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Abstract

We are interested in a class of unsupervised methods to detect possible disease outbreaks,

i.e. rapid increases in the number of cases of a particular disease that deviate from the pattern

observed in the past. The motivating application for this paper deals with detecting outbreaks

using Generalized Additive Models to model weekly counts of certain infectious diseases. We

can use the distance between the predicted and observed counts for a specific week to deter-

mine whether an important departure has occurred. Unfortunately, this approach may not
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work as desired because GAMs can be very sensitive to the presence of a small proportion of

observations that deviate from the assumed model. Thus, the outbreak may affect the pre-

dicted values causing these to be close to the atypical counts, and thus mask the outliers by

having them appear not to be too extreme or atypical. We illustrate this phenomenon with

influenza-like-illness doctor visits data from the US for the 2006-2008 flu seasons. One way to

avoid this masking problem is to derive an algorithm to fit GAM models that can resist the

effect of a small number of atypical observations. In this paper we discuss such an outlier-

robust fit for Generalized Additive Models based on the backfitting algorithm. The basic idea

is to replace the maximum likelihood based weights used in the Generalized Local Scoring

Algorithm with those derived from robust quasi-likelihood equations (Cantoni and Ronchetti,

2001b). These robust estimators for generalized linear models work well for the Poisson family

of distributions, and also for Binomial distributions with relatively large numbers of trials. We

show that the resulting estimated mean function is resistant to the presence of outliers in the

response variable and that it also remains close to the usual GAM estimator when the data

do not contain atypical observations. We illustrate the use of this approach on the detection

of the recent outbreak of H1N1 flu by looking at the weekly counts of influenza-like-illness

(ILI) doctor visits, as reported through the U.S.Outpatient Influenza-like Illness Surveillance

Network (ILINet), and also apply our method to the numbers of requested isolates in Canada.

Weeks with a sudden increase in ILI visits or requested isolates are much more clearly identi-

fied as atypical by the robust fit because the observed counts are far from the ones predicted

by the fitted GAM model.

1 Introduction

Generalized Additive Models (GAM) (Hastie and Tibshirani, 1986; Wood, 2006) are flexible

extensions to Additive Models (Friedman and Stuetzle, 1981; Huber, 1985) to the case of non-
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normally distributed response variables. They extend Additive Models in the same spirit as

Generalized Linear Models (Nelder and Wedderburn, 1972) extend linear models. In partic-

ular, they allow the modeling of a properly transformed mean response as a sum of smooth

functions of individual covariates. More specifically, let Y be a random variable with distribu-

tion function in an exponential family, let X = (X1, . . . , Xp)
′ ∈ Rp be a vector of covariates

and assume that for an appropriate link function g we have

g (E [Y |X]) = f0 +

p∑
j=1

fj(Xj) , (1)

where f0 ∈ R, and fj : R → R, j = 1, . . . , p are “smooth” functions. Given a sample (Y1,X1),

. . . , (Yn,Xn) following model (1), we are interested in estimating E [Y |X]. Provided estimates

f̂j , j = 0, . . . , p are available, a natural estimator for E[Y |X] is

g−1

f̂0 + p∑
j=1

f̂j(Xj)

 .

Hastie and Tibshirani (1986) proposed the Generalized Local Scoring Algorithm (GLSA) to

calculate estimated smooth functions f̂j , j = 0, . . . , p. This algorithm extends the backfitting

algorithm used to fit Additive Models to the case of non-Gaussian responses in the same spirit

as the iterative weighted least squares algorithm used to fit generalized linear models extends

least squares using likelihood-based weights. Wood (2006) considers a penalized likelihood ap-

proach where the smooth components are modeled using splines or other appropriate function

basis.

This paper is motivated by a problem arising from the application of these models to weekly

counts of infectious diseases. More specifically, we are interested in detecting outbreaks, i.e.

sudden increases in the number of reported cases of a particular disease, or other departures

from the pattern of past observed counts. Although in many applications, a careful exploratory

analysis based on scatter plots can provide with an adequate answer as to whether there has

been a change in the behaviour of the counts of interest, surveillance systems following a
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large number of diseases and / or health districts may require an automatic method to flag

observations that potentially depart from historical patterns.

One way to identify atypical observations is to fit a reasonable model to the data, and use

the distance between the predicted and observed responses to determine whether an important

departure has occurred. Weekly counts of relatively prevalent diseases or viral infections (e.g.

influenza, HIV, Hepatitis C) typically exhibit strong (and non-linear) temporal and seasonal

patterns. Generalized Additive Models are a natural tool to model these data. Unfortunately,

this approach may not work as desired because it is easy to see that GAMs can be very sensitive

to the presence of a small proportion of observations that deviate from the assumed model. In

other words: a few atypical observations could seriously affect the non-parametric estimates

of the smooth regression function (see, for example, Figure 1). Thus, the outbreak may affect

the predicted values causing them to be closer to the atypical counts, and thus masking them.

Additionally, the effect of the outbreak may cause other (“good”) observations to (falsely)

appear as deviating significantly from the model.

We illustrate these problems with data on patient visits reported through the U.S. Outpa-

tient Influenza-like Illness Surveillance Network (ILINet). These data are available on-line at

http://www.cdc.gov/flu/weekly/fluactivity.htm. We use the weekly counts of ILI visits

for the 2006, 2007 and 2008 seasons. A season consists of weeks 40 to week 20 of the following

year, so that, for example, the 2008 season includes up to week 20 of 2009, where the H1N1

flu epidemic had already caused a noticeable increase in ILI visits. Figure 2 shows the data,

the GAM fits obtained with the GLSA and the penalized splines approach of Wood (2006) as

implemented in libraries gam and mgcv in R (R Development Core Team, 2009), respectively,

and the corresponding standardized residuals (right plot on panel (b)). The observations for

the 2008-2009 season are shown with solid circles. The bandwidth for the backfitting estimate

was chosen using leave-one-out cross validation. Note how the standardized residuals for the
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last weeks of the 2008-2009 outbreak are only slightly higher than those observed in past sea-

sons, indicating a potentially bad season, but not much worse than the others in this data set.

