Statistical modeling with
stochastic processes

Alexandre Bouchard-Cote
Winter 201 |
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Plan for today

= Motivating applications and examples
= ‘Obvious’ suspects: time series & spatial statistics

» (lassical problems (with a twist): density
estimation, regression, classification

= Hot topics: Natural Language Processing (NLP),
Phylogenetics, Transfer/multi-task learning

= Qverview of what will be covered in the course
= Bayesian nonparametric statistics
= Random combinatorial objects
=  Approximate inference: Monte Carlo and variational

= Background
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Stochastic processes

‘A collection of random variables indexed by
an arbitrary set S’

Note 1: if S'if finite, then back to an ‘undergrad’ random
variable, so we concentrate on S uncountable

Note 2: S is not necessarily the real line
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Example: distribution over functions

Samples: functions /. R? > R

(s, Ys(w)) Ys(w) = f(s)

0.8 |
0.6 |
0.4 F

0.2 F
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‘Obvious’ suspects

= Time series:

B
= Economic/financial indicators 0.8 |
= Frequency of the population 0.6 |
having a certain genetlic 04 B
mutation E
» Global weather/climate 0'2;_

observations o T T

0 500 1000

QU -
Time ¢
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Example: distribution over functions

Samples: functions /- R? > R

s, Y

5
S
NS ST s TS

- "
35577
Q:O.'l[l
OK
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‘Obvious’ suspects

= Spatial statistics:

= Epidemic outbreak intensity
= Ecological measurements

* |ntensity of the cosmic
background radiation

Location (x,y)
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Example: distribution over distributions

Samples: distributions A : F > [0,1]

1 (s, Ys(w) )
\,\,/\\ / Yi(w) = Als)
N W~
0.5 |Ww
\~
0
e,

S = F, a sigma-algebra (the set of events for 1)

(No topology on this axis this time...)

aaaaaaaaaaaaaaaaaaaaaa



Why would we need
distributions over distributions?

De Finetti theorem: a compelling motivation for priors
on parameters...

Suppose: we agree that if our data x; are reorder, it
doesn’'t matter (exchangeability), e.qg.

d
(X1, X2, X3, ... ) = ( X3, X1, X2, ... )

Then: there exists a random variable @ and
distributions Fy such that:
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De Finetti theorem

In other words: if you assert exchangeability, it is

reasonable to act as if there is:

- an underlying parameters,

- a prior on that parameter, and

- the data is generated independently conditionally on
that parameter

Note: the theorem would not be true if we limited
ourselves to random variables @ with domain R”

In particular, we need to allow to have distribution-
valued random variables 6, hence we need priors over

distributions!
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Consequence

Stochastic processes can sneak out in any inference
problem, not only In the standard stochastic process
application ‘niches’ (i.e. time series and spatial
statistics)
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Example: density estimation

Input/observations: Samples of UBC students’ heights x;

Examples of inferential problems:
What is the mean height of the UBC student population?
What is the most ‘atypical’ height among the samples x;?

Method 1 (Normal density estimation): Find a normal
density ¢, that best fits the data
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Bayesian normal density estimation

Input/observations: Samples of UBC students’ heights x;

Bayesian way: Treat the unknown quantity ¢, as
random. Equivalently: treat the parameters « € R and

o2 > 0 as random.

Output: Posterior over densities / the parameters of a
normal distribution

Details of the model: Not critical for now, but will be
needed later...
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Bayesian normal density estimation

Limitation: fails to model that men and women have
different height distributions!

Solution: use a mixture model with two mixture
components, each one assumed to be normal

Monday, February 28, 2011
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Density estimation of normal mixtures

But we did not recorded the male/female information
when we collected the heights!

