at the
default palette.

●

●

●

●

●

●

●

●

200 500 2000 10000 50000
20

30

40

50

60

70

80

col = 1:nC

gdpPercap

life
Ex
p

1
2

3

4

5

6
7

8

plot(lifeExp ~ gdpPercap, jDat, log = 'x',
 xlim = jXlim, ylim = jYlim,
 col = 1:nC,
 main = 'col = 1:nC')
with(jDat,
 text(x = gdpPercap, y = lifeExp, pos = 1))

> palette()
[1] "black" "red" "green3" "blue" "cyan" "magenta" "yellow"
[8] "gray"

View and modify the
palette with palette().

Read documentation to
see examples of
changing the active
palette.

The default palette is
ugly.

●

●

●

●

●

●

●

●

200 500 2000 10000 50000
20

30

40

50

60

70

80

col = 1:nC

gdpPercap

life
Ex
p

1
2

3

4

5

6
7

8

jColors <- c('chartreuse3', 'cornflowerblue',
 'darkgoldenrod1', 'peachpuff3',
 'mediumorchid2', 'turquoise3',
 'wheat4', 'slategray2')
plot(lifeExp ~ gdpPercap, jDat, log = 'x',
 xlim = jXlim, ylim = jYlim,
 col = jColors,
 main = 'col = jColors')

Express your inner artist!

Save the colors you plan
to use to an R object,
then pass to graphing
functions.

●

●

●

●

●

●

●

●

200 500 2000 10000 50000
20

30

40

50

60

70

80

col = jColors

gdpPercap

life
Ex
p

> colors()
 [1] "white" "aliceblue" "antiquewhite"
 [4] "antiquewhite1" "antiquewhite2" "antiquewhite3"
 [7] "antiquewhite4" "aquamarine" "aquamarine1"
 [10] "aquamarine2" "aquamarine3" "aquamarine4"

<snip, snip>

[643] "violetred2" "violetred3" "violetred4"
[646] "wheat" "wheat1" "wheat2"
[649] "wheat3" "wheat4" "whitesmoke"
[652] "yellow" "yellow1" "yellow2"
[655] "yellow3" "yellow4" "yellowgreen"

colors() will show you the 657 colors you can
refer to by name.

Page 1 out of 6

white

aliceblue

antiquewhite

antiquewhite1

antiquewhite2

antiquewhite3

antiquewhite4

aquamarine

aquamarine1

aquamarine2

aquamarine3

aquamarine4

azure

azure1

azure2

azure3

azure4

beige

bisque

bisque1

bisque2

bisque3

bisque4

black

blanchedalmond

blue

blue1

blue2

blue3

blue4

blueviolet

brown

brown1

brown2

brown3

brown4

burlywood

burlywood1

burlywood2

burlywood3

burlywood4

cadetblue

cadetblue1

cadetblue2

cadetblue3

cadetblue4

chartreuse

chartreuse1

chartreuse2

chartreuse3

chartreuse4

chocolate

chocolate1

chocolate2

chocolate3

chocolate4

coral

coral1

coral2

coral3

coral4

cornflowerblue

cornsilk

cornsilk1

cornsilk2

cornsilk3

cornsilk4

cyan

cyan1

cyan2

cyan3

cyan4

darkblue

darkcyan

darkgoldenrod

darkgoldenrod1

darkgoldenrod2

darkgoldenrod3

darkgoldenrod4

darkgray

darkgreen

darkgrey

darkkhaki

darkmagenta

darkolivegreen

darkolivegreen1

darkolivegreen2

darkolivegreen3

darkolivegreen4

darkorange

darkorange1

darkorange2

darkorange3

darkorange4

darkorchid

darkorchid1

darkorchid2

darkorchid3

darkorchid4

darkred

darksalmon

darkseagreen

darkseagreen1

darkseagreen2

darkseagreen3

darkseagreen4

darkslateblue

darkslategray

darkslategray1

darkslategray2

darkslategray3

darkslategray4

A long time ago I made a 6 page document for
myself. Good times.

Page 1 out of 6

white

aliceblue

antiquewhite

antiquewhite1

antiquewhite2

antiquewhite3

antiquewhite4

aquamarine

aquamarine1

aquamarine2

aquamarine3

aquamarine4

azure

azure1

azure2

azure3

azure4

beige

bisque

bisque1

bisque2

bisque3

bisque4

black

blanchedalmond

blue

blue1

blue2

blue3

blue4

blueviolet

brown

brown1

brown2

brown3

brown4

burlywood

burlywood1

burlywood2

burlywood3

burlywood4

cadetblue

cadetblue1

cadetblue2

cadetblue3

cadetblue4

chartreuse

chartreuse1

chartreuse2

chartreuse3

chartreuse4

chocolate

chocolate1

chocolate2

chocolate3

chocolate4

coral

coral1

coral2

coral3

coral4

cornflowerblue

cornsilk

cornsilk1

cornsilk2

cornsilk3

cornsilk4

cyan

cyan1

cyan2

cyan3

cyan4

darkblue

darkcyan

darkgoldenrod

darkgoldenrod1

darkgoldenrod2

darkgoldenrod3

darkgoldenrod4

darkgray

darkgreen

darkgrey

darkkhaki

darkmagenta

darkolivegreen

darkolivegreen1

darkolivegreen2

darkolivegreen3

darkolivegreen4

darkorange

darkorange1

darkorange2

darkorange3

darkorange4

darkorchid

darkorchid1

darkorchid2

darkorchid3

darkorchid4

darkred

darksalmon

darkseagreen

darkseagreen1

darkseagreen2

darkseagreen3

darkseagreen4

darkslateblue

darkslategray

darkslategray1

darkslategray2

darkslategray3

darkslategray4

On a black background too, just in case!

[R] Built−in Colour Names
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

white
aliceblue
antiquewhite
antiquewhite1
antiquewhite2
antiquewhite3
antiquewhite4
aquamarine
aquamarine1
aquamarine2
aquamarine3
aquamarine4
azure
azure1
azure2
azure3
azure4
beige
bisque
bisque1
bisque2
bisque3
bisque4
black
blanchedalmond
blue
blue1
blue2
blue3
blue4
blueviolet
brown
brown1
brown2
brown3
brown4
burlywood
burlywood1
burlywood2
burlywood3
burlywood4
cadetblue
cadetblue1
cadetblue2
cadetblue3
cadetblue4
chartreuse
chartreuse1
chartreuse2
chartreuse3
chartreuse4

chocolate
chocolate1
chocolate2
chocolate3
chocolate4
coral
coral1
coral2
coral3
coral4
cornflowerblue
cornsilk
cornsilk1
cornsilk2
cornsilk3
cornsilk4
cyan
cyan1
cyan2
cyan3
cyan4
darkblue
darkcyan
darkgoldenrod
darkgoldenrod1
darkgoldenrod2
darkgoldenrod3
darkgoldenrod4
darkgray
darkgreen
darkgrey
darkkhaki
darkmagenta
darkolivegreen
darkolivegreen1
darkolivegreen2
darkolivegreen3
darkolivegreen4
darkorange
darkorange1
darkorange2
darkorange3
darkorange4
darkorchid
darkorchid1
darkorchid2
darkorchid3
darkorchid4
darkred
darksalmon
darkseagreen

darkseagreen1
darkseagreen2
darkseagreen3
darkseagreen4
darkslateblue
darkslategray
darkslategray1
darkslategray2
darkslategray3
darkslategray4
darkslategrey
darkturquoise
darkviolet
deeppink
deeppink1
deeppink2
deeppink3
deeppink4
deepskyblue
deepskyblue1
deepskyblue2
deepskyblue3
deepskyblue4
dimgray
dimgrey
dodgerblue
dodgerblue1
dodgerblue2
dodgerblue3
dodgerblue4
firebrick
firebrick1
firebrick2
firebrick3
firebrick4
floralwhite
forestgreen
gainsboro
ghostwhite
gold
gold1
gold2
gold3
gold4
goldenrod
goldenrod1
goldenrod2
goldenrod3
goldenrod4
gray
gray0