Also, note how the standardized residuals are reasonably scattered around zero before week

16 but clearly shift downwards later to compensate for the high number of visits on Weeks 16

to 20 of 2009.

Other potential problems caused by a small proportion of observations deviating from the

assumed model are illustrated with three synthetic examples displayed in Figure 1.

[Figure 1 about here.]

We used both the backfitting algorithm of Hastie and Tibshirani (1986) and the penalized

splines approach of Wood (2006), as implemented in the R packages gam and mgcv, respectively.

The bandwidth for the backfitting estimate was chosen using leave-one-out cross-validation. In

plot (a) we have a few outliers at the end of the curve. This is a particularly bad configuration

and we see that both fitted mean functions completely accomodate them. A similar situation

is depicted in plot (b) where the outliers are now well within the range of the covariate, but

their effect is no less dramatic. Plot (c) illustrates the dangers that a few relatively scattered

extreme outliers can pose, in this case affecting the cross-validation criteria used to select

either the bandwidth of the smoother (for the gam fit) or the penalty term (for the mgcv fit).

One way to avoid these problems is to derive an algorithm to fit GAM models that is

not seriously affected by a small number of atypical observations. We will call such a fit

a “robust fit”. A commonly used measure for the degree of outlier protection provided by

an estimator is its breakdown point (Donoho and Huber, 1983). For parametric models the

breakdown point is the smallest proportion of contaminated data that can take the estimate

beyond any finite bound or make it otherwise non-informative (see Davies and Gather, 2005).

In this paper we will not address the delicate problem of formally defining breakdown for non

parametric regression, but rather, present a new fitting algorithm that yields estimators that
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are consistently closer to the true mean function than the standard gam fit under different

model-violations, while still performing very well when there are no outliers in the data.

An outlier-resistant fit for generalized additive models can be obtained by robustifying

the penalized splines approach (see, for example, Wood (2006)). Recently Croux, Gijbels

and Prosdocimi (2010) proposed a robust fit based on this approach. In this paper we will

focus on the Generalized Local Scoring Algorithm (GLSA) (Hastie and Tibshirani, 1986). This

approach consists of applying the back-fitting algorithm with weights derived from the iterative

weighted least squares (IWLS) algorithm used to solve the maximum likelihood equations of

the corresponding generalized linear model. The basic idea of our robust fit is to replace these

maximum likelihood based weights with others derived from robust quasi-likelihood equations.

Hence, one of the building blocks of our proposal are the robust estimates for Quasi-likelihood

(QL) models (Cantoni and Ronchetti, 2001b). These work well for the Poisson family of

distributions, and also for Binomial distributions with a moderately large number of trials.

Furthermore, note that outliers can also affect data-based methods used to determine the

tuning (or penalty) constants involved in the smoothing steps of the GLSA algorithm (see,

for example, Cantoni and Ronchetti, 2001a). Intuitively, one does not want to penalize fits

that do not predict well those observations that are potential outliers. Hence, we also propose

a robustified leave-one-out cross-validation criterion that downweights outlying observations.

Numerical studies indicate that this algorithm works well in practice, in particular: it is

resistant to extreme observations (even at the boundary of the data range) and it behaves

similarly to the GLSA when the data do not contain outliers.

The rest of this paper is organized as follows. Section 2 introduces the model and briefly

reviews the generalized local scoring algorithm. Section 3 dicusses our robust version of this

algorithm used to compute the robust fit and a robust cross-validation criteria for bandwidth

selection. Two examples are discussed in Section 4 while Section 5 reports the results of a
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simulation study and concluding remarks are found in Section 6. Some technical details have

been relegated to the Appendix.

2 The Generalized Local Scoring Algorithm

Regression models provide a framework to study the mean of a response variable Y as a function

f (generally unknown to some degree) of one or more covariates X ∈ Rp via the relationship

E(Y |X) = f(X). Generalized linear models assume that there exist a function g (the link

function) such that g(E(Y |X)) = β′X for a certain vector of regression coefficients β ∈ Rp. Let

Y1, . . . , Yn be n independent random variables following this model with associated covariates

X1, . . . ,Xn. Let µi = E(Yi|Xi) = g−1(ηi), with ηi = β′Xi and vi = V (Yi|Xi) = v(µi), where v

is a known function. Let (y1,x1), . . . , (yn,xn) be the observed realizations of the above random

variables. When the distribution of Yi|Xi, i = 1, . . . , n, belong to an exponential family, the

maximum likelihood estimate (MLE) β̂n satisfies the following equations

n∑
i=1

(
yi − µi
vi

)
∂µi
∂β

∣∣∣∣∣
β=β̂n

= 0 .

It is not difficult to see that these equations can also be written as

n∑
i=1

(yi − µi)
∂ηi
∂µi

Wi xi = 0 , (2)

(see McCullagh and Nelder, 1999), where the weights are given by

Wi = v−1
i

(
∂µi
∂ηi

)2

. (3)

These equations can also be justified only assuming that the model for the first and second

moments of the response variable are appropriate. This approach is known as quasi-likelihood

(see Wedderburn, 1974; and McCullagh, 1983). The Fisher’s scoring algorithm is an iterative

procedure that can be used to solve equation (2) above. It is based on the corresponding
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Newton-Raphson iterations but it replaces the entries in the matrix of partial derivatives by

their expected values. Each iteration of Fisher’s scoring can be expressed as the solution of

the following iterative weighted least squares scheme (see Nelder and Wedderburn, 1972):(
n∑

i=1

Wi(β
(j))xi x

t
i

)
β(j+1) =

n∑
i=1

Wi(β
(j))xi zi(β

(j)) , j = 0, 1, . . . , (4)

where

zi(β
(j)) = ηi(β

(j)) +
(
yi − µi(β

(j))
) ∂ηi
∂µi

(β(j)) ,

and we have made explicit the dependence of ηi, µi and Wi on the regression parameters β.