Expensive fix: Do the survey again, collecting the male/
female information

Cheaper fix: Let the model guess, for each datapoint,
from which cluster (group, mixture component) it comes
from.
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Method 2 (Mixture of two normal distributions)

Bayesian way: Treat the parameters of each cluster as
random: u.€Rando? >0, c€ {1,2}

The variables z; € {1,2} indicate which cluster observation
i belongs to (cluster membership indicator). Treat them as
random as well.

The parameters 7. are priors over the cluster indicators
(fraction of male vs. female at UBC). Treat them as random.

Closely related to: unsupervised learning
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Method 2 (Mixture of two normal distributions)

There are still limitations to this model:
- Height distribution also depends on the age of the student

- Height distribution also depends on the ethnicity of the
student

Idea: Use more than two mixture components!
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Using more mixture components

= Should we make the number of clusters as large
as possibles?
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Using more mixture components

= Should we make the number of clusters as large
as possibles?

= How many clusters should we use?

» Methods you are familiar with: using cross validation,
AIC, BIC, etc.

= Another route: non parametric Bayesian priors

= Rough idea of non parametric Bayesian statistics

= Prior allowing a countably infinite number of clusters
while giving protection against over-fitting

= Claim: this prior takes the form of a distribution over
distributions...
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Example: distribution over distributions

Samples: distributions 4 : o(®) > [0,1]

1 (s, Ys(®) )
A / Yo(w) = A(s)
N A\
0.5 |Ww
\~
0
e
S =o(0O)

(No topology on this axis this time...)
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Applications in Natural
Language Processing
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Language models

Shannon’s game: guess the next word...

| have lived In San

| am not going to go

<[there or their?

\

J

Application: finding which sentence is more likely

Example: Speech recognition
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Language models: first approach

Fix a certain prefix length, and estimate one categorical
distribution for each prefix from a text dataset (-gram)

Distribution over what Distribution over what
follows after the prefix follows after the prefix
Fix a___

Guess |Pr Guess |Pr
a 1.0 certain |0.5
text 0.5

Problem with the maximum likelihood estimator?

Monday, February 28, 2011



Language models: second approach

Prior for prefix 1 Prior for prefix 2
Distribution over what Distribution over what
follows after the prefix follows after the prefix

Fix a___

Guess |Pr Guess |Pr

a 0.92 certain |0.46

text 0.46

Some prefixes are rare. |s that a problem?
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Language models: third approach

Hyper-prior over words---not specific to a prefix

Guess Pr
Distribution over words [ o 0.04
In text dataset
3 0.02

— ! \

Prior for prefix 1 Prior for prefix 2
Distribution over what follows after | | Distribution over what follows after
the prefix the prefix
Fix a___

Guess Pr Guess Pr
a 0.92 certain 0.46
text 0.46
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Language models: fourth and fifth approaches

Why stop at prefixes of length 17?

Hyper-prior over words---not
specific to a prefix

7 ——

Distribution over what follows

a

after the prefix

«

N

Distribution over what follows
after the prefix
Fix

Distribution over what follows
after the prefix
Fixa

Distribution over what follows
after the prefix
froma

{ AN

Distribution over what follows
after the prefix
[beginning of sent.] Fix __

Why stop at prefixes of a bounded length?

Monday, February 28, 2011
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Machine translation

Ultimate goal: Pairs of Chinese-English sentences

( (to build 500 gas stations, 5004 msmss ), ...)

Inferential problems: Given a new Chinese sentence,
translate it to English
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Machine translation:
Intermediate goal

Input/observations: Pairs of Chinese-English sentences

( (to build 500 gas stations, 5004 msmss ), ...)

Inferential problems: Segment and align

to build 500 gas stations Pinyin Gloss
$EIT jian4 li4 build
500
g ge4 [measure word]
AHYL  jial you2 zhan4  gas station

Slide from John DeNero
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Degeneracy of previous maximum
likelihood estimators

Maximum
likelihood

Non parametric
Bayesian prior

to build 500 gas stations

to build 500 gas stations

Pinyin
jian4 li4

ge4

jial you2 zhan4

Pinyin
jian4 li4

ge4

jial you2 zhan4

[measure word]

gas station

[measure word]

gas station
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Parts of speech

Shannon’s game: guess the next word...

