
Stat 547 — Assignment 1

Release Date: Wednesday March 9, 2011
Due Date: Wednesday, March 23, 2011 at 11:59 PST

You should submit a written report under my office door (LSK 330) as well as
a zipped file by email containing the “answer” and “src” folders (do not include
the other directory to avoid email quotas problems). The report should contain
your work for the written questions as well as a summary of what worked/did
not work in your experiments.

1 Getting the code and data

First, make sure as early as possible that you can access the course materials.

http://www.stat.ubc.ca/~bouchard/pri/stat547-assignment1.zip

The authentication restrictions are due to licensing terms. The username and
password have been announced in class, but if for any reason you did not get
it, please let me know by email.
Unzip the downloaded file to your local working directory. It contains both
the data that you will need, some evaluation code, and some harness code that
will help you do the assignment. The harness code is in Java, but you are not
absolutely required to do the assignment in Java (the data and the format for
the answers are easy to parse and write). Note however that I will only provide
support for Java and I do recommend that you use the harness code. If there
is an interest, I could prepare a tutorial to get started with Java (you will only
need the basics, which are easy to grasp).

2 Technical stuff

You will need the Java Development Kit (JDK) 1.6 or higher, and I recommend
to use an IDE. If you already have your Java environment setup, skip to the
next section.
Download the latest JDK from

http://www.oracle.com/technetwork/java/javase/downloads/index.html

and the latest version of Eclipse from

1

http://www.eclipse.org/downloads/

and follow the installation steps. To launch eclipse, you may have to edit the
file eclipse.ini in the eclipse folder and add the line

-vm [path-to-jdk]/bin

Next, create a new project (Ctrl-N, then under “general”, pick “project”). Give
a name to the project, uncheck “use default location” and enter the path to the
unzipped folder.
In the folder src, you should be able to see the java files you will be using. At
this point, there should not be red crosses on the files (eclipse automatically
keeps everything compiled in the background).
To run the main() function of a test, “BasicTest.java”, which is in the pack-
age “exact”, right click on its icon in the project explorer, and select “Run
Configurations...” Then click on “Java Application” and on the “New launch
configuration” in the top left. Then click “Run”. You should see “Basic test
PASSED”.
For future reference, you can also give command line arguments to your program
by clicking on “arguments” in the new launch configuration panel and writing
the arguments in “program arguments field”. You will need this later. Also,
for some experiments, you may want to give more memory to your java code:
do that by going into “arguments” again, and writing “-Xmx1g” in the “VM
argument” field.
If you want to quickly go over the basics of the Java programming language
check out these links:

http://download.oracle.com/javase/tutorial/java/index.html
http://download.oracle.com/javase/tutorial/essential/index.html
http://download.oracle.com/javase/tutorial/collections/index.html

3 First question: Exact inference

In this question, you will use exact probabilistic inference to estimate sequences
of hidden variables from noisy sequences of observations. To give you an idea
of what we want to accomplish, run “TestHMM.java.” This will launch the
worst Part of Speech (POS) tagger in the world. Recall that a part-of-speech
is a linguistic category of words such as noun, verb, and adjective. The worst
POS tagger tags a sentence by picking a POS uniformly at random for each
word. Running “TestHMM.java” will generate a file called “POS.html” in the
“answers” folder. Have a look at it to see how bad it is. To understand what
the abbreviations mean, see

http://www.cs.nyu.edu/cs/faculty/grishman/jet/doc/PennPOS.html

To make it better, we will use the HMM model we have reviewed in class. In
this question, we will use a simple maximum likelihood parameters estimate,
so the challenge will be to compute the posterior over hidden variables (in this
case, POS tags) given observations.

2

3.1 Theory of exact inference

Before implementing exact inference, let’s review the basic theory with the next
three exercises.

(1,1)

(2,1)

(4,1)

source

(3,1)

(1,2)

(2,2)

(4,2)

(3,2)

sink

(1,3)

(2,3)

(4,3)

(3,3)

Consider the directed graph above. Vertices in this graph are denoted by v =
(n, t) where t ∈ {0, . . . , T + 1} is the horizontal axis, and n ∈ {1, . . . , N} is
the vertical axis on the figure (N = 4, T = 3 in the example above). All the
vertical layers have N vertices, except for the first (leftmost) and last (rightmost)
layers that have only a single element. We call the vertex in the last layer the
sink, corresponding to (1, T + 1), and the vertex in the first layer, the source,
corresponding to (1, 0). Vertices in adjacent vertical layers are fully connected
(i.e. there is an edge (n, t) → (m, t + 1) for all n, m, t). This type of graph is
called a lattice.