In many applications, however, it is of interest to relax this model to include potentially

non-linear covariate effects even after applying the link function transformation g. Generalized

additive models extend these models to other exponential distributions in the same spirit as

generalized linear models extend linear models. More specificially, we will assume that for the

link function g we have

g (E (Y |X1, X2, . . . , Xp)) = f0 +

p∑
j=1

fj (Xj) ,

where fj : R → R, j = 1, . . . , p, denote unspecified but smooth univariate functions with

E(fj(X)) = 0 and f0 is a constant. Estimation of these functions can be done by replacing

the weighted least squares representation in (4) by an appropriate algorithm to fit a weighted

additive model. Specifically, the Generalized Local Scoring Algorithm (Hastie and Tibshirani,

1986) can be described in the following steps:

(a) Let m = 0, fm0 = g(ȳ), fmk = 0 for k = 1, . . . , p, where ȳ =
∑n

i=1 yi/n.

(b) Let zmi = ηmi + (yi − µmi )( ∂ηi∂µi
) for i = 1, . . . , n, with ηmi = fm0 +

∑p
j=1 f

m
j (Xij), µ

m
i =

g−1(ηmi ) and weights Wm
i = (∂µi

∂ηi
)2(V m

i )−1.

(c) Fit a weighted additive model to the zmi ’s and obtain estimated functions fm+1
j , j =

1, . . . , p, additive predictors ηm+1
i , and fitted values µm+1

i , i = 1, . . . , n.
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(d) Compute a convergence criterion, e.g.

∆(ηm+1, ηm) =

∑p
j=1 ∥f

m+1
j − fmj ∥∑p

j=1 ∥fmj ∥
,

where ∥fmj ∥ is the Euclidean norm (in Rn) of the vector of n evaluations of fmj .

(e) Let m = m + 1 and repeat steps (ii) to (iv) until ∆(ηm+1, ηm) is below some pre-

determined small threshold.

Note that step (c) in the above algorithm involves fitting a weighted additive model. Following

Hastie and Tibshirani (1986), we use the back-fitting algorithm with a weighted smoother. This

scheme can be applied with any univariate scatterplot smoother. For ease of computation we

use the locally weighted scatterplot smoothing (LOESS) of Cleveland (1979), as implemented in

the function gam of the package gam for R. This smoother performs local polynomial regression

(we used local linear fits in our applications), and the weights determine the importance of

each observation in the local neighbourhoods, central points receiving larger weights.

Hastie and Tibshirani (1987) suggest a different convergence criterion for step (d), namely

one based on the deviances rather than the additive predictors. However, in our experience,

both criteria yield very similar results, which can be understood given the continuity of both

the link and deviance functions. Moreover, in most applications we have seen the qualitative

conclusions derived from a generalized additive fit (robust or not) remained the same when

either convergence criteria was used. Nonetheless, one can imagine situations with a very

flat likelihood surface where the GLSA algorithm might converge to rather different solutions

depending on the convergence criterion used. In such cases we prefer to use the more stringent

criterion we described above.
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3 An outlier-robust variant of the General Local

Scoring Algorithm

Most likelihood based methods are highly sensitive to slight departures of the assumptions

utilized to derive them. A small proportion of the data not following the assumed model may

severely affect both the estimates and the final conclusion of the analysis. Moreover, note

that many diagnostic methods may fail to identify violations of the assumed model because

the estimates on which they are based might have been seriously distorted by the atypical

observations they try to find. This phenomenom is sometimes called “masking” in the literature

(e.g. Rousseeuw and van Zomeren, 1990). Interestingly, in some applications these atypical

observations are the ones researchers are more interested in, and finding them is the main

objective of the analysis. Some examples include intruder detection methods, image analysis,

and disease outbreak detection. Our main motivating example described in Section 1 falls in

the last category: the goal is to develop an algorithm for automatic (and early) detection of

sudden and atypical increases in the number of reported cases (or some other related indicators)

of a particular disease.

Noting that the Generalized Local Scoring Algorithm relies on the iterative weighted least

squares representation in equation (4) of Fisher’s scoring iterations for GLM models, we pro-

pose a similar algorithm based on iterative weighted least squares equations for robust quasi-

likelihood equations as in Cantoni and Ronchetti (2001b). These estimates work well with

log-linear models and with logistic models for binomial experiments with relatively large num-

bers of trials. In the rest of this section we derive our robust version of the Generalized Local

Scoring Algorithm.

Following Cantoni and Ronchetti (2001b), considerM -estimators for linear quasi-likelihood
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models defined as the solution of estimating equations of the form

n∑
i=1

(
ϕ(yi, µi)

∂µi
∂β

)
− an(β)

∣∣∣∣∣
β=β̂n

= 0 ,

where an(β) =
∑n

i=1E{ϕ(yi, µi)[∂µi/∂β] } is a correction factor to ensure that the above

estimating equations are unbiased,

ϕ(yi, µi) = ψc

(
yi − µi√

vi

)
1

√
vi
,

and ψc is a member of Huber’s family of psi-functions

ψc(r) =

 r |r| ≤ c

c sign(r) |r| > c
(5)

Thus, the estimating equations are

n∑
i=1

ψc

(
yi − µi√

vi

)
1

√
vi

∂µi
∂β

− an(β)

∣∣∣∣∣
β=β̂n

= 0 . (6)

Note that our choice of estimating equations reflects the assumption that there are no outliers

in the covariates (see Cantoni and Ronchetti (2001b); Künsch et al. (1989); and Stefanski

et al. (1986) for a more detailed discussion). The solutions β̂n of the equation above are

asymptotically normally distributed.

