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Program for today

= Wrapping up MCMC
= Auxiliary variables and collapsing
= Common errors
= Annealing and tempering
= |nfinite spaces

= Approximate inference, Part 2: Variational
= Examples: Mean field and Belief propagation
= Theoretical framework
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Question

How to build T such that:
statio(x) = target(x)

First step: finding a better expression for statio(x)

statio(x) = lim P(X; = x| X =0 = %)

{— 00

target(x) = P(X = x|obs, params)




Finding a better expression for statio(x)

Definition (‘infinite steps’ transition); 7™ = lim 7™
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That would mean that no matter what state we use to initialize the sampler, the
distribution over the n-th state converges to a distribution called the stationary

distribution 7(x) = statio(x) = target(x)

\
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Building T such that statio(x) = target(x)

Goal: Let's see if Gibbs satisfies this equation
target(x) = Ztarget(y)Ty,x (1)

First: Let's find what is 7,
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Building T such that statio(x) = target(x)

Goal: Let's see if Gibbs satisfies this equation
target(x) = Ztarget(y)Ty,x (1)
First: Let's find what is T}
1|z, y € R|target(x)

T, . = 2
7 >, 1|2’y € R|target(x’) )

Finally: plug-in (2) in (1)
and check It works




Why Metropolis-Hastings works
From previous result, want 7" such that:

target(x Z target(y

Sufficient condition (by summing over y on both sides):
target(x)T1; ., = target(y)Ty »

This Is called detailed balance or reversibility condition




Existence of r such that - = zT

Suppose: (still assuming discrete state space)
1. Tisirreducible
2. T s aperiodic

Consequence: There is a unique probability distribution 7 such that
T =nl

Proofs: Consequence of Perron—Frobenius theorem (7" is positive
for n large enough, and x is then the eigenvector corresponding to
the unique eigenvalue of highest modulus). --- Note: can be used to
debug samplers

More general arguments exist
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Convergence theorem 1

Suppose: (still assuming discrete state space)
1. Tisirreducible
2. Tis aperiodic

Consequence: There is a unique probability distribution 7z such

that z = zT ; moreover, for all x,

lim Txrfy = 7(y)

n—aoo

T

l.e.:

T

T =
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Proof. coupling argument
Initial distributions: Xo ~ = and Y, ~ arbitrary distribution

Note: X;~ zforall since 7 = #T

Goal: showing that lim Z ’P(Xn =y) — P, =y)| =0
Y

n—aoao

4 )
® ® | Notation: the

o

:/: bd hitting time H
/.

o

o

3

Xo where X,=Y,
¢ for the first

time.
5 | eg. H=3 here




LLN for Markov chains

The law of large numbers for Markov chains: If X; is an
irreducible Markov chain with stationary distribution = and
s finite, then

S
nh_)n;@ 5 Z = Zf(:z:)w T

Note 1: Aperiodicity not needed for this result
Note 2: For small S, burning-in might improve the estimator, but might

as well maximize during burn-in
Note 2: Thinning to reduce auto-correlation is not a good idea and

can be harmful (only reasons to do it is to save memory writes or memory---but
most of the time only finite dimensional sufficient statistics need to be stored)
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Wrapping-up MCMC




Terminology

Collapsed sampler: analytically marginalize some of
the variables, and run MCMC on the reduced state
space (makes sampling harder/more expensive, but
improves the quality of the samples)

Auxiliary variable: augment the state space to
facilitate sampling
Example: slice sampling




Slice sampling

Goal: sampling from a r.v. X with density f(x)/Z, where Z
s difficult to compute

Intuition: use a MCMC defined on the 2D space defined
as the graph of the density

Moves: sample uniformly vertically or horizontally

Current state




Slice sampling

Goal: sampling from a r.v. X with density f(x)/Z, where Z
s difficult to compute

General auxiliary variable construction: adding a new
random variable U with the following graphical model
does not change the marginal distribution of X, no matter

what is the conditional density g of U | X
X X~ f(x)/Z

U Ul X~gu|X)




Slice sampler

X X~fx)/Z ﬁ

U U|X~Uni[0, /0] / vﬁ\

Vertical move: U | X ~ Uni[O0, 7(X)]

Horizontal move: X | U ~ Uni{x : f(x) > U}

Note: Easier-to-compute alternatives to the horizontal move exist
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Stopping criteria

Good: bound on the number of samples needed, or exact
(perfect) sampling techniques

Bad (but somewhat useful): checking if the sequence of partial
MC averages are approximately Cauchy; running independent,
over-dispersed chains to check if the MC averages are close