gray1
gray2
gray3
gray4
gray5
gray6
gray7
gray8
gray9
gray10
gray11
gray12
gray13
gray14
gray15
gray16
gray17
gray18
gray19
gray20
gray21
gray22
gray23
gray24
gray25
gray26
gray27
gray28
gray29
gray30
gray31
gray32
gray33
gray34
gray35
gray36
gray37
gray38
gray39
gray40
gray41
gray42
gray43
gray44
gray45
gray46
gray47
gray48
gray49
gray50
gray51

gray52
gray53
gray54
gray55
gray56
gray57
gray58
gray59
gray60
gray61
gray62
gray63
gray64
gray65
gray66
gray67
gray68
gray69
gray70
gray71
gray72
gray73
gray74
gray75
gray76
gray77
gray78
gray79
gray80
gray81
gray82
gray83
gray84
gray85
gray86
gray87
gray88
gray89
gray90
gray91
gray92
gray93
gray94
gray95
gray96
gray97
gray98
gray99
gray100
green
green1

green2
green3
green4
greenyellow
grey
grey0
grey1
grey2
grey3
grey4
grey5
grey6
grey7
grey8
grey9
grey10
grey11
grey12
grey13
grey14
grey15
grey16
grey17
grey18
grey19
grey20
grey21
grey22
grey23
grey24
grey25
grey26
grey27
grey28
grey29
grey30
grey31
grey32
grey33
grey34
grey35
grey36
grey37
grey38
grey39
grey40
grey41
grey42
grey43
grey44
grey45

grey46
grey47
grey48
grey49
grey50
grey51
grey52
grey53
grey54
grey55
grey56
grey57
grey58
grey59
grey60
grey61
grey62
grey63
grey64
grey65
grey66
grey67
grey68
grey69
grey70
grey71
grey72
grey73
grey74
grey75
grey76
grey77
grey78
grey79
grey80
grey81
grey82
grey83
grey84
grey85
grey86
grey87
grey88
grey89
grey90
grey91
grey92
grey93
grey94
grey95
grey96

grey97
grey98
grey99
grey100
honeydew
honeydew1
honeydew2
honeydew3
honeydew4
hotpink
hotpink1
hotpink2
hotpink3
hotpink4
indianred
indianred1
indianred2
indianred3
indianred4
ivory
ivory1
ivory2
ivory3
ivory4
khaki
khaki1
khaki2
khaki3
khaki4
lavender
lavenderblush
lavenderblush1
lavenderblush2
lavenderblush3
lavenderblush4
lawngreen
lemonchiffon
lemonchiffon1
lemonchiffon2
lemonchiffon3
lemonchiffon4
lightblue
lightblue1
lightblue2
lightblue3
lightblue4
lightcoral
lightcyan
lightcyan1
lightcyan2
lightcyan3

lightcyan4
lightgoldenrod
lightgoldenrod1
lightgoldenrod2
lightgoldenrod3
lightgoldenrod4
lightgoldenrodyellow
lightgray
lightgreen
lightgrey
lightpink
lightpink1
lightpink2
lightpink3
lightpink4
lightsalmon
lightsalmon1
lightsalmon2
lightsalmon3
lightsalmon4
lightseagreen
lightskyblue
lightskyblue1
lightskyblue2
lightskyblue3
lightskyblue4
lightslateblue
lightslategray
lightslategrey
lightsteelblue
lightsteelblue1
lightsteelblue2
lightsteelblue3
lightsteelblue4
lightyellow
lightyellow1
lightyellow2
lightyellow3
lightyellow4
limegreen
linen
magenta
magenta1
magenta2
magenta3
magenta4
maroon
maroon1
maroon2
maroon3
maroon4

mediumaquamarine
mediumblue
mediumorchid
mediumorchid1
mediumorchid2
mediumorchid3
mediumorchid4
mediumpurple
mediumpurple1
mediumpurple2
mediumpurple3
mediumpurple4
mediumseagreen
mediumslateblue
mediumspringgreen
mediumturquoise
mediumvioletred
midnightblue
mintcream
mistyrose
mistyrose1
mistyrose2
mistyrose3
mistyrose4
moccasin
navajowhite
navajowhite1
navajowhite2
navajowhite3
navajowhite4
navy
navyblue
oldlace
olivedrab
olivedrab1
olivedrab2
olivedrab3
olivedrab4
orange
orange1
orange2
orange3
orange4
orangered
orangered1
orangered2
orangered3
orangered4
orchid
orchid1
orchid2

orchid3
orchid4
palegoldenrod
palegreen
palegreen1
palegreen2
palegreen3
palegreen4
paleturquoise
paleturquoise1
paleturquoise2
paleturquoise3
paleturquoise4
palevioletred
palevioletred1
palevioletred2
palevioletred3
palevioletred4
papayawhip
peachpuff
peachpuff1
peachpuff2
peachpuff3
peachpuff4
peru
pink
pink1
pink2
pink3
pink4
plum
plum1
plum2
plum3
plum4
powderblue
purple
purple1
purple2
purple3
purple4
red
red1
red2
red3
red4
rosybrown
rosybrown1
rosybrown2
rosybrown3
rosybrown4

royalblue
royalblue1
royalblue2
royalblue3
royalblue4
saddlebrown
salmon
salmon1
salmon2
salmon3
salmon4
sandybrown
seagreen
seagreen1
seagreen2
seagreen3
seagreen4
seashell
seashell1
seashell2
seashell3
seashell4
sienna
sienna1
sienna2
sienna3
sienna4
skyblue
skyblue1
skyblue2
skyblue3
skyblue4
slateblue
slateblue1
slateblue2
slateblue3
slateblue4
slategray
slategray1
slategray2
slategray3
slategray4
slategrey
snow
snow1
snow2
snow3
snow4
springgreen
springgreen1
springgreen2

springgreen3
springgreen4
steelblue
steelblue1
steelblue2
steelblue3
steelblue4
tan
tan1
tan2
tan3
tan4
thistle
thistle1
thistle2
thistle3
thistle4
tomato
tomato1
tomato2
tomato3
tomato4
turquoise
turquoise1
turquoise2
turquoise3
turquoise4
violet
violetred
violetred1
violetred2
violetred3
violetred4
wheat
wheat1
wheat2
wheat3
wheat4
whitesmoke
yellow
yellow1
yellow2
yellow3
yellow4
yellowgreen

created by a STAT 545A student in past
you can also find lots of these on the interwebs

[R] Plotting Symbols

see help(points) for more details

●

●

●

●

●

●

●

!
"
#
$
%
&
'
(
)
*
+
,
−

/
0
1
2
3
4

5
6
7
8
9
:
;
<
=
>
?
@
A
B
C
D
E
F
G
H
I
J
K
L
M
N

O
P
Q
R
S
T
U
V
W
X
Y
Z
[
\
]

_̂

`
a
b
c
d
e
f
g
h

i
j
k
l

m
n
o
p
q
r
s
t
u
v
w
x
y
z
{
|
}
~
•
€
•
‚

ƒ
„

…
†
‡
ˆ

‰
Š
‹

Œ
•
Ž
•
•

‘
’
“
”
•
–
—
˜

™
š
›

œ

•
ž
Ÿ

¡
¢
£
¤
¥
¦
§
¨
©
ª
«
¬
-
®

°
±
²
³

µ́
¶

·
¸

¹
º
»
¼
½
¾
¿
À
Á
Â
Ã
Ä
Å
Æ
Ç
È
É
Ê
Ë
Ì
Í
Î
Ï
Ð

Ñ
Ò
Ó
Ô
Õ
Ö
×
Ø
Ù
Ú
Û
Ü
Ý
Þ
ß
à
á
â
ã
ä
å
æ
ç
è
é
ê

ë
ì
í
î
ï
ð
ñ
ò
ó
ô
õ
ö
÷
ø
ù
ú
û
ü
ý
þ
ÿ

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104

105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130

131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182

183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208

209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

symbols, too

From Ch.3 of
Murrell ‘R Graphics’

http://www.stat.auckland.ac.nz/~paul/RGraphics/chapter3.html
http://www.stat.auckland.ac.nz/~paul/RGraphics/chapter3.html
http://www.stat.auckland.ac.nz/~paul/RGraphics/rgraphics.html
http://www.stat.auckland.ac.nz/~paul/RGraphics/rgraphics.html