In the following we will adapt the Generalized Local Scoring Algorithm (GLSA) described

above to fit Robust Generalized Linear Models. The first step is to find a representation

similar to (4) for equation (6) that can be used to derive robust weights and the corresponding

transformed responses. It is not difficult to verify (details can be found in the Appendix) that

the Fisher-scoring algorithm to solve (6) can be written as(
n∑

i=1

ωi(β
(j))xix

′
i

)
β(j+1) =

n∑
i=1

ωi(β
(j))xi zi(β

(j)) , (7)

where

zi(β
(j)) = ηi(β

(j)) +
hi(β

(j))

ℓi(β
(j))

, ωi(β
(j)) = ℓi(β

(j))
1√

vi(β
(j))

∂µi
∂ηi

(β(j)) ,
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li =

[
E(ψ′

c(ri))√
vi

∂µi
∂ηi

+
1

2
E(ψ′

c(ri)ri)
1

vi

∂vi
∂ηi

+ E(
∂

∂ηi
E(ψc(ri)))

]
,

hi = ψc(ri)− E(ψc(ri)) , and ri = (yi − µ̂i)/
√
vi .

The choice of the tuning constant c: When estimating regression coefficients for linear

or generalized linear models, the score equations of robust estimators are generally chosen based

on considerations of asymptotic efficiency or robustness properties. For example, in linear

regression models, one considers maximal outlier resistance and a pre-determined asymptotic

efficiency when the errors are normally distributed (Maronna et al., 2006). For generalized

linear models Cantoni and Ronchetti (2001b) select the tuning constant c for the function ψc

considering the stability of tests of hypotheses. In the case of generalized additive models,

however, statistical inference is still an active area of research (see, for example, Dominici et

al., 2002; Ramsay et al., 2003; and Figueiras et al., 2005). Consequently, in this paper we

will consider c simply as a downweighting threshold. Note that observations with a Pearson

residual of absolute value larger than c will be downweighted in the estimating equations; the

larger the residual, the lower the weight. In all our examples and simulations we set c = 1.5,

which produced good results in a variety of situations. In our experience, values of c betweeen

1 and 4 produced similar qualitative results. As the value of c gets larger, the robust fit more

closely resembles the classical one.
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3.1 The Robust Generalized Local Scoring Algorithm

Our Robust Generalized Local Scoring Algorithm builds on Hastie and Tibshirani’s GLSA,

replacing the MLE-based weights (3) with those derived from the robust quasi-likelihood score

equations (6). The algorithm can be described in the following steps:

(a) Let m = 0, fm0 = g(ȳ), fmk = 0 for k = 1, . . . , p, where ȳ =
∑n

i=1 yi/n. Alternatively, set

fm0 = g(ỹ), where ỹ = median1≤i≤n yi.

(b) Let zmi = ηmi + hmi /ℓ
m
i for i = 1, . . . , n, with ηmi = fm0 +

∑p
j=1 f

m
j (Xij), µ

m
i = g−1(ηmi )

and weights

ωm
i = ℓmi

1√
vmi

∂µi
∂ηi

,

with

lmi =

[
E(ψ′(rmi ))√

vmi

∂µi
∂ηi

+ 1/2E(ψ′(rmi )rmi )
1

vmi

∂vi
∂ηi

+ E(
∂

∂ηi
E(ψ(rmi )))

]
,

hmi = ψc(r
m
i )− E(ψc(r

m
i )) ,

and

rmi = (yi − µmi )/
√
vmi .

(c) Fit a weighted additive model to the zmi ’s and obtain estimated functions fm+1
j , j =

1, . . . , p, additive predictors ηm+1
i , and fitted values µm+1

i , i = 1, . . . , n.

(d) Compute a convergence criterion, e.g.

∆(ηm+1, ηm) =

∑p
j=1 ∥f

m+1
j − fmj ∥∑p

j=1 ∥fmj ∥
.

where ∥fmj ∥ is the Euclidean norm (in Rn) of the vector of n evaluations of fmj .

(e) Let m = m + 1 and repeat steps (ii) to (iv) until ∆(ηm+1, ηm) is below some pre-

determined small threshold.
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In the Appendix we show how to calculate ℓmi for score functions in Huber’s family of func-

tions (5) and responses with Poisson or Binomial distribution. Code for R (R Development Core

Team, 2009) implementing the above algorithm is available on-line at http:// www.stat.ubc.ca

/ ˜ matias / soft.html.

3.2 Asymptotic properties

The literature on asymptotic properties of backfitting estimators for either additive or gener-

alized additive models is not yet extensive (see, for example, Opsomer (2000), Opsomer and

Kauermann (2000, 2002), Kauermann and Opsomer (2003)). The main difficulty in obtaining

general and comprehensive results for these estimators derives from the lack of closed-form

expressions for them. For generalized additive models, following Opsomer and Kauermann

(2000, 2002) and Berhane and Tibshirani (1998), one can extend the properties of the backf-

fiting estimators for additive models by inspecting the behaviour of the weights used in the

GLSA. More specifically, consider the estimator obtained from the Robust GLSA where a local

polynomial regression estimator is used as the univariate smoother. Recall from (7) that, at

each iteration, the Robust GLSA fits a weighted additive model with responses z1, . . . , zn

where E(zi) = ηi = f0 +
∑p

j=1 fj(Xj), i = 1, . . . , n, and weights wi = li/[
√
vi g

′(µi)] = r(Xi),

say. During the iterations, µi and vi are replaced by the corresponding current estimators.

The following conditions are slightly adapted from Opsomer and Kauermann (2000). Although

they apply to models with two covariates, the results can be extended to the general case fol-

lowing Opsomer (2000). Assume that local polynomials of degree p1 and p2 were used, and

that:

A.1 the kernel in the local polynomial regression is bounded, continuous, has compact sup-

port,
∫
xp1+1K(x)dx ̸= 0, and

∫
xp2+1K(x)dx ̸= 0;

A.2 the covariates have a joint distribution with density function h(x1, x2) > 0 for all (x1, x2)
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in its support set, h and the marginal densities h1 and h2 are bounded, continous, dif-

ferentiable, have compact support and the first derivatives of h1 and h2 have a finite

number of sign changes over their support;

A.3 the weight function is bounded, continous, differentiable and positive over the support

of h, the partial derivatives of the weight function and the derivatives of the conditional

univariate weigths rj(xj) = E(r(X)|Xj = xj), j = 1, 2, all have a finite number of sign

changes over the support of h;

A.4 the additive functions f1 and f2 are continous and differentiable up to order p1 + 1 and

p2 + 1, respectively;

A.5 the variance function satisfies v(x1, x2) > 0 for all (x1, x2) in the support of h; and

A.6 as n→ ∞ the bandwidths τ1, τ2 satisfy: τj → 0 and n τj/ log(n) → ∞, j = 1, 2.