Part A

For a pair of vertices v = (n, t), v′ = (n′, t + k), k > 0, a (directed) path is a list
of k edges that link v to v′. For example, in the figure, the edges in bold form
a path from source to (1, 2). We denote the set of all paths going from vertex v
to vertex v′ by S(v, v′). The first exercise is to find the number of paths going
from the source to the sink, |S(source, sink)|.

Part B

Suppose now that for each edge e in this lattice, we are given an associated edge
cost c(e), and similarly, for each vertex v, we are given an associated vertex cost
c(v). This cost is extended to paths in the following way: for a given path p,
the path cost, c(p) is defined as the product of the cost of the edges visited in
the path, times the cost of the vertices visited,

(∏
e∈p c(e)

) (∏
v∈p c(v)

)
(by

vertices visited, we mean the set of all end points of edges, i.e. each vertex is
counted only once).
We will now establish the relationship between the lattice and inference in the
following directed graphical model:

3

X1 X2 X3 XT...

Y1 Y2 Y3 YT...

Assume that we observe a sequence y1, y2, . . . , yT at the leaves. After introduc-
ing notation for the parameters of this model, find an expression for c(e) and
c(v) in terms of these parameters such that∑

S(source,sink)

c(p) = P(Y1 = y1, Y2 = y2, . . . , YT = yT).

Part C

Next, define

B(v) =
∑

p∈S(v,sink)

c(p)

F (v) =
∑

p∈S(source,v)

c(p)

Convince yourself that the Chapman-Kolmogorov equations can be written with
this notation as:

B(n, t) = c(n, t)
∑
m

B(m, t + 1) · c
(
(n, t) → (m, t + 1)

)
F (n, t) = c(n, t)

∑
m

F (m, t− 1) · c
(
(m, t− 1) → (n, t)

)
.

Explain how this can be used to efficiently (i.e. in time much smaller than
|S(source, sink)|) compute the moments P(Xt = x|obs) and P(Xt = x,Xt+1|obs).

3.2 Exact inference in practice

We are now ready to implement the algorithm developed in the previous question
to sum over paths in lattices. Open the file “ChainSumProduct.java”. It loads
some specifications of costs over edges and vertices, and its mission will be to
compute the normalization Z (sum of the costs of all paths) and moments (the
moment of a vertex v is the sum of the costs of the paths that go through v,
divided by Z; and the moment of an edge e is the sum of the costs of the paths
that go through e; divided by Z).

4

Part A

When you run “ChainSumProduct.java”, it loads costs for edges and vertices
from the folder “data/question1A.gmf” and writes the moments in the same
format in “answers/question1A”. To check that your code is correct, compare
the output to “doc/question1A”, they should be equal modulo precision er-
rors. The format used for inputs and outputs (both can be seen as potentials
or functions over a chain graphical model) should be easy to understand: for
example the file “pair.1-2.mtx” contains a matrix, and entry n, m in this matrix
is c

(
(n, 1), (m, 2)

)
.

Part B

Once you get it right, change the first line in the function “main()” to true
and run it again. It will cause your code to read a larger model and write the
results to “answers/question1B”. Note that if you haven’t done so already, you
may have to represent the arrays B and F in logspace to avoid underflows.1

See the hint in function “computeMoments()” and only exponentiate after sub-
tracting log Z. Double check that you still get “doc/question1A” correctly after
migrating your code to logspace.