From Ch.3 of
Murrell ‘R Graphics’

From Ch. 4 of
Murrell ‘R Graphics’

http://www.stat.auckland.ac.nz/~paul/RGraphics/chapter3.html
http://www.stat.auckland.ac.nz/~paul/RGraphics/chapter3.html
http://www.stat.auckland.ac.nz/~paul/RGraphics/rgraphics.html
http://www.stat.auckland.ac.nz/~paul/RGraphics/rgraphics.html
http://www.stat.auckland.ac.nz/~paul/RGraphics/chapter4.html
http://www.stat.auckland.ac.nz/~paul/RGraphics/chapter4.html
http://www.stat.auckland.ac.nz/~paul/RGraphics/rgraphics.html
http://www.stat.auckland.ac.nz/~paul/RGraphics/rgraphics.html

Honestly, hand-picking colors is not sustainable.

Time-consuming.

Most of us are actually terrible at it.

Trust a professional.

Consider the RColorBrewer package, based on the work
of Cynthia Brewer.

http://colorbrewer2.org/
http://colorbrewer2.org/

BrBG
PiYG
PRGn
PuOr
RdBu
RdGy

RdYlBu
RdYlGn
Spectral
Accent
Dark2
Paired
Pastel1
Pastel2
Set1
Set2
Set3

Blues
BuGn
BuPu
GnBu

Greens
Greys

Oranges
OrRd
PuBu

PuBuGn
PuRd

Purples
RdPu
Reds
YlGn

YlGnBu
YlOrBr
YlOrRd

library(RColorBrewer)
display.brewer.all()

sequential

qualitative

diverging

BrowntoBlue.10

1:length(thisScheme)

BrowntoBlue.12

1:length(thisScheme)

BluetoDarkOrange.12

1:length(thisScheme)

BluetoDarkOrange.18

1:length(thisScheme)

DarkRedtoBlue.12

1:length(thisScheme)

DarkRedtoBlue.18

1:length(thisScheme)

BluetoGreen.14

1:length(thisScheme)

BluetoGray.8

1:length(thisScheme)

BluetoOrangeRed.14

Another source of color
palettes suitable for
colorblind people is the
package dichromat

Dark2 (qualitative)

library(RColorBrewer)
display.brewer.pal(n = 8, name = 'Dark2')

Focusing in on one of the qualitative palettes

●

●

●

●

●

●
●

●

200 1000 10000
20
30
40
50
60
70
80

col = brewer.pal(n = 8, name = "Dark2")

gdpPercap

life
Ex
p

RColorBrewer-based
color choices are more
sustainable, higher quality
than built-in or self-made
color schemes.

But I still recommend
storing the scheme as an
object

plot(lifeExp ~ gdpPercap, jDat, log = 'x',
 xlim = jXlim, ylim = jYlim,
 col = brewer.pal(n = 8, name = "Dark2"),
 main = 'col = brewer.pal(n = 8, name = "Dark2")',
 cex.main = 0.75)

> (jColors <- brewer.pal(n = 8, name = "Dark2"))
[1] "#1B9E77" "#D95F02" "#7570B3" "#E7298A" "#66A61E" "#E6AB02" "#A6761D"
[8] "#666666"
> plot(lifeExp ~ gdpPercap, jDat, log = 'x',
+ xlim = jXlim, ylim = jYlim,
+ col = jColors,
+ main = 'col = brewer.pal(n = 8, name = "Dark2")',
+ cex.main = 0.75)

●

●

●

●

●

●
●

●

200 1000 10000
20
30
40
50
60
70
80

col = brewer.pal(n = 8, name = "Dark2")

gdpPercap

life
Ex
p

Notice the form in which the
RColorBrewer colors are
stored.

Let’s demystify that

These colors are expressed as Red-Blue-Green
(RBG) hexadecimal triples.

Parse like so: #rrbbgg.

Each element -- such as the ‘rr’ -- specifies the
intensity of a color component as a two digit
base 16 number.

How to interpret a hexadecimal value
9E = 9 * 161 + 14 * 160 = 9 * 16 + 14 = 158

Lowest value is 00 = 0.
Highest values is FF = 255.

hex decimal
0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

A 10

B 11

C 12

D 13

E 14

F 15

> (jColors <- brewer.pal(n = 8, name = "Dark2"))
[1] "#1B9E77" "#D95F02" "#7570B3" "#E7298A" "#66A61E" "#E6AB02" "#A6761D"
[8] "#666666"

Some basic facts re: RBG hexadecimal triples.

hex decimal
0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

A 10

B 11

C 12

D 13

E 14

F 15

color name #rrggbb red green blue
white #FFFFFF 255 255 255
gray50 #7F7F7F 127 127 127
black #000000 0 0 0

“unsaturated”, shades of gray

color name #rrggbb red green blue
blue #0000FF 0 0 255

green #00FF00 0 255 0
red #FF0000 255 0 0

“saturated”, primary colors

R is expecting colors to be specified in one of these ways:
- an integer, used as an index into current palette
- a character string, i.e. one of the color names in colors()
- a hexadecimal RGB triple

Under the hood, colors are always expressed in one of several
color models or color spaces. RGB is just one example. Another is
Hue-Saturation-Value (HSV).

Turns out RGB is a rather lousy color model (arguably, so it HSV).
Good for generating colors on a computer screen but doesn’t
facilitate color picking with respect to human perception.

Zeileis et al advocate using Hue-Chroma-Luminance (HCL)
triplets. “Less flashy (than HSV) and more perceptually balanced.”
Check out their interesting paper and the colorspace R package.

A. Zeileis et al. / Computational Statistics and Data Analysis 53 (2009) 3259–3270 3261

Fig. 1. Bivariate density estimation of duration (x-axis) and waiting time (y-axis) for Old Faithful geyser eruptions. The palettes employed are
(counterclockwise from top left) an HSV-based rainbow, HSV-based heat colors, HCL-based heat colors and grayscales.

A simple and very effective palette for such a display is a set of gray colors as in the top right panel of Fig. 1. This is often
(appropriately) used in printed papers when the journal does not offer color graphics—however, in journals that support
color graphics (or on presentation slides and in interactive usage in statistical software packages), many users prefer to have
colored displays and most often use HSV palettes (as in the two left two panels). These palettes code the variable of interest
by varying hue in an HSV color wheel, yielding a ‘‘rainbow’’ of colors, as done by Harezlak et al. (2007, Fig. 8) or Tenenhaus
et al. (2007, Fig. 2). The palette in the upper left panel codes increasing density by going from a blue to a red hue (via green
and yellow)—a similar strategy are the ‘‘heat colors’’ in the lower left panel that increase from yellow to red. The latter works
somewhat better than the former, however both palettes exhibit several drawbacks. Themodes in themap lookmuchmore
like ‘‘rings’’ rather than a smoothly increasing/decreasing density. The heatmap looks very flashy which—although good for
drawing attention to a plot—makes it hard to hold the attention of the viewer for a longer time because the large areas
shaded with saturated colors can be distracting and produce after-image effects (Ihaka, 2003).

