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Program for today

 Assignment/logistics

 Applications
 NLP: language modelling, segmentation, alignment

 Extensions
 Hierarchies and sequences
 Pitman-Yor & Beta processes
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Assignment/logistics

After class: office hours

Tonight: Solutions to the implementation questions will be 
posted at the same time as assignment 2

Due dates: 
- Assignment 2: April 13 (end of the day)
- Assignment 3 and project: April 22 (end of the day)

Important: Recall that if you do a final project, you need to do 
only 2 assignments.  If you do a literature review, do all 3. 
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Assignment/logistics

Assignment 1: 
- We will go over some of the solutions for the written 

questions now, the rest will be posted tomorrow
- You will get back your copy next Monday

Lecture notes: 
- Those related to assignment 2 be posted tomorrow 

as well
- The other ones will follow as soon as I get the latex 

files from the scribes
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Question 4.1.A

Consider the graphical model we used in the previous question, and assume 
that there is a Dirichlet prior on the parameters. Describe two MCMC moves: 
one that samples all the sentences at once conditioning on the parameters, 
and one that samples a single word but collapses the parameters.

πx

θxEmission 
parameters

Transition 
parameters

x1

y1 y2 y3

x2 x3

x=1..K
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Question 4.1.A

πx

θxEmission 
parameters

Transition 
parameters

x1

y1 y2 y3

x2 x3

x=1..K

Sampling sentence at once: direct from Q.1.1
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Question 4.1.A

πx

θxEmission 
parameters

Transition 
parameters

x1

y1 y2 y3

x2 x3

x=1..K

Collapsing/marginalizing parameters: two methods...
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Question 4.1.A

πxTransition 
parameters

x1 x2 x3

x=1..K

Collapsing/marginalizing parameters: two methods...

Let’s forget about the observations for simplicity

First method: direct marginalization
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Question 4.1.A: Exchangeability trick
Idea: the states visited are not exchangeable (they are 
Markovian), but the transitions are exchangeable

πxTransition 
parameters

x=1..K

First transition
x1 → x2

Second transition
x2 → x3

Last transition
xT → xT+1

...

 (modulo a base measure that is equal to one or zero)
9Sunday, April 3, 2011



Question 4.1.A: Exchangeability trick

Resampling one state will change at most two of these 
variables 

Pretend they are the last two ones

πxTransition 
parameters

x=1..K

First transition
x1 → x2

Second transition
x2 → x3

Last transition
xT → xT+1

...
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Question 4.1.A

Consider a different prediction problem for part D of the previous question: 
finding the number of distinct contiguous alpha-beta blocks. For example, in 
the sequence:

“NNYYNYYYNYYYYYYYNNNN”,
the correct answer would be 3. Suppose the loss is the absolute value 
between the prediction and the truth. How would you approximate the Bayes 
estimator in this case?
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Question 4.1.A

x1

y1 y2 y3

x2 x3

Deterministic auxiliary variable: 
number of contiguous ‘Y’ blocks in 
the current state
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Hierarchical models: 
review and big picture

13Sunday, April 3, 2011



Language models

Shannon’s game: guess the next word...

I have lived in San ______ 

I am not going to go ______

Application: finding which sentence is more likely

there or their?

Example: Speech recognition

14Sunday, April 3, 2011



Problem...

Distribution over what 
follows after the prefix 

Fix ___ 

Guess Pr
a 0.92
... ...
... ...

Distribution over what 
follows after the prefix 

a ___ 

Guess Pr
certain 0.46
text 0.46
... ...

...

Some prefixes are rare.  Is that a problem? 

Prior for prefix 1 Prior for prefix 2 ...
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Solution: hierarchical model

Distribution over what follows after 
the prefix 
Fix ___ 

Guess Pr

a 0.92

... ...

... ...

Distribution over what follows after 
the prefix 

a ___ 

Guess Pr

certain 0.46

text 0.46

... ...

...

Prior for prefix 1 Prior for prefix 2 ...

Hyper-prior over words---not specific to a prefix
Guess Pr

the 0.04

a 0.02

... ...

Distribution over words 
in text dataset

16Sunday, April 3, 2011



Important idea: hierarchical Bayesian models

Applies: whenever we are doing estimation on related (or not 
so related) sub-problems.  