Part C

You are now ready to use this code to do POS tagging. Open “HMMPosteri-
orCalculator.java.” The responsibility of this part of the code is to transform
the HMM model parameters into an undirected graphical model or lattice that
ChainSumProduct can work on. This is similar to the graphical model trans-
formation steps we have seen in class.
Using your result in part B of the section on the theory, implement this step.
Note that the computation of the MLE from the training data is done for
you in the object “data.” For example, to access the transition probability,
use “SequenceData.getMLETransitionProbability().” Since the code in Chain-
SumProduct indexes states by integers, and SequenceData.getMLETransitionProbability()
is indexed by string, you will have to use “data.getHiddenStateName()” to do
the translation.
The last ingredient is to remove the first line of “ExpectedLossMinimizers.java.”
This line returned a random guess, by removing it, the prediction will be made
by calling your code and picking the tag that maximizes the posterior at each
node (recall that this is optimal under zero-one loss).
To test your code, run “TestHMM.java.” It repeatedly calls your code to infer
POS tags. Check “answers/POS.html” to see the improvements. To help you
debugging, call TestHMM with the option “-task TOY” This causes TestHMM
to use the tiny dataset in “data/TOY”, which makes it easier to spot problems
by working out the MLE by hand.

1There is another, more efficient way to do it called rescaling, but it’s more complicated.

5

Note that many predictions are not attempted, i.e. not approachable by this
setup. This is simply because the MLE gives zero probability to some of the test
sentences. You can ignore this issue for now, we will address it using Bayesian
non-parametric estimators in the next lectures and assignment.

Part D (Optional)

This part explores a different task: secondary structure prediction of proteins.
For background, see

http://en.wikipedia.org/wiki/Protein_secondary_structure

The observations are sequences of amino acids (again, see the wikipedia article
to see the standard encoding used), and the predictions (hidden states) are
secondary structures, encoded according to the DSSP format:

http://swift.cmbi.ru.nl/gv/dssp/DSSP_2.html

Here we consider a situation where we are only interested in finding out if the
current structure, in DSSP format, is either in the set {H, B, E}, or in the
complement of the set. We call this loss function alphaBetaLoss.
Start by running TestHMM.java with the option “-task PROTEIN”. As in the
POS case, the output gets written in “answer/PROTEIN.html”, and this is
initially a random prediction (Y means that the structure is in {H, B, E}, N
otherwise).
Your task is to implement expected loss minimization under alphaBetaLoss.
This should be done in ExpectedLossMinimizers.minimizeAlphaBetaLoss().

4 Second question: Approximate inference

4.1 Theory

Part A

Consider the graphical model we used in the previous question, and assume that
there is a Dirichlet prior on the parameters. Describe two MCMC moves: one
that samples all the sentences at once conditioning on the parameters, and one
that samples a single word but collapses the parameters.

Part B

Consider a different prediction problem for part D of the previous question:
finding the number of distinct contiguous alpha-beta blocks. For example, in
the sequence:

“NNYYNYYYNYYYYYYYNNNN”,

the correct answer would be 3. Suppose the loss is the absolute value between
the prediction and the truth. How would you approximate the Bayes estimator
in this case?

6

4.2 Implementation

In this question, we will apply approximate inference techniques to a simple
Ising model where each variable is binary. We assume that there are location-
dependent one-node factors, but that the two-nodes factors are all agreement
potentials. An agreement potential between two variables with the same value
is equal to 2 (a parameter controlled in “TestIsingInference”); and it is equal to
one otherwise.

Part A

Open the file “Gibbs.java” in the “approx” package. It contains a function,
“computeMoments()”, that takes a potential (factor) specification, and should
output estimated moments. Note that you only have to estimate the one-node
moments in this question. After implementing it, you can test your code by run-
ning “TestIsingInference”. It reads potentials from the folder “data/question2A.gmf”,
calls your code, and outputs the moments in the answers folder. The model in
“question2A.gmf” is a tiny 2 x 2 model, so you should be able to compute the
analytic moments by hand and see if you converge to this value.

Part B

Try now to call “TestIsingInference” with the argument “-task BIG”, and trying
different values of the argument “-agreementStrength”. Use the method of your
choice to estimate how many iterations are required to get a good estimate. For
the adventurous, show that coupling from the past can be applied to this model,
and see if the algorithm terminates in a reasonable time on this problem.

Part C (Optional)

This question is open-ended: describe and try to implement another approxi-
mate inference algorithm in “BetterInference.java”. This could be for example a
block Gibbs sampler using the code you wrote in the first part of the assignment,
or a mean-field algorithm. To test your code, change the field “algorithm” to
“new BetterInference()” in the file “TestIsingInference.java”.

7