In contrast, the gray colors used in the top right panel do not exhibit the same disadvantages, coding the variable of
interest much better and without flashy colors. If, however, the user wants to increase the contrast by adding some color
to the plot, this could be done by using a better balanced version of the heat colors (as shown in the bottom right panel).
These colors also increase from a yellow to a red hue while using the same brightness levels as in the grayscale palette (see
also Ware, 1988; Levkowitz and Herman, 1992, for similar approaches). Thus, when converted to a grayscale or printed out
on a grayscale printer (as in the printed version of Computational Statistics & Data Analysis), the upper and lower right panel
would look (virtually) identical. Both palettes have in common that they give increasing perceptual emphasis to regionswith

HSV
rainbow

HSV
heat HCL

heat

grayscale

3262 A. Zeileis et al. / Computational Statistics and Data Analysis 53 (2009) 3259–3270

Fig. 2. Posterior mode estimates for childhood mortality in Nigeria. The color palettes employed are (from top to bottom) an HSV-based rainbow and two
HCL-based diverging palettes. In the right panels red–green contrasts are collapsed to emulate protanopic vision.

increasing density, resulting in a heatmap that highlights the (small) interesting high-density regions and not to the large
low-density regions surrounding them. By balancing the lower right panelwith respect to its brightness levels (i.e., light/dark
contrasts), it is assured that the graphic is intelligible for color-blind readers and that the same graphic works in colored
electronic versions and printed grayscale versions of a publication.

The second example is presented in Fig. 2 (taken from Kneib, 2006, Fig. 5, left), depicting posterior mode estimates for
childhood mortality in different regions of Nigeria. Spatial variations (not included in the model) in childhood mortality
are brought out by shading a map according to the corresponding model deviations, revealing decreased mortality in the
south–west and increasedmortality in the north–east. Kneib (2006) uses an HSV-based palette coding the deviations by the
hue, going from green via yellow to red (see the upper left panel of Fig. 2). Similar approaches are used by Harezlak et al.
(2007, Fig. 8) and Tenenhaus et al. (2007, Fig. 2). Our first HCL-based palette in the middle left panel also employs green
and red hues for negative and postive deviations respectively, but codes neutral values (around 0) by a neutral light gray.
Compared to the HSV-based palette, this offers again a number of advantages: only the interesting areas are highlighted

childhood mortality in Nigeria

below avg above avg

original HSV
palette

proposed HCL
palette #1

what a red-
green
colorblind
person would
see

proposed HCL
palette #2

A. Zeileis et al. / Computational Statistics and Data Analysis 53 (2009) 3259–3270 3267

Fig. 7. German election 2005 with HSV-based (left) and HCL-based (right) qualitative palette. Top: Pie chart for seats in the parliament. Bottom: Mosaic
display for votes by province.

only colors from the intersection of the admissible chroma/luminance planes can be used. The particular huesH = 0 and 260
used in Fig. 6 (top panel) were chosen because they correspond to similar geometric shapes in the chroma/luminance plane,
allowing for both large chroma and luminance contrasts. If potential viewers of the resulting graphic might be color-blind,
the pair of hues should be taken from the yellow/blue axis of the color wheel rather than the green/red axis as contrasts on
the latter axis are more difficult to distinguish for color-blind people (Lumley, 2006).

Fig. 6 (bottom panel) shows various examples of conceivable combinations of hue, chroma and luminance. The first
palette uses a broader range on the luminance axis whereas the others mostly rely on chroma contrasts.

5. Illustrations

This section provides several more demonstrations of how HCL-based color palettes can be used to produce statistical
plots that are less ‘‘flashy’’ and more perceptually balanced, so that the viewer can extract information from the plots more
easily and more accurately.

Although problematic for many tasks, pie charts can be useful for visualizing whether a set of pie segments constitutes
a majority. A typical application is shown in the top row of Fig. 7, visualizing the distribution of seats in the German
parliament ‘‘Bundestag’’ following the 2005 election. In this election, five parties were able to obtain enough votes to enter
the Bundestag—however, neither the governing coalition of SPD and Grüne nor the opposition of CDU/CSU and FDP could
assemble a majority. Given that no party would enter a coalition with the leftists ‘‘Die Linke’’, this lead to a big coalition of
CDU/CSU and SPD. In graphical displays, the parties are usually matched by using colors as metaphors: red for the social
democrats SPD, black for the conservative CDU/CSU, yellow for the liberal FDP, green for the green party ‘‘Die Grünen’’ and
purple for the leftist party ‘‘Die Linke’’. The left panel shows fully saturated HSV colors as usually found in the (German)
media whereas the right panel uses less flashy HCL colors with the same hues (except for the CDU/CSU where a blue hue
instead of the extreme ‘‘color’’ black is used). The advantage of the latter is again that they are easier to hold in focus for a
longer time. Furthermore, they are all balanced towards the same gray and have the same amount of color, resulting in a
perceptually balanced palette that does not introduce undesired graphical distractions. While it could be argued that this
pie chart is such a simple display that a well-balanced palette is not so important and that flashy colors are to be preferred,
the balancing properties of the HCL-based palette are very important in more complex displays such as the mosaic display

HSV HCL

3268 A. Zeileis et al. / Computational Statistics and Data Analysis 53 (2009) 3259–3270

Fig. 8. Further examples for HSV-based (left) andHCL-based (right) palettes. Top: Scatter plotwith three clusters and qualitative palette. Bottom: Extended
mosaic display for hair and eye color data with diverging palette.

in the bottom row of Fig. 7. This re-uses the same colors and shows the distribution of votes in the 2005 election stratified by
province (Bundesland). The order of provinces is from north to south, first for the 10 western provinces (the former Federal
Republic of Germany, FRG), then for the 6 eastern provinces (the former German Democratic Republic, GDR). Clearly, the
SPD performed better in the north and the CDU/CSU better in the south; furthermore, Die Linke performed particularly well
in the eastern provinces and in Saarland.

Color choice is usually much more important in graphical displays with shaded areas compared to displays with only
points or lines. However, color choice becomes much more relevant also in scatter plots when there are many points. As an
example, the top row in Fig. 8 depicts a scatter plot with three clusters similar to the one shown in Celeux et al. (2000, Fig. 3).
To indicate cluster membership, three different colors (green, yellow, red) are employed. The HSV colors in the left panel are
again very flashy and differ strongly with respect to luminance: the yellow is much lighter and hardly visible. In contrast,
the HCL colors in the right panel use the same hues, but are balancedwith respect to chroma and luminance, i.e., the amount
of color and gray.

As our final example, the bottom row in Fig. 8 (taken from Friendly, 2002, Fig. 11, left/middle) visualizes the cross-
tabulation of hair end eye color of 592 students in a mosaic display. Clearly, hair and eye color are not independent and
the pattern of association is highlighted by means of residual-based shading. Cells associated with Pearson residuals whose
absolute value exceeds (2 or) 4 are shaded (light) blue/red. This shows that there are significantly more students with black
hair and brown eyes, blond hair and blue eyes, red hair and green eyes than expected under independence. Conversely,
fewer students than expected have blond hair and brown/hazel eyes or black hair and blue eyes. Comparing the HSV and
HCL colors in the bottom row of Fig. 8, it is shown again that the HCL colors are better balanced (between the red and blue
colors) and less flashy. Even the cells associated with small residuals (below 2) are somewhat easier to read when shaded in
a light grey rather than white. More details and extensions to residual-based shadings can be found in Zeileis et al. (2007).

6. Software

Implementing the different color palettes suggested in the previous section is extremely easy if the software environment
chosen already provides an implementation of HCL colors: from the formulas provided above the HCL coordinates for a
palette can be conveniently computed. Somewhat more work is required if the software package does not yet provide
an HCL implementation. In that case, additional functionality is needed for translating HCL coordinates to the software

HSV HCL

A. Zeileis et al. / Computational Statistics and Data Analysis 53 (2009) 3259–3270 3269

package’s color system which may vary between different packages, but standardized RGB (sRGB) is often used. The typical
way of coordinate conversion is to go first from HCL to CIELUV by simply transforming the polar H and C coordinates back
to the original U and V . Subsequently, CIELUV is converted to CIEXYZ which in turn is converted to sRGB. The details of
these conversions are somewhat technical and tedious (and hence omitted here), however the conversion formulas are still
straightfoward to implement and can, for example, be found in Wikipedia (2007a) or Poynton (2000).