Ugly: when the task is to compute a MC sum, heuristics based
on staring at traceplots (value of f{X;) as a function of ¢),
autocorrelation, and spectral density are misguided (see
previous slide on LLN for Markov chains). Especially ugly when
the heuristic is complicated to implement.
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Perfect sampling

Idea 1: view MCMC algorithm as a deterministic maps 7
taking the current state x and an idd random uniform u:
T(x,u). The variable v selects the kernel and Is also iid uni

Idea 2: think backwards and generate an infinite sequence
of past u,v

Tva(-u3) Tva(-u2) Tvi(-u-1) Tvo(-,u0)




Perfect sampling

Idea 3: using the known u,v, find the possible states we can
end up to in say 4 steps. Think about it as doing coupling,
but instead of only 2 starting point, we consider all starting
points simultaneously

Tvi(-u3) T va(=,U-2) Tva(-u-1) Tyo(-,u0)




Perfect sampling

Idea 4: it that didn't rule out all the possibles states at time 0,
look further back in time to rule out more paths (using same
randomness) until there is only one state at time zero.

The one state left is exactly distributed according to 7 !
Tva(-u-3) Tyvo(-u2) Tva(-u-1) Twl(-uo0)




Perfect sampling

In practice: too expensive to keep track of all states.

Solution: a partial order on the states such that
Xe<Yi= X1 <V

More precisely, such that for any fixed u,v:
x <y= Tvx,u) <Tv(yu)

Consequence: only need to keep track of maximal and
minimal elements




Debugging MCMC algorithms

Important: Randomized algorithms are hard to implement

Test all small inputs: instead of a few big inputs. Either run the chain
for a long time, or compute eigenvector explicitly and compare to true
posterior.

Use synthetic data: how close do you get to generating parameters?
s it iImproving when you generate more data?

Is the posterior calibrated? E.g. for binary variable, construct a
histogram of % correct as a function of posterior of the prediction.
There should be a linear trend.

Trick: fix random seeds to facilitate replication of bugs
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Find the potential bugs

fort=1..T
Pick a kernel ¢ = gq, o0 ~ M(x1-1)
Loop....

1. Propose a new state xprop according to g( x | xs1)

2. Compute:
p {1 target(xt_1)q($prop|$t—1)}
’ target(xpmp)q(xt—1 |$prop)

3. Generate a Unif[0,1] number u
Whlle u > A(Xt-l > xPr()p)
Set x; to Xprop

A(xi—1 — Tprop) = min
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Find the potential bugs

fort=1..T
Pick a kernel g = ga, o0 ~ M(x11)
Loop....
1. Propose a new state xprop according to g( x | xs1)
2. Compute:
A(x s ) — min {1 target(xt—l)Q(mprop|37t—1) }
t—1 prop 9
target(xprop)Q(xt—l |xprop)
3. Generate a Unif[0,1] number u f Ratio Is upside down ! )
... while u > A(x1-1 > Xprop) - Mixing of kernels
Set x; to Xprop distribution should not
depend on x
- No while loop !
(c.f. rejection sampling)

J
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Find the potential bug

X Y Z Binary r.v.s

Sx, Sy, Sz =0
Nx, Ny, N7z =0
fort=1..T
1f ¢ 1s Odd
(X,Y) ~ Block Gibbs
Sx=8x + X; Nx=S8x+1
Sy=S8y +Y: Ny=Sy+1
else
[do the same for (Y, Z)
return Sx’Nx Sy/Ny Sz/Nz
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Find the potential bug

X Y /

Sx, Sy, Sz =0
Nx, Ny, N7z =0
fort=1..T
1f ¢ 1s Odd
(X,Y) ~ Block Gibbs
Sx=8x + X; Nx=S8x+1
Sy=S8y +Y: Ny=Sy+1
else
[do the same for (Y, Z)
return Sx’Nx Sy/Ny Sz/Nz

Binary r.v.s

The partial sum Sy/Ny gets

~N

updated more often (it's ok

to update ra
variables differen
of times, but a

ndom
t numbers

| partial

sums need to be updated
at each iteration---even
when the corresponding
r.v. doesn’t change)

\_

J
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More on the previous bug

In Gibbs sampling, we are updating only a small number of
variables, it seems silly to update everything...

When there is no overlap between the sampled blocks, and
every block is asymptotically sampled the same number of
times, can update only what changed

Otherwise, can use a delayed update datastructure (keep
track of the last MCMC iteration each variable/coordinate Is
updated, and when it gets updated again, add delta time
multiplied by last value.