For today: assume we know the hierarchy

z (1)

y1
 (1) y2

 (1) y3
 (1)

z (2)

y1
 (2) y2

 (2)
...

(Sub) Problem 1 (Sub) Problem 2
Eg: Dist. of word after ‘Fix __’

Progression of HIV in patient 1
Dist. of word after ‘a __’

Progression of HIV in patient 2
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Important idea: hierarchical Bayesian models

Assumption: each model has shared hyper-parameters λ 
(parameters of the distribution of the priors z)

z (1)

y1
 (1) y2

 (1) y3
 (1)

z (2)

...

Eg:

λ (1) λ (2)

y1
 (2) y2

 (2)

Square means it’s 
not random 

(Sub) Problem 1 (Sub) Problem 2
Dist. of word after ‘Fix __’

Progression of HIV in patient 1
Dist. of word after ‘a __’

Progression of HIV in patient 2
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Important idea: hierarchical Bayesian models

Ideas:  make the hyper-parameters λ random (1) and 
 shared by all tasks (2).  This binds all the tasks/subproblems.

z (1)

y1
 (1) y2

 (1) y3
 (1)

z (2)

...

Eg:

λIntuition why it works: in 
data-rich problems, 

posterior mostly 
determined by 

observations; in data-
poor problems, posterior 
informed by other tasks

y1
 (2) y2

 (2)

(Sub) Problem 1 (Sub) Problem 2
Dist. of word after ‘Fix __’

Progression of HIV in patient 1
Dist. of word after ‘a __’

Progression of HIV in patient 2
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Important idea: hierarchical Bayesian models

z (1)

y1
 (1) y2

 (1) y3
 (1)

z (2)

λ

y1
 (2) y2

 (2)

λ

z (j)

y i
 (j)

j =1, 2
i =1...Ij

(Sub) Problem 1 (Sub) Problem 2
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Hierarchies with DPs

G (1)

y1
 (1) y2

 (1) y3
 (1)

Hyper-parameter: α0, G0

α0 G0
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Hierarchies with DPs

G (1)

y1
 (1) y2

 (1) y3
 (1)

G0

G (2)

y1
 (2) y2

 (2)

What distribution to put G0?

G0

G (j)

y i
 (j)

j =1, 2
i =1...Ij
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G0 = N(µ, 1)

µ ∼ N(0, 1)

Distribution on G0

G0

G (j)

y i
 (j)

j =1, 2
i =1...Ij

What distribution to put G0?

First try: a continuous distribution, e.g. 
normal with random mean

This does not work!   
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Distribution on G0

G0

G (j)

y i
 (j)

j =1, 2
i =1...Ij

Hierarchical Dirichlet Process

Attempt 1

m
Ni

xij

θij

Gi

H

α

G0

The problem: If G0 is continuous, then with
probability ONE, Gi and Gj will share ZERO atoms.

⇒ This means NO clustering!

Gi

Gj

G0

Kurt T. Miller SAIL - Nonparametric Bayesian Methods 71

G (1)

G (2)

G0

Problem: with probability one, no atoms 
will be shared by G(1) and G(2): this 
means there will be no sharing of dishes 
across tasks/sub-problems
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G0 ∼ DP(α0, H)

G(j)|G0 ∼ DP(α′
0, G0)

Distribution on G0

G0

G (j)

y i
 (j)

j =1, 2
i =1...Ij

What distribution to put G0?

A correct choice: a Dirichlet process !
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Pitman-Yor process
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Another problem...

In some real-world datasets, Dirichlet processes do not have 
the right tail behavior!

Empirical observation: number of unique words (word 
types observed) in a natural language corpus containing 
n words tokens is O(ns) for s ∈ [1/2, 1)

Fact about DPs (proven last time):  there are O(log n) 
tables in n draws from a DP

Note: DPs will still assign positive probability to O(ns) tables, 
might discourage it too much in practice
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Solution: a generalized process

Pitman-Yor process: Start with the CRP, and boost the 
probability of table creation while preserving exchangeability

New customer

Join table #1, with 
already n1 people 

sitting there

Join table # t, with 
already nt people 

sitting there

Create a new 
table

...