The R system for statistical computing (R Development Core Team, 2008) provides an open-source implementation of
HCL (and other color spaces) in the package colorspace, originally written by Ross Ihaka. The coordinate transformations
mentioned above are contained in C code within colorspace that are easy to port to other statistical software systems.
Version 1.0-0 of colorspace (Ihaka et al., 2008) also includes an implementation of all palettes discussed above. (Originally,
the code for the paletteswas in the vcdpackage,Meyer et al. (2006) but itwas recentlymoved to colorspace to bemore easily
acessible.) Qualitative palettes are provided by rainbow_hcl() (named after the HSV-based function rainbow() in base
R). Sequential palettes based on a single hue are implemented in the function sequential_hcl() while heat_hcl()

offers sequential palettes based on a range of hues. Diverging palettes can be obtained by diverge_hcl(). Technical
documentation along with a large collection of example palettes is available via help("rainbow_hcl", package =

"colorspace"). Furthermore, R code for reproducing the example palettes in Figs. 4–6 (and some illustrations) can be
accessed via vignette("hcl-colors", package = "colorspace").

The default color palettes in the ggplot2 package (Wickham, 2008) are also based on HCL colors, using similar ideas to
those discussed in this article.

7. Discussion

Many statistical graphics—especially when displayed on a computer screen, e.g., as in interactive usage, electronic papers
or presentation slides—employ colors to code information about a certain variable. Despite this omnipresence of color,
there is often only little guidance in statistical software packages on how to choose a palette appropriate for a particular
visualization task—auspicious tools such as ColorBrewer.org notwithstanding.We try to address this problemby suggesting
color schemes for coding categorical information (qualitative palettes) and numerical information (sequential and diverging
palettes) based on the perceptually-based HCL color space.

We provide paths through HCL space along perceptual axes of the human visual system so that colors selected along
these paths match human perceptual dimensions. This gives the users the possibility to conveniently experiment with
the HCL-based palettes by varying several simple and intuitive graphical parameters. For qualitative palettes, these are
the coordinates on the chroma and luminance axis, respectively, controlling whether the colors are light or dark and how
colorful they are. For sequential and diverging palettes, the user can decide whether contrasts in the chroma or luminance
direction (or both) should be employed. In our experience (as illustrated in Section 2), chroma contrasts work sufficiently
well if a small set of colors is used. However, when a larger set of colors is used (e.g., for heatmaps where extreme values
should be identifiable) it is much more important to have a big difference in luminance.

Based on these conceputal guidelines and the computational tools readily provided in the R system for statistical
computing (and easily implemented in other statistical software packages), users can generate palettes varying these
graphical parameters and thus adapting the colors to their particular graphical display.

Acknowledgments

We are thankful to Michael Höhle, Ross Ihaka, Thomas Kneib, Ken Knoblauch, Thomas Lumley, David Meyer, and
Brian D. Ripley for feedback, suggestions, and discussions. Furthermore, we are indebted to an anonymous associate editor
and three referees for their reviews that helped improving the manuscript.

References

Azzalini, A., Bowman, A.W., 1990. A look at some data on the old faithful geyser. Applied Statistics 39, 357–365.
Brewer, C.A., 1999. Color use guidelines for data representation. In: Proceedings of the Section on Statistical Graphics, American Statistical Association,

Alexandria, VA. pp. 55–60. URL: http://www.personal.psu.edu/faculty/c/a/cab38/ColorSch/ASApaper.html.
Celeux, G., Hurn, M., Robert, C.P., 2000. Computational and inferential difficulties with mixture posterior distributions. Journal of the American Statistical

Association 95 (451), 957–970 (Fig. 3).
Cleveland, W.S., McGill, R., 1983. A color-caused optical illusion on a statistical graph. The American Statistician 37, 101–105.
Commission Internationale de l’Éclairage, 2004. Colorimetry, 3rd edition. Publication CIE, Vienna, Austria, ISBN: 3-901-90633-9, 15, 2004.
Friendly, M., 2002. A brief history of the mosaic display. Journal of Computational and Graphical Statistics 11 (1), 89–107 Fig. 11 (left, middle).
Gelfand, A.E., Banerjee, S., Sirmans, C.F., Tu, Y., Ong, S.E., 2007. Multilevel modeling using spatial processes: Application to the Singapore housing market.

Computational Statistics & Data Analysis 51, 3567–3579, doi:10.1016/j.csda.2006.11.019. Fig. 3.
Harezlak, J., Coull, B.A., Laird, N.M., Magari, S.R., Christiani, D.C., 2007. Penalized solutions to functional regression problems. Computational Statistics &

Data Analysis 51, 4911–4925, doi:10.1016/j.csda.2006.09.034. Fig. 8.
Harrower, M.A., Brewer, C.A., 2003. ColorBrewer.org: An online tool for selecting color schemes for maps. The Cartographic Journal 40, 27–37. URL: http://

ColorBrewer.org/.
Ihaka, R., 2003. Colour for presentation graphics. In: Hornik, K., Leisch, F., Zeileis, A. (Eds.), Proceedings of the 3rd International Workshop on Distributed

Statistical Computing, Vienna, Austria, ISSN 1609-395X, URL: http://www.ci.tuwien.ac.at/Conferences/DSC-2003/Proceedings/.
Ihaka, R., Murrell, P., Hornik, K., Zeileis, A., 2008. colorspace: Color Space Manipulation. R package version 1.0-0, URL: http://CRAN.R-project.org/package=

colorspace.

Zeileis, A., Hornik, K., & Murrell, P. (2009). Escaping
RGBland: Selecting colors for statistical graphics.
Computational Statistics & Data Analysis, 53(9),
3259–3270. doi:10.1016/j.csda.2008.11.033

http://cran.r-project.org/web/packages/colorspace/index.html

http://cran.r-project.org/web/packages/colorspace/index.html
http://cran.r-project.org/web/packages/colorspace/index.html

Bottom-line:
Consider going beyond the R’s default colors, color
palettes, and color palette-building functions. They’re
pretty bad.

Ready-made palettes exist in RColorBrewer and
dichromat and HCL-color-model based tools exist in
colorspace for building your own palettes.

The example up til now is unrealistic (who really wants
each point to have its own color?) and elementary (it’s not
that hard to get that far by yourself).

Typical task: encode the information in a factor with color.

How to do?

we paused here ... continuing in next class

I randomly created a grouping factor, with 3 levels:
grp1, grp2, and grp3.

In a separate data.frame, I’ve associated those levels with
colors drawn from the Dark2 RColorBrewer palette.

> (jLevels <- paste0("grp", 1:3))
[1] "grp1" "grp2" "grp3"
> jDat$group <- factor(sample(jLevels, nC, replace = TRUE))
> jDat
 country year pop continent lifeExp gdpPercap group
336 Congo, Dem. Rep. 2007 64606759 Africa 46.462 277.5519 grp1
1356 Sierra Leone 2007 6144562 Africa 42.568 862.5408 grp2
108 Bangladesh 2007 150448339 Asia 64.062 1391.2538 grp3
816 Jordan 2007 6053193 Asia 72.535 4519.4612 grp1
1416 South Africa 2007 43997828 Africa 49.339 9269.6578 grp1
732 Iran 2007 69453570 Asia 70.964 11605.7145 grp3
948 Malaysia 2007 24821286 Asia 74.241 12451.6558 grp1
672 Hong Kong, China 2007 6980412 Asia 82.208 39724.9787 grp2

> (jColors <- data.frame(group = jLevels,
+ color = I(brewer.pal(n = 3, name = 'Dark2'))))
 group color
1 grp1 #1B9E77
2 grp2 #D95F02
3 grp3 #7570B3

Example of protecting a variable with I() that I want to
keep as character, i.e. want to suppress R’s tendency to
convert to factor.