It is tedious but not hard to see that when the score function ψc is one of Huber’s in (5)

the weights in the Robust Generalized Local Scoring algorithm satisfy the needed regularity

conditions in A.3 above, and thus we can apply Theorem 2.2 of Opsomer and Kauermann

(2000) and conclude that if the starting values of µi are close to the true ones, then the robust

estimators proposed here are asymptotically unbiased.

3.3 Robust smoothing parameter selection

Smoothers and other non-parametric regression estimators depend on a smoothing or penalty

parameter that typically needs to be selected by the user. There are a number of possible

ways to do this in the context of generalized additive models. In this section we focus on

cross-validation methods, but refer the interested reader to Hastie and Tibshirani (1990), for

a more detailed discussion.

We are particularly concerned with alleviating the potential damaging effect of outliers

15



on automatic cross-validation procedures. Since our robust generalized local scoring algorithm

was derived from quasi-likelihood score equations (rather than maximum likelihood equations),

we will measure the loss incurred by the fitted value µ̂
(−i)
i with (yi − µ̂

(−i)
i )/v(µ̂

(−i)
i ), where

µ̂
(−i)
i is the predicted value obtained without using the i-th observation in the data. Hence the

cross-validation criterion is

CV =

n∑
i=1

(
yi − ŷ(−i)

v(µ̂
(−i)
i )

)2

. (8)

Alternatively, as suggested in Hastie and Tibshirani (1990) we can look at the sum of the

deviances

CVd =

n∑
i=1

D(yi, ŷ(−i)) =

n∑
i=1

di , (9)

say, where D(yi, λ) = 2 (l(yi, λ̂) − l(yi, λ)), l(y, λ) is the log-likelihood function for a single

observation y and l(y, λ̂) is the maximum value of l(y, λ).

As noted in Ronchetti and Staudte (1994) and Cantoni and Ronchetti (2001a), outliers

in the data may affect automatic smoothing parameter selection methods regardless of the

robustness of the fitting algorithm. In other words, even if we use a robust estimator, outliers

in the data may affect negatively the selection of the smoothing parameter. It is easy to

intuitively understand why this is case. If every observed response yi in our goodness-of-fit

criterion has the same importance, a value of the smoothing parameter that produces a fit

adjusting most observations well and leaving a few potential outliers far will have an unduly

large value of the cross-validation criterion. Hence, even if the fit is robust, the classical criteria

may favour bandwidths that yield fits that accomodate the outliers. To avoid this problem

we downweight outlying observations so that the “cost” of not fitting them is reduced. We

consider weights of the form wi = ψc(r̃i)/r̃i, and define a Robust Cross-validation criteria as:

RCV(α) =

n∑
i=1

w2
i r̃

2
i =

n∑
i=1

ψc(r̃i)
2 . (10)

If one uses the deviance-based cross-validation criterion (9), similar arguments as those in the
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previous paragraph suggest a robustified criterion of the form

RCVd(α) =

n∑
i=1

ρ (di) , (11)

for a bounded function ρ : R → R+ (see Oh et al., 2004; Oh et al., 2007; Leung, 2005).

Although both approaches are intutively appealing, we use the former one because it is more

directly connected with the robust estimating equations we considered for this work. We also

performed some numerical experiments which suggest that in practice both methods tend to

give qualitatively similar fits.

4 Examples

4.1 Influenza-like Illness visits in the US

Weekly counts of Influenza-like-Illness outpatient visits in the US are reported by the U.S.

Outpatient Influenza-like Illness Surveillance Network (ILINet), and available on-line (http:

//www.cdc.gov/ flu/ weekly/ fluactivity.htm). A season consists of weekly counts from week

40 through week 20 of the following calendar year. Historically these counts exhibit a non-

linear pattern peaking around week 7. In the spring of 2009 the H1N1 flu started spreading

around the world, including the US, where a large number of cases were detected and treated.

We see this phenomenon reflected in the atypically high counts for weeks 17 to 20 of 2009

season (the 2008-9 season is indicated with solid circles in the left panel of Figure 2).

We consider data for the 2006-2007, 2007-2008 and 2008-2009 seasons and fit a GAM model

with a logarithmic link function. The single covariate is time (week number). The GAM fit

obtained with the gam package for R is quite good until week 13, approximately, and is affected

noticeably by the large counts in weeks 17 to 20 of 2009. The bandwidth was obtained with

leave-one-out cross validation. The penalized splines fit of Wood (2006) obtained with the R
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package mgcv produces a fit that is very close to this one, and very hard to distinguish on the

plot. Moreover, the residuals plot in panel (b) of Figure 2, shows that standardized residuals

for the last weeks of the 2008-2009 outbreak are only slightly higher than those observed in

past seasons, indicating a potentially bad season, but not severely worse than the others in

this data set. Also note how for the latter part of the 2008/9 season, the residuals are not

scattered around zero as it is the case for previous weeks, indicating a potential change in the

model.

Next we applied our proposed outlier-robust GAM fit to the same data, with the bandwidth

chosen with robust leave-one-out cross validation as in (10). We used a score function in

Huber’s family with tuning constant c = 1.5 in both the estimation and cross-validation steps.

Other choices of c in the range 1 to 3 produced results that were qualitatively the same. All

calculations were carried out in R (see Section 5).

[Figure 2 about here.]