That's something |

Part of speech: a category of words defined by
how the word behave In the sentence.

Examples: verbs, nouns, adjectives, adverbs, etc.
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Classification problem: predicting
the part-of-speech

Input/observations: Annotated sentences

NOUN VERB ADJ NOUN
Alex likes red apples

VERB ADV VERB ADV
Talk  faster, eat slower

Inferential problem 1: find the part of speech of the
last word in a sentence

NOUN VERB ADJ 77777
Alex likes big houses
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Predicting the parts-of-speech: cues

NOUN VERB ADJ 77777
Alex likes big houses

What is the part-of-speech (POS) of ‘houses™?

Two cues: What POSs can follow an adjective (ADJ)?
ADJ, NOUN, but probably not VERB

What POSs can be assigned to houses?
VERB, NOUN, but probably not ADJ

Method: Hidden Markov models...
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Sequential prediction

Input/observations: Annotated sentences

NOUN VERB ADJ NOUN
Alex likes red apples

VERB ADV VERB ADV
Talk faster, eat slower

Inferential problem 2: find all the parts of speech of a
new sentence

77?7 2700 077
Alex likes big houses
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Sequential clustering

Input/observations: Arretated sentences

Alex likes red apples

Talk faster, eat slower

Inferential problem 3: find all the ‘parts of
speech’ (clusters) of a new sentence

777 70 07
Alex likes big houses
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Sequential clustering:
how many clusters?

Can use methods similar to the earlier density
estimation example

Twist:
Earlier: A prior over countably infinite distributions vs.
Now: A prior over countably infinite transition matrices

Also useful when supervision (annotation) is available,
each class (POS) is expressed as its own infinite mixture
(state splitting)
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Choice models

Input: Number of times people chose the row object over
the column object.

Phone 1 | Phone 2 | Phone 3
Phone 1 - 2 T <_
Phone 2 §) - 7
Phone 3 1 1

[

\_

/ people chose
Phone | over

Phone 3

~

Desired output: latent features governing these choices

Phone | Camera | Internet | Flip-phone | Cheap
Phone 1 v v v
Phone 2 v v v
Phone 3 v v v

Slide from Kurt Miller
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Different type of prior needed

Mixture
Indicator
priors:

Feature
Indicator
priors:

Datapoint
Index

Datapoint
Index

<€
L LV N L\ AN A
AN

o)

w N =

ot

Cluster index ¢

Feature Index ¢

Dirichlet process;

\Pitman-Yor process

\

\_

Beta process;
Adding counts:
Gamma process

\

J
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Applications in
Phylogenetic Inference
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Non-Bayesian application:
phylogenetic inference

Scientific applications: biology, anthropology, linguistics

Engineering applications: domain adaptation, multi-task

learning amazoncom

B ]
Unlimited Instant Videos
Prime members only

Books

>
>
Movies, Music & Games >
>

Digital Downloads
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Phylogenetic tree

—Melanesian
Maya e
- Surui
/ \/ Colorr;\be}erllﬂana
Internal nodes pt
(branching points):
lation 1 —
_Ancestral populations =
—
Uygur
—Hazara
—Burusho
Kalash
—Pathan
—Sindhi
\

Makrani
EBBarllaohcuk:i (
| E s Leaves of tree:
I— Modern populations
L—Druze \ /

Palestinian
—Bedouin

—Mozabite

Yoruba
. {L:Mandenka
Bantu

Biaka Pygmies
Mbuti Pygmies

San
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Interpretation:

Oceanic
Papuan Iati
| there was a group P | P, SMelanesian populations
Ima A
of people ancestral \L | Maya .