> (jLevels <- paste0("grp", 1:3))
[1] "grp1" "grp2" "grp3"
> jDat$group <- factor(sample(jLevels, nC, replace = TRUE))
> jDat
 country year pop continent lifeExp gdpPercap group
336 Congo, Dem. Rep. 2007 64606759 Africa 46.462 277.5519 grp1
1356 Sierra Leone 2007 6144562 Africa 42.568 862.5408 grp2
108 Bangladesh 2007 150448339 Asia 64.062 1391.2538 grp3
816 Jordan 2007 6053193 Asia 72.535 4519.4612 grp1
1416 South Africa 2007 43997828 Africa 49.339 9269.6578 grp1
732 Iran 2007 69453570 Asia 70.964 11605.7145 grp3
948 Malaysia 2007 24821286 Asia 74.241 12451.6558 grp1
672 Hong Kong, China 2007 6980412 Asia 82.208 39724.9787 grp2

> (jColors <- data.frame(group = jLevels,
+ color = I(brewer.pal(n = 3, name = 'Dark2'))))
 group color
1 grp1 #1B9E77
2 grp2 #D95F02
3 grp3 #7570B3

match() gets you a vector of indices which can then be
used to index the vector colors. Part of R’s toolkit for
“table look-up” operations.

> jDat
 country year pop continent lifeExp gdpPercap group
336 Congo, Dem. Rep. 2007 64606759 Africa 46.462 277.5519 grp1
1356 Sierra Leone 2007 6144562 Africa 42.568 862.5408 grp1
108 Bangladesh 2007 150448339 Asia 64.062 1391.2538 grp1
816 Jordan 2007 6053193 Asia 72.535 4519.4612 grp2
1416 South Africa 2007 43997828 Africa 49.339 9269.6578 grp2
732 Iran 2007 69453570 Asia 70.964 11605.7145 grp1
948 Malaysia 2007 24821286 Asia 74.241 12451.6558 grp3
672 Hong Kong, China 2007 6980412 Asia 82.208 39724.9787 grp3

> (jColors <- data.frame(group = jLevels,
+ color = I(brewer.pal(n = 3, name = 'Dark2'))))
 group color
1 grp1 #1B9E77
2 grp2 #D95F02
3 grp3 #7570B3

> match(jDat$group, jColors$group)
[1] 1 1 1 2 2 1 3 3

> jColors$color[match(jDat$group, jColors$group)]
[1] "#1B9E77" "#1B9E77" "#1B9E77" "#D95F02" "#D95F02" "#1B9E77" "#7570B3"
[8] "#7570B3"

●

●

●

●

●

●
●

●

200 1000 10000
20
30
40
50
60
70
80

col = jColors$color[match(jDat$group, jColors$group)]

gdpPercap

life
Ex
p

●

●

●

grp1
grp2
grp3

plot(lifeExp ~ gdpPercap, jDat, log = 'x',
 xlim = jXlim, ylim = jYlim,
 col = jColors$color[match(jDat$group, jColors$group)],
 main = 'col = jColors$color[match(jDat$group, jColors$group)]',
 cex.main = 0.5)
legend(x = 'bottomright',
 legend = as.character(jColors$group),
 col = jColors$color, pch = 16, bty = 'n', xjust = 1)

●

●

●

●
●

●

●

●

200 1000 10000
20
30
40
50
60
70
80

col = jDatVersion2$color

gdpPercap

life
Ex
p

●

●

●

grp1
grp2
grp3

jDatVersion2 <- merge(jDat, jColors)
plot(lifeExp ~ gdpPercap, jDatVersion2, log = 'x',
 xlim = jXlim, ylim = jYlim,
 col = color,
 main = 'col = jDatVersion2$color',
 cex.main = 1)
legend(x = 'bottomright',
 legend = as.character(jColors$group),
 col = jColors$color, pch = 16, bty = 'n')

> jDatVersion2[c('country','gdpPercap','lifeExp','group','color')]
 country gdpPercap lifeExp group color
1 Congo, Dem. Rep. 277.5519 46.462 grp1 #1B9E77
2 Sierra Leone 862.5408 42.568 grp1 #1B9E77
3 Bangladesh 1391.2538 64.062 grp1 #1B9E77
4 Iran 11605.7145 70.964 grp2 #D95F02
5 Jordan 4519.4612 72.535 grp2 #D95F02
6 South Africa 9269.6578 49.339 grp1 #1B9E77
7 Malaysia 12451.6558 74.241 grp3 #7570B3
8 Hong Kong, China 39724.9787 82.208 grp3 #7570B3

If you’re willing to bring
color info into the
data.frame, merge() makes
this incredibly easy.

My recommendations:

Use RColorBrewer or dichromat for your schemes (or as the
basis of complicated schemes -- see Gapminder example next).

Store your scheme in an R object, like a vector or data.frame.
Will be handy for code re-use, making legends, keeping colors
consistent over several figures, etc.

Use match() to map a factor into colors or, often more useful,
merge() to integrate the color variable with the data itself. The
need for you to get personally involved in this is greatly
reduced / delayed if you use lattice and the “groups” argument.
Suspect something similar is true for ggplot2. Another downside
of base graphics.

●

●

●

●
●

●

●

●

200 1000 10000
20
30
40
50
60
70
80

col = jDatVersion2$color

gdpPercap

life
Ex
p

●

●

●

grp1
grp2
grp3

legend() is ... how you
make a legend! Read the
documentation and
gradually build up the
legend you want. Too fiddly
and figure-specific to
discuss here.

jDatVersion2 <- merge(jDat, jColors)
plot(lifeExp ~ gdpPercap, jDatVersion2, log = 'x',
 xlim = jXlim, ylim = jYlim,
 col = color,
 main = 'col = jDatVersion2$color',
 cex.main = 1)
legend(x = 'bottomright',
 legend = as.character(jColors$group),
 col = jColors$color, pch = 16, bty = 'n')

End: encoding the information in a
factor with color ‘by hand’.

“I failed to assign different colors to countries
from different continent”

began trying to figure out how to re-color each dot based on continent. This proved to be
beyond me at the moment, though I did end up with some interesting looking plots with
col=rainbow(##) (of course the colors were then meaningless, but still progress
nonetheless). I left the dots monotone, but I will try to figure out how to specify color by
parameter this weekend at some point.

I know there are six continents in total and the command col=1:6 represents 6 different
colors. But I really do not understand how to assign the different colors to each continent,

I didn't use
continent at all.

An extremely difficult step was to figure out how to relate the geographical are with the color coding.

Continent / country colors vexed almost
everyone in Assignment 1.

*Note: These frustrations expressed by past STAT 545A students. Your mileage may vary.

Income per person (GDP/capita, inflation−adjusted $)

Li
fe

 e
xp

ec
ta

nc
y

at
 b

irt
h

(y
ea

rs
)

2007
200 400 1000 2000 4000 10000 20000 40000

20

25

30

35

40

45

50

55

60

65

70

75

80

85

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Africa
Americas
Asia
Europe
Oceania

The Gapminder Color Scheme:
How did JB construct it?

Gapminder Color Scheme

Nigeria
Egypt
Ethiopia
Congo, Dem.
South Africa
Sudan
Tanzania
Kenya
Morocco
Algeria
Uganda
Ghana
Mozambique
Madagascar
Cote d'Ivoir
Cameroon
Burkina Faso
Malawi
Niger
Angola
Zimbabwe
Senegal
Mali
Zambia
Tunisia
Chad
Guinea
Somalia
Rwanda
Burundi
Benin
Sierra Leone
Libya
Togo
Eritrea
Central Afri
Congo, Rep.
Mauritania
Liberia
Namibia
Lesotho
Gambia
Botswana
Guinea−Bissa
Gabon
Mauritius
Swaziland
Reunion
Comoros
Equatorial G
Djibouti
Sao Tome and

United State

Brazil

Mexico

Colombia

Argentina

Canada

Peru

Venezuela

Chile

Ecuador

Guatemala

Cuba

Dominican Re

Bolivia

Haiti

Honduras

El Salvador

Paraguay

Nicaragua

Costa Rica

Puerto Rico

Uruguay

Panama

Jamaica

Trinidad and

China
India
Indonesia
Pakistan
Bangladesh
Japan
Philippines
Vietnam
Iran
Thailand
Korea, Rep.
Myanmar
Afghanistan
Nepal
Saudi Arabia
Iraq
Malaysia
Korea, Dem.
Taiwan
Yemen, Rep.
Sri Lanka
Syria
Cambodia
Hong Kong, C
Israel
Jordan
Singapore
West Bank an
Lebanon
Oman
Mongolia
Kuwait
Bahrain

Germany
Turkey
France
United Kingd
Italy
Spain
Poland
Romania
Netherlands
Greece
Hungary
Portugal
Belgium
Serbia
Czech Republ
Sweden
Bulgaria
Austria
Switzerland
Denmark
Slovak Repub
Finland
Norway
Bosnia and H
Croatia
Ireland
Albania
Slovenia
Montenegro
Iceland

Australia

New Zealand

Africa Americas Asia Europe Oceania

smallest
pop

largest
pop

Caveat: This took a lot of time, a lot of tricks.

