Statistical modeling with
stochastic processes

Alexandre Bouchard-Cote
Lecture 5, Monday March |4




Program for today

= Wrapping up Variational methods
= Examples: Mean field and Belief propagation
= Theoretical framework

* |ntroduction to Bayesian non-parametrics
= The Dirichlet Process: Theoretical foundations
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Review
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Precisions from last time

Importance sampling vs. Independence chain

Theoretical work: ‘Comparing Importance Sampling and the
Metropolis Algorithm’ Federico Bassetti and Persi Diaconis

It follows that importance sampling and the Metropolis
algorithm are roughly comparable for this example.’

Empirical comparison: ??




Find the potential bugs

fort=1..T
Pick a kernel g = ga, o ~ M(x1.1)
Loop....
1. Propose a new state xprop according to g( x | xs1)
2. Compute:

target( Aalr lr. 1))
A(zt_1 — Tprop) = Min {1 SO ~

" target (- Ratio is upside down !
3. Generate a Unif[0,1] number u | Mixing of kernels

... while u > A(xr1 > Xprop) distribution should not
Set x; tO Xprop depend on x
- No while loop !

(c.f. rejection sampling)
- Inequality is reversed!

- J
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Variational inference




Quick review of exponential family

Sufficient statistic Parameter
P(X,€ B) = » exp{(¢ — A(0) (),
recB
— log Z expi (¢ 0)}v(x),
rec X
/ A counting
Log partition function measure

Large discrete set
(e.g. all configs of an Ising model)




Example of sufficient statistics

Ising model . .

P(x) =

Palrs of nodes

1[x11=+]
1[x11="-]
1[x12 =]

1[x11 ="+, x12=+]

1[x11=+,x12="-]

‘Over-complete’ sufficient statistic




What we are trying to compute

Moments:

u = E[p(X)] =

and log partition function: A(0) = log Z exp{(¢p(x), 0)}v(x)

i ILL1919+_

ILLIDID'
#1929+

//‘1,1,"'_;1,2,"'

ﬂ1,1,+;1,2,-

1[x11=+]
1[x11="-]
1[x12 =]

1[x11 ="+, x12=+]
1[x11=+,x12="-]

re X

\4
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Important properties

The gradient of the log partition function is equal to the
moments:
VAO) =E[¢p(Xo)

The hessian of the log partition function is equal to the
covariance matrix:

H(A(0)) = Var(¢(Xoe)|.

Consequence: A4 is a convex function




Deterministic
algorithms

Hard probabilistic /1)
inference problems /\

target(x) = P(X = x|obs, para}ng\

2\ Two examples:
- Mean field
- Loopy Belief Propagation

AN Y

Probabilistic inference as
an optimization problem




Naive mean-field and connection with Gibbs

First: let rewrite the Gibbs sampler with the exponential
family notation

B ] B =1 A

1{x1,1=+] O11,+
1{x1,1=-] O1.1,-
1[x12 =] 01.2,+
x —
o (x) .

1[x191 — —|_9 xlaz — —|_] 91919+;192?+

1[X1,1 =1+, X12= -] O1.1.+:1.2,-




Mean field

Note: Gibbs can be seen in this case as keeping around one
vector s; = ¢(x;) at each iteration (where each component of s

s in the set {0, 1} T 1x11 =]
| 1[x1,1 = -]

ldea: we are going to ’
WE are going 1[x12 = +]

keep around one vector u;

where each component of B(x) =
1 1s In the set [0, 1], and

hope that this gives a

good approximation to

u = E[p(X)]

1[x11 =", x12 =]
1[x11 =", x12="-]




Loopy Belief Propagation (BP)

Looking back at exact inference on a chainl/tree:

.
X Y Z What would be the next

-y
------------
-
-
o, =

-y,
- -

-

-

Tl T < MesSsage, mH—l(Z) that Y

Lo i@,{}.{}., would send to the node Z at
( /\ ______ \ the right of it?
View the process of Use the notation f{y,z) for the
eliminating all the variable at factor between Y and 7
the left of X"as a message \
\ sent from Xto Y: mdy)




Loopy Belief Propagation (BP)

-----

mi z()/)
4
; What would be the next
EX0) I message, m:+1(z) that Y
. S/ would send to the node Z at
- -w@u{ m~< therightof it
@% Using the notation £{y,z) for
| the factors
-