The resulting fit is displayed in Figure 2, along with the “classical” GAM fits. We see that

the robust fit is not affected by the atypical large counts of the last weeks of the 2008-2009

season, and as a result, the “non-outlier” residuals remain nicely scattered around zero. More

importantly, the residuals for the 4 atypically high weekly counts now appear noticeably larger

than all the others one, clearly separating them from the other observations, and making them

much easier to identify as potentially deviating from the pattern that fits previous years’ data.

4.2 Virus isolates in Canada

Consider now weekly counts of virus isolates obtained in Canada between weeks 35 of 2006 and

week 24 of 2009. These data are available on-line from the World Health Organization Global

Influenza Programme FluNet at http://www.who.int/flunet. We applied both the regular and

robust GAM fits to these data, using leave-one-out cross-validation to select the smoothing
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parameter and c = 1.5 in (5) for both our estimation and cross-validation steps. Figure 3

contains the plot of the data, the fits, and the associated residual plots.

[Figure 3 about here.]

The counts for the 2008 - 2009 season are indicated with solid dots (note the sharp increase

in counts after week 20 of 2009). Similarly to what occurs with the US data on ILI visits

discussed in the previous section, we see that the non-robust fit is affected by the sudden

increase in counts in weeks 21 to 24 of 2009. The residuals plots in the right panel of Figure 3

also show clearly how these weeks appear extreme using the robust fit, but do not seem nearly

as atypical according to the non-robust fit.

4.3 Synthetic example revisited

We added the proposed robust GAM fit to the three artificial data sets in Figure 1. Figure 4

contains the fits obtained with the GLSA, the penalized splines approach of Wood (2006) and

the robust GLSA discussed here.

[Figure 4 about here.]

The bandwidth was chosen using leave-one-out cross-validation for the classical GAM fit, and

the robust leave-one-out cross-validation criterion for the robust GAM fit. In particular, panel

(c) shows the effect that outliers can have on data-based selection methods for the smoothing

parameter, where the selected fit results in oversmoothing. Also note that in panels (a) and

(b) the robust and classical GAM fits are very close to each other in the regions where there

are no outliers present. Overall, we find the robust fit to be much closer to the mean function

of the model that generated the majority of the observations than either of the standard gam

fits.
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4.4 Bivariate example

To illustrate the performance of our method on an example with more than one covariate,

consider the model Y |(X1, X2) ∼ P (exp (f1(X1) + f2(X2))) where

f1 (X1) = 3 sin (X1π 5/4) , f2 (X2) = 3 cos (X2 π/2) ,

and Xj ∼ U(0, 1), j = 1, 2, are independent random variables. To explore the sensitivity of

the fit to the presence of outliers we randomly generated W1, . . . ,W400 iid random variables

from the model

W = (1−B) Y + BỸ ,

where Y |(X1, X2) is as above, Ỹ |(X1, X2) ∼ P (exp (f1(X1) + f2(X2) + 500)), and P (B = 1) =

1 − P (B = 0) = 0.15, independent from the X’s and the Y ’s. Figure 5 shows the data, the

true mean surface and the fits obtained with the GAM, MGCV and RGAM methods.

[Figure 5 about here.]

We can see that only the robust fit is able to estimate the true surface mean reasonably well.

Both the back-fitting and the penalized splines estimates leave most of the observations below

the fitted surface. This can also be seen in the residuals plots in Figure 6. Note that the

residuals obtained with the robust fit show the majority of the points scattered around the

fitted surface without any discernible trend, with the remaining points lying relatively far

away. In contrast, the mean surface estimated with both non-robust fits lies between the

outliers and the non-outlying points. Moreover, the residuals of the “good points” mistakenly

show a curved structure that may lead to (wrongly) questioning the validity of the model for

these observations.

[Figure 6 about here.]
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5 Simulation Study

We performed a simulation study to explore the properties of the proposed fit in a variety of

situations. More specifically we generated data sets with and without outliers, with different

mean functions and proportions and location of the outliers. For each simulation scenario

described below we generated 500 samples and calculated the mean squared error incurred in

each of them:

MSEj =
1

n

n∑
i=1

(µi − µ̂i)
2 , j = 1, . . . , 500 .

To compare the robust and non-robust fits we report the median and MAD of these 500 MSE’s

for each method considered here.

We considered Poisson and Binomial responses, with outliers either at the beginning or

at the end of the range of the covariate used in the experiment in the following manner. Let

(ỹ1, x1), . . . , (ỹn, xn) be the data, and consider the observations ỹj with x(k1) ≤ xj ≤ x(k2), for

fixed numbers k1 and k2, where x(m) is the m-th order statistic. Then

yj = (1− zj) ỹj + zj wj ,

where zj ∼ B(1, δ), and wj = 10 or wj ∼ P(30) depending on whether yj has a Binomial or

Poisson distribution. Hence, the number of outliers (and their position in the Poisson case)

in each sample is random. The covariates were kept fixed throughout each of the simulation

settings. All calculations where performed in R (R Development Core Team, 2009). The

GAM fit was obtained using the function gam available in the package gam, the penalized

splines approach of Wood (2006) was calculated with the the R package mgcv (MGCV), while

the robust GAM fit was calculated using the authors’ R code, which is available on-line at

http://www.stat.ubc.ca/~matias/soft.html. We used a score function in Huber’s family

with tuning constant c = 1.5 in both the estimation and cross-validation steps. The bandwidths

for GAM and RGAM were selected using leave-one-out CV and robust leave-one-out CV as in
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(8) and (10), respectively.

Poisson responses For the Poisson model Y |X ∼ P(λ(X)) we used λ (X) = fj (X),

j = 1, 2, where

f1 (X) = exp(sin(2X/120) + cos(7X/60) + 1) , (12)

and

f2 (X) = (65− (exp(3X) +X210 +X4 − 50 sin(π/2X5)))/10 . (13)

[Figure 7 about here.]

Figure 7 contains typical data sets illustrating these mean functions, and the location of the

outliers used in our numerical experiments. With f1 we used n = 80 and xi = i, i = 1, . . . , 80.