I don’t regard this as a core basic skill of figure-
making in R. It’s rather advanced.

I’ll show here for completeness, but we may not
even go through all of this in class.

BrBG

PiYG

PRGn

PuOr

RdBu

RdGy

RdYlBu

RdYlGn

Spectral

library(RColorBrewer)
display.brewer.all(type = "div")

Takeaway #1: start with a professional palette.

BrBG

PiYG

PRGn

PuOr

RdBu

RdGy

RdYlBu

RdYlGn

Spectral

colorAnchors <-
 list(Africa = brewer.pal(n = 11, 'PuOr')[1:5], # orange/brown/gold
 Americas = brewer.pal(n = 11, 'RdYlBu')[1:5], # red
 Asia = brewer.pal(n = 11, 'PRGn')[1:5], # purple
 Europe = brewer.pal(n = 11, 'PiYG')[11:7], # green
 Oceania = brewer.pal(n = 11, 'RdYlBu')[11:10]) # blue

Africa

Americas

Asia

Europe ←

Oceania ←

BrBG

PiYG

PRGn

PuOr

RdBu

RdGy

RdYlBu

RdYlGn

Spectral

Africa

Americas

Asia

Europe ←

Oceania ←

> colorAnchors
$Africa
[1] "#7F3B08" "#B35806" "#E08214" "#FDB863" "#FEE0B6"

$Americas
[1] "#A50026" "#D73027" "#F46D43" "#FDAE61" "#FEE090"

$Asia
[1] "#40004B" "#762A83" "#9970AB" "#C2A5CF" "#E7D4E8"

$Europe
[1] "#276419" "#4D9221" "#7FBC41" "#B8E186" "#E6F5D0"

$Oceania
[1] "#313695" "#4575B4"

*There’s a reason I use lapply in this way but let’s stay focused on the colors.

turn those into a palette big enough to cover each country in a
continent
countryColors <- lapply(seq_len(nCont), function(i) {
 yo <- droplevels(subset(gDat, continent == cDat$continent[i]))
 countriesBigToSmall <- rev(levels(reorder(yo$country, yo$pop, max)))
 colorFun <- colorRampPalette(colorAnchors[[i]])
 return(data.frame(continent = cDat$continent[i],
 country = I(countriesBigToSmall),
 color = I(colorFun(length(countriesBigToSmall)))))
})

Above is essentially a loop over the continents*.

Isolate the countries for the continent and sort from
biggest to smallest.

Expand the previously set colorAnchors into a palette with
one entry for each country. Store as a data.frame and
return.

Takeaway #2:
Use colorRampPalette() or colorRamp() to
expand a professional palette (or excerpt
thereof) into the full range of colors you
need.

*There’s a reason I use lapply in this way but let’s stay focused on the colors.

turn those into a palette big enough to cover each country in a
continent
countryColors <- lapply(seq_len(nCont), function(i) {
 yo <- droplevels(subset(gDat, continent == cDat$continent[i]))
 countriesBigToSmall <- rev(levels(reorder(yo$country, yo$pop, max)))
 colorFun <- colorRampPalette(colorAnchors[[i]])
 return(data.frame(continent = cDat$continent[i],
 country = I(countriesBigToSmall),
 color = I(colorFun(length(countriesBigToSmall)))))
})

Above is essentially a loop over the continents*.

Isolate the countries for the continent and sort from
biggest to smallest.

Expand the previously set colorAnchors into a palette with
one entry for each country. Store as a data.frame and
return.

turn those into a palette big enough to cover each country in a
continent
countryColors <- lapply(seq_len(nCont), function(i) {
 yo <- refactor(subset(gDat, continent == cDat$continent[i]))
 countriesBigToSmall <- rev(levels(reorder(yo$country, yo$pop, max)))
 colorFun <- colorRampPalette(colorAnchors[[i]])
 return(data.frame(continent = cDat$continent[i],
 country = I(countriesBigToSmall),
 color = I(colorFun(length(countriesBigToSmall)))))
})

The key functionality -- the interpolation of colors -- comes
from colorRampPalette().

Input = colors to interpolate
Output = a function (!) that takes an integer as input and
outputs a vector of colors with that length

A close relative is colorRamp(), which is helpful for mapping
the interval [0, 1] to to colors. Will see later in course.

> countryColors[['Europe']]
 continent country color
1 Europe Germany #276419
2 Europe Turkey #2C6A1A
3 Europe France #31701B
4 Europe United Kingdom #36771C
5 Europe Italy #3B7D1D
6 Europe Spain #41831E
7 Europe Poland #468A1F
8 Europe Romania #4B9020
9 Europe Netherlands #529624
10 Europe Greece #599C28
11 Europe Hungary #5FA12D
12 Europe Portugal #66A731
13 Europe Belgium #6DAD35
14 Europe Serbia #74B33A
15 Europe Czech Republic #7BB93E
16 Europe Sweden #82BE45
17 Europe Bulgaria #8AC34F
18 Europe Austria #92C858
19 Europe Switzerland #9ACD62
20 Europe Denmark #A2D26B
21 Europe Slovak Republic #AAD875
22 Europe Finland #B2DD7E
23 Europe Norway #B9E188
24 Europe Bosnia and Herzegovina #BFE492
25 Europe Croatia #C6E79C
26 Europe Ireland #CCE9A7
27 Europe Albania #D2ECB1
28 Europe Slovenia #D9EFBB
29 Europe Montenegro #DFF2C5
30 Europe Iceland #E6F5D0

Each country is now
associated with a color.

Furthermore, this was
enacted within continent, so
all countries in, say, Europe,

will be some shade of green.

And last but not least, within
continent the dark colors are

for big countries and the
lighter colors are for small
ones. Another measure to

help see the small countries.

> i <- 2
> yo <- refactor(subset(gDat, continent == cDat$continent[i]))
> countriesBigToSmall <- rev(levels(reorder(yo$country, yo$pop, max)))

> countriesBigToSmall
 [1] "United States" "Brazil" "Mexico"
 [4] "Colombia" "Argentina" "Canada"
 [7] "Peru" "Venezuela" "Chile"
[10] "Ecuador" "Guatemala" "Cuba"
[13] "Dominican Republic" "Bolivia" "Haiti"
[16] "Honduras" "El Salvador" "Paraguay"
[19] "Nicaragua" "Costa Rica" "Puerto Rico"
[22] "Uruguay" "Panama" "Jamaica"
[25] "Trinidad and Tobago"

> colorFun <- colorRampPalette(colorAnchors[[i]])

> colorFun
function (n)
{
 x <- ramp(seq.int(0, 1, length.out = n))
 rgb(x[, 1], x[, 2], x[, 3], maxColorValue = 255)
}
<environment: 0x10219fe40>

The key functionality -- the interpolation of colors -- comes from colorRampPalette().

Input = colors to interpolate
Output = a function (!) that takes an integer as input and outputs a vector of colors
with that length

This interpolation / expansion is
what colorRampPalette() helps
you to do.