∝ n1 - d ∝ nt - d ∝ α0 + t d

Discount: d ∈ [0, 1]

This has the same 
normalization as the 

DP:  α0 + n
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The Pitman-Yor (PY) process

Exchangeability: we have shown last time an example 
where the seating plan is exchangeable, you will prove it in 
full generality in the assignment

Asymptotic number of tables: O(ns)

De Finetti representation? π

x1 x2 x3
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PY: stick breaking construction

Dirichlet process: defined G = f(β, θ) 
for an iid sequence of θi ~ G0  and:

βi ~ Beta(1, α0), 

Pitman-Yor: Same but now beta’s are not 
identically dist.:

βi ~ Beta(1 - d, α0 + i d)
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Other stick breaking constructions?

Yes: For example as long as there is an epsilon > 0 s.t., 

we get sticks with lengths that sum up to one

But: These are not all exchangeable!  In fact the βi’s have to 
be of the form Beta(1 - d, α0 + i d) to have 
exchangeability!

∑∞
j=1 P(βj > ε) =∞
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Infinite HMM
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Next topic: infinite HMMs

Motivation: state splitting in Markov chains

Setup: annotated sequence data, where we don’t believe the 
annotation actually makes the chain Markovian

Example:
Noun

He
Adv

really
Verb
likes

Noun
swimming

Noun
I

Adv
really

Verb
like

Noun
swimming
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Next topic: infinite HMMs

Solution: adding annotation on the hidden state

Example: an annotation -3PS when the sentence is 3th 
person singular

Noun-3PS
He

Adv-3PS
really

Verb-3PS
likes

Noun
swimming

Noun
I

Adv
really

Verb
like

Noun
swimming

State splitting: learn annotations (state splits) automatically 
from the training data.  How many splits?
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The infinite HMM

Motivation: an HMM without a bound on the number of 
hidden states

Recall: finite HMMs

πx

θxEmission 
parameters

Transition 
parameters

x1

y1 y2 y3

x2 x3

x=1..K
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The infinite HMM

Infinite HMMs:

πx

θxEmission 
parameters

Transition 
parameters

x1

y1 y2 y3

x2 x3

x=1..∞

π
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The infinite HMM

Infinite HMMs: connection with the Hierarchical Dirichlet 
process

πx

θxEmission 
parameters

Transition 
parameters

x1

y1 y2 y3

x2 x3

x=1..∞

π
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The infinite HMM

Computing the posterior: as usual, both a collapsed 
Gibbs sampler and a slice sampler are available

Aux. vars:

πx

θxEmission 
parameters

Transition 
parameters

x1

y1 y2 y3

x2 x3

x=1..∞

π

u1 u2 u3 u4
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State splitting and iHMM

πx,z,z’

θx,z
Emission 
parameters

Split/fine 
transition 
parameters x1

y1 y2

x2

x=1..∞
z=1..K

π

...

z1 z2 ...

z’=1..K

τx,z
Coarse 
transition 
parameters

Coarse 
states

Split/fine 
states
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Limitation of iHMMs/DPs

There are many useful splits.  Examples:

-3PS : when the sentence is 3th person singular
-INT : when the sentence is interrogative
-PAS : when the sentence is in the passive voice
  ...

Problem: representing the parameters of N splits takes 
O(2N) memory

Solution: feature-based representations
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Feature based representations

State-split Feature

yi

xi

yi

xi

xi

xi

(1)

(2)

(F)

...
2F states

2 states

2 states

2 states

How many features?  Will see soon a solution: Beta process
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Another motivation

Input: Number of times people chose the row object over 
the column object. 

Latent Feature Models

Motivating example: Choice Models

Observations
Number of times people chose the row object over the column object.

Phone 1 Phone 2 Phone 3
Phone 1 - 2 7
Phone 2 6 - 7
Phone 3 1 1 -

Hypothesis
Choices are governed by what features each object has.

Phone Camera Internet Flip-phone Cheap
Phone 1 ! ! !
Phone 2 ! ! !
Phone 3 ! ! !

(Tversky, 1972)

Kurt T. Miller SAIL - Nonparametric Bayesian Methods 90

Slide from Kurt Miller

7 people chose 
Phone 1 over 

Phone 3

Desired output: latent features governing these choices 

Latent Feature Models

Motivating example: Choice Models

Observations
Number of times people chose the row object over the column object.