With f2 we used n = 100 and xi ∼ U(−1, 1), i = 1, . . . , 100. The covariates were kept fixed

throughout the simulation.

[Table 1 about here.]

[Table 2 about here.]

Summaries of the mean squared errors are displayed in Tables 1 and 2.

These results show that the robust GAM fit is able to resist the damaging effect of outliers

for both mean functions and location of outliers. The median MSE of the non-robust GAM

fits across the 500 simulated data sets can be as much as 14 times higher than that of the

robust GAM fit. Also note that the MAD of these MSE’s is also consistently (and noticeably)

larger than that corresponding to the robust GAM fits, indicating that the robust GAM fit

is also more stable than its non-robust counterparts. The difference in median MSE’s is very

large in all cases where outliers are present, while, as expected, the robust fit does slightly

worse than the non-robust one when there are no outliers in the data.
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Binomial responses For the Binomial model we used

Y |X ∼ B (10, p (X)) , (14)

with logit (p (X)) = fj (X), j = 1, 2, and

f1 (X) = − sin(5X/120)/0.8− 1 , (15)

and

f2 (X) = cos(7X/120)/1.2 + 1/1.2 . (16)

[Figure 8 about here.]

Figure 8 contains two typical data sets generated with these models. We used n = 100 and

xi = i, i = 1, . . . , 100. The covariates were kept fixed throughout the simulation.

Summaries of the mean squared errors are displayed in Table 3.

[Table 3 about here.]

As in the Poisson case, these results are very favorable for the robust GAM fit. Again in

this case the median MSE of the non-robust GAM fits are consistently higher than that of

the robust GAM fit, while the MAD of these MSE’s is larger than that corresponding to the

robust GAM fit, indicating that the robust GAM fit is more stable and closer to the true mean

function than either of the non-robust GAM fits.

6 Conclusion

In this paper we proposed a robust GAM fit that is resistant to the presence of observations

that deviate from the pattern of the majority of the data. Moreover this fit behaves sim-

ilarly to the non-robust one when there are no atypical points in the data. We illustrated

the use of this method for the automatic detection of potential disease outbreaks using two
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data sets that reflect the current H1N1 influenza pandemic. Moreover, our simulation stud-

ies indicate that this robust GAM fit performs well across a variety of mean functions and

outlier locations. We also recommend using a robust leave-one-out cross-validation criterion

to select the bandwidth (or penalty) parameter of the smoother used in the back-fitting al-

gorithm. All the calculations were carried out in R using code that is publicly available at

http://www.stat.ubc.ca/~matias/soft.html.

7 Appendix

We need to solve f(β) = 0 where

f(β) =
n∑

i=1

[(ψc(ri)
1

√
vi

∂µi
∂ηi

xi − a(β)] ,

or
n∑

i=1

(ψc(ri)
1

√
vi

∂µi
∂ηi

xi)− na(β) = 0 .

Note that

a(β) =
1

n

n∑
i=1

E(ψc(ri))
1

√
vi

∂µi
∂ηi

xi .

Hence the equation to be solved is

f(β) =

n∑
i=1

[ψc(ri)− E(ψc(ri))]
1

√
vi

∂µi
∂ηi

xi = 0 .

If we use Newton-Raphson iterations to solve it, at the j-th step of the iteration, β(j+1) satisfies

(∇f(β(j))) (β(j+1) − β(j)) = −f(β(j)), where ∇f denotes the gradient of f . Fisher’s scoring

method replaces the observed Hessian ∇f by its expected value so that our iterations become

E(∇f(β(j)))β(j+1) = E(∇f(β(j)))β(j) − f(β(j)) .

Note that

∇f(β) =
n∑

i=1

{
∂hi
∂β

1
√
vi

+ hi
∂

∂β

(
1

√
vi

)}
∂µi
∂ηi

xi ,

24



where hi = ψc(ri)− E(ψc(ri)). Since E(hi) = 0 we have

E(∇f(β)) =
n∑

i=1

E(
∂hi
∂β

)
1

√
vi

∂µi
∂ηi

xi .

Let γi = E [∂hi/∂β]. Then

f(β) =
n∑

i=1

hi
1

√
vi

∂µi
∂ηi

xi ,

and

E(∇f(β))β =

n∑
i=1

γi
1

√
vi

∂µi
∂ηi

x′
iβ .

It is not difficult to see that

γi =

[
−E(ψ′(ri))√

vi

∂µi
∂ηi

− 1

2
E(ψ′(ri)ri)

1

vi

∂vi
∂ηi

− E(
∂

∂ηi
E(ψ(ri)))

]
xi = ℓi xi ,

say, where ℓi ∈ R. Therefore

E
(
∇f(β(j))

)
β(j+1) =

n∑
i=1

ℓi
1

√
vi

∂µi
∂ηi

xi x
′
i β

(j+1) ,

and

E(∇f(β(j)))β(j) − f(β(j)) =

n∑
i=1

ℓi√
vi

∂µi
∂ηi

xiηi −
n∑

i=1

hi
1

√
vi

µi
ηi
xi ,

=

n∑
i=1

(ℓiηi − hi)
1

√
vi

∂µi
∂ηi

xi

=
n∑

i=1

ℓi
1

√
vi

∂µi
∂ηi

(ηi −
hi
ℓi
)xi .

Finally, our iterations E
(
∇f(β(j))

)
β(j+1) = E

(
∇f(β(j))

)
β(j) − f(β(j)) become(

n∑
i=1

ℓi
1

√
vi

∂µi
∂ηi

xi x
′
i

)
β(j+1) =

n∑
i=1

ℓi
1

√
vi

∂µi
∂ηi

(ηi −
hi
ℓi
)xi ,

which has the form (
n∑

i=1

ωixix
′
i

)
β(j+1) =

n∑
i=1

ωixi zi ,

where zi = ηi − hi/ℓi and ωi =
(
ℓi/

√
vi
) ∂µi

∂ηi
.
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avoid the effect of concurvity in generalised additive models in time series studies of air

pollution,” Journal of Epidemiology and Community Health, 59, 881-884.