Surui American
to both Oc.,,Am. and \_( Karitiana It
E.A. populations. i Colombian y Populations

- A
2.a separation of this _
population into sub-
populations Sy, 52 _ o
(I E. Asiatic
3.second: a further [__ populations
subdivision of the 5,
population into T, —
- J !
Uygur M
—MHazara
—DBurusho
Kalach
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Si
Interpretation: ,
P \ Oceanic
Papuan Iati
| there was a group P | P, SMelanesian populations
Ima A
of people ancestral \L | Maya .

Surui American
to both Oc.,Am. and \_( Kartiana Sbulations
E.A. populations. P Colombian y POP

A
51 1
2.a separation of this
population into sub-
populations Sy, 52 _
(I E. Asiatic
3.second: a further [__ populations
subdivision of the 5;
population into T, —
. Y !
n Uygur M
—Hazara
—Burusho
Kalach
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Interpretation:

\ Oceanic
Papuan populations
| there was a group P | P, Selanesian M
of people ancestral \L | Maya . American
urul
to both Oc.,Am. and o\ \_( —Karitiana sopulations
E.A. populations. ) T, Colombian v
A
51 A
2.a separation of this
population into sub-
populations Sy, 52 _ C Aciat
(. .Asiatic
3.second: a further [__ populations
subdivision of the 5,
population into T, —
- J !
n Uygur M
—MHazara
—DBurusho
Kalach
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\ Oceanic
Papuan Iati
P Melanesian y POpulations
\L Pima A
[ Maya :
N \_( Surui American
Karitiana :
L Colombian ! populations
11 A
51 A
— _ | E. Asiatic
oo R © populations
”4

Kalach
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Simplified example

HI

A

or

I

2

Oceanic
populations

American
populations

E. Asiatic
populations

Oceanic
populations

American
populations

-

E. Asiatic
populations

\_

Can we use the
likelihood ratio?

P(Data | HI)
P(Data | H2)

Questions:

What is the data?

What is the model, i.e.

what is P

\

J

Monday, February 28, 2011
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Data: first type

CEE " :
XSS e
= 7 o
IR ¥ T e
- == P 7 4 y £ o
L S - 5> e
%oz . L
— =
4

TR | o "N
o 5 DL
-
" 4 ‘\ ’
| <2,
I LI
I 1
A “ R
\~ ’O n.—
\; »

-

~| 000 individuals from
~50 populations

\_

\_

SN -
Aa
BB

Cc
DD

650,000
SNPs

\4

\_ J

—

Human Genome

Diversity Panel
J
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~

Compute
allele
frequency
for each

~

population|

-

-

~| 000 individuals from
~50 populations

Different
because of
finite pop.,

non-
uniform
mixing

—

Human Genome

Diversity Panel
J
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Model |:VWright-Fisher

Generation | Generation 2
4

Random mating:
Assume each individual
\ in the next generation

'< has a father taken
uniformly at random
from the previous
generation, and a
mother taken
independently at
random

¢

¢

¢

¢

4 ¢
Suppose there are 50 "
people in the first :
¢

¢

¢

1

generation
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Model |:VWright-Fisher

Generation |  Generation 2

-

“T1

/

Suppose there are:
70 copies of the A allele,
30 copies of the a allele

What is the probability

~

that the allele

inherited from the
father is A?

\_

*‘.“%\‘\.-.““
-

Monday, February 28, 2011
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Model |:VWright-Fisher

Generation |

Generati

Suppose there are still

70 copies of the A allele,

\_

Suppose there are:

30 copies of the a allele

209999 ® 9200 e e

“T1

/

\

-

50 peoples (100 allele
copies) at generation
2. What is your best
guess for the number
of copies of the A
allele in generation 2!