Phone 1 Phone 2 Phone 3
Phone 1 - 2 7
Phone 2 6 - 7
Phone 3 1 1 -

Hypothesis
Choices are governed by what features each object has.

Phone Camera Internet Flip-phone Cheap
Phone 1 ! ! !
Phone 2 ! ! !
Phone 3 ! ! !

(Tversky, 1972)

Kurt T. Miller SAIL - Nonparametric Bayesian Methods 90
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Beta process

Mixture 
indicator 

priors:

Latent Feature Models

DP:

· · ·
z1

z2

z3

z4

z5

z6

φ1 φ2 φ3 φ4 φ5 φ6 φ7 φ8 φ9

Desired:

· · ·
z1

z2

z3

z4

z5

z6

φ1 φ2 φ3 φ4 φ5 φ6 φ7 φ8 φ9

Kurt T. Miller SAIL - Nonparametric Bayesian Methods 92

Cluster index c

Feature 
indicator 

priors:

Latent Feature Models

DP:

· · ·
z1

z2

z3

z4

z5

z6

φ1 φ2 φ3 φ4 φ5 φ6 φ7 φ8 φ9

Desired:

· · ·
z1

z2

z3

z4

z5

z6

φ1 φ2 φ3 φ4 φ5 φ6 φ7 φ8 φ9

Kurt T. Miller SAIL - Nonparametric Bayesian Methods 92

Datapoint 
index

Datapoint 
index

Feature index c

Beta process

Dirichlet process;
Pitman-Yor process
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Predictive distribution: restaurant metaphor

Instead of a sit-down restaurant, think of a buffet with an 
infinite sequence of dishes θi sampled by customers

θ1

Latent Feature Models

DP:

· · ·
z1

z2

z3

z4

z5

z6

φ1 φ2 φ3 φ4 φ5 φ6 φ7 φ8 φ9

Desired:

· · ·
z1

z2

z3

z4

z5

z6

φ1 φ2 φ3 φ4 φ5 φ6 φ7 φ8 φ9

Kurt T. Miller SAIL - Nonparametric Bayesian Methods 92

θ2θ3θ4 ...
Customer #1
Customer #2

...

Obvious: order of the columns not important/exchangeable 
(because the θi’s will be generated iid)

Less obvious: how to make the order of the rows exchangeable
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Predictive distribution: restaurant metaphor

Instead of a sit-down restaurant, think of a buffet with an 
infinite sequence of dishes θi sampled by customers

θ1

Latent Feature Models

DP:

· · ·
z1

z2

z3

z4

z5

z6

φ1 φ2 φ3 φ4 φ5 φ6 φ7 φ8 φ9

Desired:

· · ·
z1

z2

z3

z4

z5

z6

φ1 φ2 φ3 φ4 φ5 φ6 φ7 φ8 φ9

Kurt T. Miller SAIL - Nonparametric Bayesian Methods 92

θ2θ3θ4 ...
Customer #1
Customer #2

...

Obvious: order of the columns not important/exchangeable 
(because the θi’s will be generated iid)

Less obvious: how to make the order of the rows exchangeable
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Predictive distribution: restaurant metaphor

Latent Feature Models

The Indian Buffet Process (IBP)
How do we generate Zi without generating π first?

For the first customer:

...

Sample a Poisson(α) number of dishes.

For the ith customer:

→ ...

Sample a Poisson(α/i) number of new dishes.
Sample previously tried dishes in proportion to the
number of people who have previously tried them.

The IBP defines a prior p(Z) on infinite binary matrices.
(Griffiths and Ghahramani, 2005)

Kurt T. Miller SAIL - Nonparametric Bayesian Methods 102

Latent Feature Models

The Indian Buffet Process (IBP)
How do we generate Zi without generating π first?

For the first customer:

...

Sample a Poisson(α) number of dishes.

For the ith customer:

→ ...

Sample a Poisson(α/i) number of new dishes.
Sample previously tried dishes in proportion to the
number of people who have previously tried them.

The IBP defines a prior p(Z) on infinite binary matrices.
(Griffiths and Ghahramani, 2005)

Kurt T. Miller SAIL - Nonparametric Bayesian Methods 102

Slide from Kurt Miller

First customer:

Fourth customer:

(Example on the board)
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