Other heuristics

Simulated Annealing: exponentiation of the target
distribution

I

n
n
I
L

/N

/ \ , — ~

] ~. A

// v\\ Y \ =

X
5~ 15 2 28

Cold (wHy?): " Room temperatm:e: Hot (why?):
P(X=x)=f(x)'° P(X=x)=f(x) P(X=x)=f(x)"-3
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Other heuristics

|

i

Cold (why?):

P(X=x)=f(x)'°
/\

-

\_

To search a

configuration)

~

maximum (MAP

J

Yo

Room temperatur;e:
P(X=x)=f(x)

Simulated Annealing: exponentiation of the target
distribution

1
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Hot (why?):
P(X=x)=f(x)"

3




Other heuristics

Simulated Annealing: exponentiation of the target

distribution

|

i

Cold (why?):
P(X=x)=f(x)'°
/\

g
To search a

. configuration)

~

maximum (MAP

J

Yo

Room temperature:

P(X=x)=f(x)

1
0of5

Hot (why?):
P(X=x)=f(x)"-3
A\

/

\_

N
To make it easier
to jump from one

mode to the other
J
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Other heuristics

Tempering: expend the state space to one independent extra
chain, with higher temperature. States x = (x(1), x(®))

/ \ b
15 2 s ok

Mair; chain at room témp. Hot copy
Px=x)=fxD)  Px=x@)=f(x@)03

25\
>

Swap move: introduce a proposal distribution that swaps
the current states in the two chains.

0.3

MH ratio: L (eron) _ S@P) (/ (5’5(1)))0.3 _ (f@™))
Pt f®) (f@)" (f0))

0.7

0.7




Other heuristics

Tempering: general version is a chain of chains
x = (x(D, x(2), xO) .. xK)
of increasing temperatures.

Moves: swaps between each pair of chain (ratio has the same
form but with different exponents)




Countably infinite chain

Danger: even when the chain is irreducible, in infinite
state spaces, there is a risk that the chain never comes
back to its Initial point

Example: ‘A drunk man will eventually find his way home,
but a drunk bird may get lost forever’

Formalization of this joke...




Consequences on the asymptotic theory

All the the theory Is salvaged if we assume positive
recurrence

|.e., we have our theorem on existence of stationary
distribution, convergence of X; to the stationary distribution,
and convergence of Monte Carlo averages)




Continuous state space

ldea: Assume a base measure v and use the same
definition as before, but for set 4 with v(4) > 0.

Example (Harris recurrence): For all 4 with v(4) > 0, the
set A4 is visited infinitely often with probability one

For most samplers theory goes through easily (only need to
compute an extra Jacobian).

One useful trick not needed in discrete spaces:
Reversible Jump MCMC




Reversible Jump MCMC

Goal: sample a continuous space with unknown number
of dimensions. E.g.: model selection--not sure if we
should use a model with one or two parameters.

Problem:

61 l . 01

6> Jacobian is not diffeomorphic

State 1 State 2




Reversible Jump MCMC

Solution: introduce iid auxiliary variables u to make each

state of the same dimensionality (don't actually need to
represent them across iterations)

&1 01’

0> )

State 1 State 2




Variational inference




Road map

Deterministic

Hard probabilistic 1 algorithms

inference problems

target(x) = P(X = x|obs, params)

2\

As; (A) = Ag, s, (A, R)  [marginalization]
)‘81,82 (Ala A2) — >\32,31 (A27 Al)

Probabilistic inference as
an optimization problem




Quick review of exponential family

Sufficient statistic Parameter
P(X,€ B) = » exp{(¢ — A(0) (),
recB
— log Z expi (¢ 0)}v(x),
rec X
/ A counting
Log partition function measure

Large discrete set
(e.g. all configs of an Ising model)




Example of sufficient statistics

Ising model . .

P(x) =

Palrs of nodes

1[x11=+]
1[x11="-]
1[x12 =]

1[x11 ="+, x12=+]

1[x11=+,x12="-]

‘Over-complete’ sufficient statistic




What we are trying to compute

Moments:

u = E[p(X)] =

and log partition function: A(0) = log Z exp{(¢p(x), 0)}v(x)

i ILL1919+_

ILLIDID'
#1929+

//‘1,1,"'_;1,2,"'

ﬂ1,1,+;1,2,-

1[x11=+]
1[x11="-]
1[x12 =]

1[x11 ="+, x12=+]
1[x11=+,x12="-]

re X

\4
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Important properties

The gradient of the log partition function is equal to the
moments:
VAO) =E[¢p(Xo)

The hessian of the log partition function is equal to the
covariance matrix:

H(A(0)) = Var(¢(Xoe)|.

Consequence: A4 is a convex function