4 )

Monday, February 28, 2011
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Generation |

Suppose there are

initially:

70 copies of the A allele,
30 copies of the a allele

Fraction

of the pop. with
the A allele =
P(A)

A

0.5

é
¢
é
¢
¢
¢
!
1

Martingale

0

>
Generation
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Martingale

Generation |  Generation 2

Suppose there are : :

initially: .‘ 'i

70 copies of the A allele, / ¢ ¢

30 copies of the a allele .' "
Fraction |4 p,

of the pop. with P2

the A allele = 0> I

P(A) ¢

>
Generation

Monday, February 28, 2011
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Martingale

Generation |  Generation 2 Generation 3
Suppose there are : $ :
initially: .‘ 'i :
70 copies of the A allele, / ¢ é ¢
30 copies of the a allele .' " "
Fraction |4 p; .
of the pop. with ‘\Pi ,l?.
the A allele = 0>
PA) o .

Generation
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Wright-Fisher model

Generation | Generation 2 Generation 3

Fraction
of the A allele
p = P(A)

¢

%
'
s
'

.—\'/

Generation

-

\_

When 100% of a population
has only one allele, then the

next generations will also

have 100% of the same allele

(fixation)

~

J

Fraction %
of the o4
poOp.
with the °*
A aIIeIe 0.2

0

N\

0

200 400 600 800

1000 1200 1400 1600 1800

Generation
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VWright-Fisher model

If the allele frequency is 0.5 initially, what is the
probability distribution over allele frequencies
after 100 generations!?

1F— e
i (0]
i (0]
Fraction°* [ ¢
B (0]
of the ¢4 @ @ O m m n e e m e

pop. [ °
. 0.4 |- ¢
with the - o
- (0]
A allele 0.2 °
(0]

O _I I ] ’ ] I ] ] ] I ] ] ] I ] ] ] I ] ] ] I ] ] ] I ] ] ] I ] ] ] I ] ] ] I ] ]

0 200 400 600 800 1000 1200 1400 1600 1800

Generation

Monday, February 28, 2011

51



VWright-Fisher model

If the allele frequency is 0.5 initially, what is the
probability distribution over allele frequencies
after 100 generations!?

Brownian motion

Probability approximation
) ““
1 -
Fraction °° [ | K
of the 6 - o e
p0p.04 5 /
with the " |
A aIIeIe 0.2 :— “
O :I I ] 1 2 1 1 1 I ] ] ] I ] ] ] I ] ] ] I ] ] ] I ] ] ] I ] ] ] I ] ] ] I ] ]
0 200 400 600 800 1000 1200 1400 1600 1800
Generation
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VWright-Fisher model

If the allele frequency is 0.5 initially, what is the
probability distribution over allele frequencies
after 100 generations!?

Brownian motion

Probability ~  __.-* approximation
> Rl
1~ 3 —"’-‘
= . “‘4
I °, .-"
Fraction °° [ ol
B o
of the ¢4 - @@ e c s I
Pop. [ ®|
: 0.4 | °
with the - o
A allele 0.2 :— :
o
O _I I ] ] ] I ] ] ] , I ] ] ] I ] ] ] I ] ] ] I ] ] ] I ] ] ] I ] ] ] I ] ]
0 200 400 600 800 1000 1200 1400 1600 1800

Generation
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1

0.8

Fraction 06
of the pop.
with the A 0.4

allele

0.2

4
24
24

Same
frequency
initially +

)

)
0.8

) )

Fraction 06

of the pop.

with the A 0.4
allele

0.2

o
||||||+‘~|

O_

Wright-Fisher model

CNRRLARRLBRRLE

\

Iel‘lﬁlllllll

o

200

400

600

800

1000

1200

1400

1600

Generation

1800
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Wright-Fishe

rmodel

Suppose a population is split

1 f into two subpopulations.
0s b Even though the
Eraction . F subpopulations start with the
0.6 I .
of the pop. [ same allele frequency their
with d;lef 0.4 1A allele frequency drift to
aliele '[ .
02} % different values )
Same ." O __ I ] ] I ] ] I ] | | I | | | | I | |
freq uency 0 500 1000 1500 2000
initially « 1 [
0.8 |-
Fraction ‘;\
0.6 =
of the pop. -y
with the A 04 L
allele -
02 |
O :I I | | | I | | | I | | | I | | | I | | | I | | | I | | | I | | | I | | | I | |
0 200 400 600 800 1000 1200 1400 1600 1800