> colorAnchors
$Africa
[1] "#7F3B08" "#B35806" "#E08214" "#FDB863" "#FEE0B6"

$Americas
[1] "#A50026" "#D73027" "#F46D43" "#FDAE61" "#FEE090"

$Asia
[1] "#40004B" "#762A83" "#9970AB" "#C2A5CF" "#E7D4E8"

$Europe
[1] "#276419" "#4D9221" "#7FBC41" "#B8E186" "#E6F5D0"

$Oceania
[1] "#313695" "#4575B4"

> countryColors[['Europe']]
 continent country color
1 Europe Germany #276419
2 Europe Turkey #2C6A1A
3 Europe France #31701B
.....
29 Europe Montenegro #DFF2C5
30 Europe Iceland #E6F5D0

I would like to stack these up, row-wise, into a data.frame that
holds my color scheme

countryColors <- do.call(rbind, countryColors)

str(countryColors)
'data.frame':!142 obs. of 3 variables:
$ continent: Factor w/ 5 levels "Africa","Americas",..: 1 1 1 1 1 1 1 1 1 1 ...
$ country :Class 'AsIs' chr [1:142] "Nigeria" "Egypt" "Ethiopia" "Congo, De..
$ color :Class 'AsIs' chr [1:142] "#7F3B08" "#833D07" "#873F07" "#8B4107"..

> peek(countryColors)
 continent country color
22 Africa Senegal #D0730F
27 Africa Guinea #E18417
38 Africa Mauritania #FAB25B
50 Africa Equatorial Guinea #FDD9A8
82 Asia Bangladesh #5B1567
121 Europe Hungary #5FA12D
134 Europe Bosnia and Herzegovina #BFE492

do.call() trick helps us re-assemble the continent specific
color schemes into one united color scheme.

Gapminder Color Scheme

Nigeria
Egypt
Ethiopia
Congo, Dem.
South Africa
Sudan
Tanzania
Kenya
Morocco
Algeria
Uganda
Ghana
Mozambique
Madagascar
Cote d'Ivoir
Cameroon
Burkina Faso
Malawi
Niger
Angola
Zimbabwe
Senegal
Mali
Zambia
Tunisia
Chad
Guinea
Somalia
Rwanda
Burundi
Benin
Sierra Leone
Libya
Togo
Eritrea
Central Afri
Congo, Rep.
Mauritania
Liberia
Namibia
Lesotho
Gambia
Botswana
Guinea−Bissa
Gabon
Mauritius
Swaziland
Reunion
Comoros
Equatorial G
Djibouti
Sao Tome and

United State

Brazil

Mexico

Colombia

Argentina

Canada

Peru

Venezuela

Chile

Ecuador

Guatemala

Cuba

Dominican Re

Bolivia

Haiti

Honduras

El Salvador

Paraguay

Nicaragua

Costa Rica

Puerto Rico

Uruguay

Panama

Jamaica

Trinidad and

China
India
Indonesia
Pakistan
Bangladesh
Japan
Philippines
Vietnam
Iran
Thailand
Korea, Rep.
Myanmar
Afghanistan
Nepal
Saudi Arabia
Iraq
Malaysia
Korea, Dem.
Taiwan
Yemen, Rep.
Sri Lanka
Syria
Cambodia
Hong Kong, C
Israel
Jordan
Singapore
West Bank an
Lebanon
Oman
Mongolia
Kuwait
Bahrain

Germany
Turkey
France
United Kingd
Italy
Spain
Poland
Romania
Netherlands
Greece
Hungary
Portugal
Belgium
Serbia
Czech Republ
Sweden
Bulgaria
Austria
Switzerland
Denmark
Slovak Repub
Finland
Norway
Bosnia and H
Croatia
Ireland
Albania
Slovenia
Montenegro
Iceland

Australia

New Zealand

Africa Americas Asia Europe Oceania

smallest
pop

largest
pop

This is what
countryColors
holds.

write.table(countryColors,
 paste0(whereAmI, "data/gapminderCountryColors.txt"),
 quote = FALSE, sep = "\t", row.names = FALSE)

write.table(cDat,
 paste0(whereAmI, "data/gapminderContinentColors.txt"),
 quote = FALSE, sep = "\t", row.names = FALSE)

Write the country color scheme to file, for re-
use in all my “solutions”. A very useful practice
in many graphics-heavy analyses.

Read them back in whenever you need.

use the color scheme created in
bryan-a01-30-makeGapminderColorScheme.R
continentColors <-
 read.delim(paste0(whereAmI, "data/gapminderContinentColors.txt"),
 as.is = 3) # protect color

countryColors <-
 read.delim(paste0(whereAmI, "data/gapminderCountryColors.txt"),
 as.is = 3) # protect color

merge() merges the data
(gDat) and the color scheme

(countryColors) on the
common variables, making
the variable color available

for plot(), symbols(), etc.

> peek(countryColors)
 continent country color
5 Africa South Africa #8F4407
15 Africa Cote d'Ivoire #B75C07
18 Africa Malawi #C2650A
27 Africa Guinea #E18417
52 Africa Sao Tome and Principe #FEE0B6
81 Asia Pakistan #540F60
98 Asia Sri Lanka #AD8ABD
> peek(gDat)
 country year pop continent lifeExp gdpPercap
189 Bulgaria 1992 8658506 Europe 71.190 6302.6234
194 Burkina Faso 1957 4713416 Africa 34.906 617.1835
571 Germany 1982 78335266 Europe 73.800 22031.5327
768 Israel 2007 6426679 Asia 80.745 25523.2771
779 Italy 2002 57926999 Europe 80.240 27968.0982
842 Korea, Rep. 1957 22611552 Asia 52.681 1487.5935
1519 Tanzania 1982 19844382 Africa 50.608 874.2426

> gDat <- merge(gDat, countryColors)
> peek(gDat)
 country continent year pop lifeExp gdpPercap color
109 Belgium Europe 1952 8730405 68.000 8343.105 #6DAD35
255 Central African Republic Africa 1962 1523478 39.475 1193.069 #F5AA4E
788 Jamaica Americas 1987 2326606 71.770 6351.237 #FDD788
1147 Norway Europe 1982 4114787 75.970 26298.635 #B9E188
1153 Oman Asia 1952 507833 37.578 1828.230 #D9C2DE
1572 Tunisia Africa 2007 10276158 73.923 7092.923 #DA7D12
1656 Vietnam Asia 2007 85262356 74.249 2441.576 #6F247B

Income per person (GDP/capita, inflation−adjusted $)
Li

fe
 e

xp
ec

ta
nc

y
at

 b
irt

h
(y

ea
rs

)

2007
200 400 1000 2000 4000 10000 20000 40000

20

25

30

35

40

45

50

55

60

65

70

75

80

85

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Africa
Americas
Asia
Europe
Oceania

> gDat <- merge(gDat, countryColors)
> peek(gDat)
 country continent year pop lifeExp gdpPercap color
109 Belgium Europe 1952 8730405 68.000 8343.105 #6DAD35
255 Central African Republic Africa 1962 1523478 39.475 1193.069 #F5AA4E
788 Jamaica Americas 1987 2326606 71.770 6351.237 #FDD788
1147 Norway Europe 1982 4114787 75.970 26298.635 #B9E188
1153 Oman Asia 1952 507833 37.578 1828.230 #D9C2DE
1572 Tunisia Africa 2007 10276158 73.923 7092.923 #DA7D12
1656 Vietnam Asia 2007 85262356 74.249 2441.576 #6F247B

 plot(lifeExp ~ gdpPercap, gapDat, ...)
 with(subset(gapDat, year == jYear),
 symbols(x = gdpPercap, y = lifeExp,
 circles = jPopRadFun(pop), add = TRUE,
 inches = 0.7,
 fg = jDarkGray, bg = color))

Core ideas for color schemes:

Use RColorBrewer or dichromat palettes as the basis for your
schemes. And/or use colorspace package to develop more complicated
schemes.

colorRampPalette() and colorRamp() help you interpolate colors.

Store the scheme as a data.frame, associating each level of the relevant
factor with a color. Save it to file for re-use throughout a multi-script
analysis.

Use that scheme with merge() to populate a color vector in the main
data.frame. This will then be available when calling graphics functions.

Use the scheme again to make a legend.

Note this template generalizes to line types, etc.

