Statistical modeling with
stochastic processes

Alexandre Bouchard-Cote
Lecture | |, Monday April 4




Program for today

= Beta, Poisson and Gamma processes

= DDP and sequence memoizer

Saturday, April 9, 2011



Pitman-Yor process

Pitman-Yor process: Start with the CRP, and boost the
probability of table creation while preserving exchangeability

" This has the same New customer

normalization as the
DP: oo ™ n

\- AN
x ny-d X ng-d < oo+ td
Join table #1, with Join table # ¢, with Create a new
already n1 people already n; people table
sitting there sitting there

Discount: 4 & [0, 1]
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PY: stick breaking construction

Dirichlet process: defined G = f(5, 6)
for an iid sequence of 8; ~ Go and: i

Bi~ Beta(1, o),

Pitman-Yor: Same but now beta’s are not
identically dist..

pi~Beta(l -d, oo + i d)




The infinite HMM

Infinite HMMs:

Transiti %x 1\\
ransition X C

parameters } 4 ‘

Emission

parameters } HXO\Ig y‘




Feature based representations

State-split Feature
D 2 states
x; 2! states —
— O x) 2 states
Vi @ ol 2 states

|

v @

How many features? Will see soon a solution: Beta process
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Beta process

Cluster index ¢

.M!xture Datapoint 2
Indicator index | -,
priors: & A

%5 Dirichlet process;
\Pitman-Yor process

Feature Index ¢
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Feature Datapoint
indicator index
priors:
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Predictive distribution: restaurant metaphor

Instead of a sit-down restaurant, think of a buffet with an
infinite sequence of dishes 6; sampled by customers

016,030, ..

[

Customer #1 —. .,
Customer #2—

Obvious: order of the columns not important/exchangeable
(because the ;s will be generated iid)

Less obvious: how to make the order of the rows exchangeable




Predictive distribution: restaurant metaphor

First customer:

f

/

i

Sample a Poisson(a) number of dishes.

Fourth customer:

!

. . :
| Sample a Poisson(a/7) number of new dishes.
Sample previously tried dishes in proportion to the
number of people who have previously tried them.

(Example on the board) Slide from Kurt Miller
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Beta process: stick breaking representation

Interpretation of the sequence of sticks (7)=1..«
7; IS the prior probability of picking row ;

Consequence: the sticks no longer sum to one!

Construction (will come back to it later):

Beta process: Ci.: Dirichlet process

Bk~ Beta(l,«a) Br ~ Beta(l,a)
k

me = [J(-a) T = Dk 1:[(1—51)
=1

[=1




Poisson processes




Poisson processes

Another random discrete measure, but unnormalized:

Let Po be a distribution on a sample space £ (the base
distribution) and (41, ..., Ax) be a partition of 2. We say

P ~ PP(P)

..e., PIs a Poisson Process, if
ind.
P(A1) ~ Poi(Po(A1)  [g \ p

for all partitions and all . /r N
1




Cf: Dirichlet Process

Let Go be a distribution on a sample space €2 (the base
distribution) ap be a positive real number (the concentration),
and (41, ..., Ax) be a partition of Q. We say

G~ DP(CV(), G())
..e., G Is a Dirichlet Process, If
(G(A1),...,G(Ar)) ~ Dir(agGo(A1),...,a0Go(Ag))

for all partitions and all .




Consistency/existence

Let Po be a distribution on a sample space 2 (the base
distribution) and (41, ..., Ax) be a partition of Q2. We say

P ~ PP(P,)

..e., Pis a Poisson Process, if
ind.
P(A,) ~ Poi(Py(A))

for all partitions and all .

B
* | w2 x| X

I\ = &\




Campbell’'s theorem

Assume Py is a probability measure, fis bounded, and
P ~PP(Po).

Letalso: ¥ =Y f(X)

XeP

Then: T [e*] = exp <(/ (e (@) _ 1)P0(da;)}
LJQ




Sequence memoizer




Back to hierarchical models

Hyper-prior over words---not specific to a prefix

Distribution over words
In a text dataset

e | T~

Distribution over what follows Distribution over what follows
after the prefix after the prefix
a__ Fix

/| / 0\

Distribution over what follows
after the prefix
fixa

/)
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More elaborate example

Training: BeG 0 a ¢ a ¢ END

0]
o G GG
: G[aCLVC) G[oa]ﬂ‘G[ca] i
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Marginalization

Training: BeG 0 a ¢ a ¢ END
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Analytic marginalization

Training: BeG 0 a ¢ a ¢ END P?
SIS

G[BEG]({ o

OCLC
OCLCCLC

, Analytically possible when:
END GS‘GO'(S) ™~ PY( a(s)dsa ds)
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Condition for analytic marginalization

G acac/D oac %
[ G[oaca]
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