Generation
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Oceanic
populations

American
populations

E. Asiatic
populations
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Same frequency
initially

Oceanic
populations

E American
populations

E. Asiatic
populations

Monday, February 28, 2011



Same frequency
initially

» Observed
+  E.Asiatic
frequency

Pea.(A)

Oceanic
populations

American
populations

E. Asiatic
populations
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Same frequency
initially

Same frequency

» Observed
+  E.Asiatic

frequency
Pea.(A)

Oceanic
populations

American
populations

E. Asiatic
populations
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Observed

Oceanic
Same frequency frequency
'\‘\‘ ; Poc(A)
Same frequency Do N .
initially Y ".’
Oceanic
populations
American
populations | Observed
American
-------------- frequency
PAm.(A)
| E. Asiatic
f . Observed populations
g'_, o Ii “  E.Asiatic

frequency
Pea(A)
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Same frequency

L
L
1
r
Same frequency ;
. [ ] . '
initially :

» Observed
4 —\" .
All the ancestral frequencies E.Asiatic
i frequency
are unknown: integrate over Pe(A)
E.A.
9 them y

Observed
Oceanic
frequency

¢ Poc(A)

Oceanic
populations

American
populations

E. Asiatic
populations

Observed
American
frequency

Pam. (A)
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Same frequency

initially

Same frequency

\_

4 :
All the ancestral frequencies
are unknown: integrate over

them y

Observed

Observed

E.Asiatic
frequency

Pea.(A)

Oceanic
frequency
. Poc(A)
Oceanic
populations
American
populations | Observed
American
-------------- frequency
Pam.(A)
E. Asiatic
populations
4 ™

Doing this for each SNP gives

us P(Data | HI)
\ Y
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Oceanic
populations

American
populations

E. Asiatic
populations
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/

\_

Doing the same thing, but with the
other tree gives us P(Data | H2)

\

J

Oceanic
populations

American
populations

E. Asiatic
populations
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/

Doing the same thing, but with the
other tree gives us P(Data | H2)

\

J

\
: Oceanic
populations
American
populations
: | 5 | E. Asiatic
E___ ~ |populations
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HI

A

2

Simplified example

or

I

Oceanic
populations

American
populations

E. Asiatic
populations

Oceanic
populations

American
populations

E. Asiatic
populations

-

P(Data | HI)
P(Data | H2)

Questions:

What is the data?

Allele frequencies for
each population

What is the model, i.e.

\

\_

what is P?

Wright-Fisher model
(Brownian motion
approximation)

J
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——Melanesian
Pima

Phylogenetic tree

Maya
Surui

Karitiana
Colombian

1 —
(.
r N
The length of the ——
. L
branches is _B_Haﬁ;{gg“f
proportional to the Eparan
amount of drift 1=
between the two nodes - E
- Y, s
\/ L—Druze
Palestinian
—Moz;ﬁ)gdoum

Yoruba
. {L:Mandenka
Bantu

Biaka Pygmies
Mbuti Pygmies

San
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Phylogenetic tree

—Melanesian
Maya Cime
Surui
Karitiana
- Colombian
1 —
(.
r ™
The length of the —.
) -

branches is L™

proportional to the Franan
. Makrani /7~ N\

amount of drift EBB;?OhC“Hi Note:
between the two nodes 1= These SNPs are neutral
N Y :
\/ U alleles: the tree is not a
ek | Statement about some
T, populations being more
-Bantu _
. Biaks Pygmies _advanced than others!
San
58
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