[10] Friedman, J.H. and Stuetzle, W. (1981), “Projection pursuit regression,” Journal of the

American Statistical Association, 76, 817-823.

26



[11] Hastie, T. and Tibshirani, R. (1986), “Generalized additive models,” Statistical Science,

1, 297-318.

[12] Hastie, T. and Tibshirani, R. (1990), Generalized additive models, New York: Chapman

& Hall.

[13] Hampel, F.R., Ronchetti, E.M., Rousseeuw, P.J. and Stahel, W.A. (1986), Robust statis-

tics: the approach based on influence functions, New York: John Wiley and Sons.

[14] Huber, P.J. (1985), “Projection pursuit (with discussion),” The Annals of Statistics, 13,

435-475.

[15] Kauermann, G. and Opsomer, J.D. (2003), “Local likelihood estimation in generalized

additive models,” Scandinavian Journal of Statistics, 30, 317-337.
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Figure 1: Three synthetic examples of the effect of a small proportion of outliers on the GAM fit.
The solid line indicates the true mean function, the dashed line shows the GAM fit, obtained with
the library gam in R, and the dotted line corresponds to the GAM fit obtained with the library
mgcv in R.
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Figure 2: GAM, mgcv, and robust GAM fits (panel (a)) to the weekly number of Influenza-Like-
Illness visits in the US for the 2006-2008 flu seasons, and the corresponding standardized residuals
(panel (b)). In panel (a) the dotted line denotes the GAM fit, the dashed line corresponds to
the mgcv fit, while the robust GAM fit is indicated with a solid line. Panel (b) contains the
standardized residuals associated with the robust and standard GLSA algorithms (left and right
panels, respectively). The residuals of the mgcv fit are very similar to those of the non-robust GLSA
fit.
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Figure 3: Weekly counts of virus isolates in Canada between 2006 and 2009. In panel (a) the dashed
line denotes the GAM fit while the robust GAM fit is indicated with a solid line. Panel (b) contains
the standardized residuals associated with the robust (left plot) and standard (right plot) fits.
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Figure 4: Synthetic datasets illustrating the effect of three different outlier settings. The dashed
line represents the GAM fit obtained with the library gam in R, the solid line corresponds to the
GAM fit obtained with the library mgcv in R, while the robust GAM fit is indicated with a dotted
line.

33



x1

x2

y

(a) True mean surface

x1

x2

y

(b) RGAM fit

x1

x2

y

(c) GAM fit

x1

x2

y

(d) MGCV fit

Figure 5: A bivariate synthetic example. Solid black points indicate observations above the surface,
while the light gray ones are below the surface.
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(a) Residuals from the RGAM fit
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(b) Residuals from the GAM fit
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(c) Residuals from the MGCV fit

Figure 6: Residual plots for the bivariate example.
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Figure 7: Illustrative examples of simulation data sets with δ = 0.20 and a Poisson response. The
solid line denotes the true mean function. The dashed line represents the GAM fit obtained with
library gam in R; while the robust GAM fit is indicated with a dotted line.
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Figure 8: Illustrative examples of simulation data sets with δ = 0.20 and a Binomial response. The
solid line denotes the true mean function. The dashed line represents the GAM fit obtained with
library gam in R; while the robust GAM fit is indicated with a dotted line.
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Beginning End
δ R-GAM GAM MGCV RGAM GAM MGCV

0.00 0.85 (0.48) 0.70 (0.37) 0.59 (0.28)
0.10 0.93 (0.49) 10.4 (6.83) 3.51 (3.08) 1.12 (0.63) 1.50 (1.21) 1.62 (1.37)
0.20 1.11 (0.54) 16.0 (6.10) 10.4 (8.33) 1.56 (1.00) 3.69 (2.78) 4.53 (3.50)
0.30 1.52 (0.91) 21.2 (8.44) 21.1 (13.9) 2.56 (1.88) 7.95 (5.92) 9.72 (6.51)

Table 1: Median and MAD (within parentheses) mean squared error over 500 samples for each
contamination scenario and estimation method. The response variable Y satisfies Y |X ∼ P(f1(X))
with f1 as in (12)

Beginning End
δ R-GAM GAM MGCV RGAM GAM MGCV

0.00 0.46 (0.26) 0.44 (0.22)
0.10 0.46 (0.28) 1.22 (0.96) 1.38 (1.16) 0.55 (0.33) 0.85 (0.65) 1.05 (0.81)
0.20 0.53 (0.37) 2.77 (1.98) 3.72 (2.54) 0.81 (0.66) 1.86 (1.41) 2.29 (1.75)
0.30 0.95 (0.75) 6.39 (3.96) 7.66 (4.83) 1.59 (1.55) 4.14 (2.77) 4.82 (3.14)

Table 2: Median and MAD (within parentheses) mean squared error over 500 samples for each
contamination scenario and estimation method. The response variable Y satisfies Y |X ∼ P(f2(X))
with f2 as in (13)

logit (p(X)) = f1(X) logit (p(X)) = f2(X)
δ R-GAM GAM MGCV RGAM GAM MGCV
0.00 0.85 (0.64) 0.73 (0.44) 0.66 (0.47) 1.09 (0.79) 1.11 (0.68) 0.98 (0.61)
0.10 1.07 (0.78) 4.09 (2.52) 4.79 (3.79) 1.21 (0.90) 2.23 (1.48) 2.17 (1.65)
0.20 1.73 (1.17) 11.9 (6.88) 15.2 (8.73) 1.46 (1.10) 4.68 (3.37) 5.24 (4.31)
0.30 3.11 (1.98) 25.3 (11.6) 30.3 (13.2) 1.99 (1.46) 8.81 (5.67) 10.7 (7.35)

Table 3: Median and MAD (within parentheses) mean squared error over 500 samples. Response
variable follows model (14) for each contamination scenario and estimation method. The regression
functions f1 and f2 are defined in (15) and (16), respectively.
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