Hard probabilistic
inference problems

target(x) = P(X = x|obs, para; prOb\em

Road map

- ——Datarqinistic
Next step: expressing the hms
inference tasks as a

constrained optimization

2\/ /

As; (A) = Ag, s, (A, R)  [marginalization]
)‘81,82 (A17 AQ) — )‘82,81 (A27 Al)

Probabilistic inference as
an optimization problem

Monday, March 14, 2011

16



Representation of convex functions

Standard / pointwise  Encoded by intercepts of
encoding the supporting tangents




Connexion: Legendre-Fenchel transformation

An operator (a function that takes a function and
transforms it into another function) denoted by *

f*(y) :== sup {(y,z) — f(z)},

x € dom(f)

Warning: for pedagogical reasons, assume for now that /

IS univariate, twice differentiable and strictly convex (can
be made more general!!)




Intuition

“facts on points, f* acts on tangents”: Suppose | give you

a tangent/supporting plane. Encoding a convex function
can be done by giving the intercept ¢,

Z
f(z)
Y i
epl (f) f’”
= i
cﬂ
e
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Why this particular ‘encoding’?

Theorem:
When fis convex (and lower semi-continuous): f** = f

Consequence: the log partition function satisfies 4™ = A4

What we will do with this: First, apply the definition of
Fenchel dual to the function 4%, get:

A(0) = sup{(0, ) — A"(p) : p € A},
|
A(6) This is just the domain of 4™




Done?

Convex function are easy to optimize, right?

A(0) = sup{(0,u) — A% () : p € A},

Problems: there are exponentially many constraints




Constraints: realizable moments

Suppose | give you a D-dimensional vector « and | claim
it s the moment of a distribution for some parameters 6

(which | don't give you 6, but the sufficient statistics are
known)

i ,Ll1,1,+_
|.e. claim there Is a 6 such that: s,
i = E[g(Xp)] U124+
What could you check? '
U1,1,+1,2,+
,Ul,l,+;1,2,-




Constraints: realizable moments

Suppose | give you a D-dimensional vector « and | claim
it s the moment of a distribution for some parameters 6

(which | don't give you 6, but the sufficient statistics are
known)

i ,Ll1,1,+_
|.e. claim there Is a 6 such that: s,
i = E[g(Xp)] U124+
What could you check? '
P11+ = Z H1,1,451,2,2 HLLTL2
re{+,—} Looks familiar? ~ |£41.1:+:1.2>




Constraints: realizable moments

Theorem: for trees, u Is a realizable moment if and only if
pairwise marginalization conditions are met

In cyclic graphs, higher order marginalization constraints
needed!




Belief propagation

Main idea: even if there are cycles, use only pairwise
marginalization constraints (a relaxation of the optimization
problem)

It can be shown that optimizing this relaxed problem yields

the familiar BP algorithm
(the objective also needs to be simplified a little bit)




Mean-field: inference by making the
set of realizable moments simpler

A(0) = sup{(0, n) — A™(pn) : p € A},
AND: p € Mir

Cartoon:




Recommended readings

MCMC:

=  Overview of theory and practice: ‘Markov chains for exploring posterior
distributions.” (1994) L. Tierney.

= Tricks of the trade: Part |V of ‘Information Theory, Inference, and
Learning Algorithms.” (2003) D. MacKay.

= Fast sampler for Ising model | haven’t covered: ‘Nonuniversal critical
dynamics in Monte Carlo simulations. * (1987) R.H. Swendsen and J.-S.
Wang.

=  Computing partition function from samples: ‘Marginal likelihood from
the Gibbs output’ (1995) S. Chib.; Also: ‘Simulating ratios of normalizing
constants via a simple identity: a theoretical exploration’ (1996) X.-L. Meng
and W.H. Wong.
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Recommended readings

Variational:

= Overview of theory: Chapters 1-5 of ‘Graphical models, exponential
families, and variational inference.’ (2008) M. J. Wainwright and M. I.
Jordan.

=  More on the Mean Field: Background section of ‘Optimization of
Structured Mean Field Objectives’. (2009) A. Bouchard and M.I. Jordan.
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Dirichlet Processes




Recall: motivation in density estimation

Mixture model: (UBC student height with 2 components)
say we have only 3 observations

1- Generate a male/female relative frequence
T T ~ Beta(male prior pseudo counts, female P.C)

Mean height / \ 2- Generate the sex of each student for each i
for men 4

X1 o x3| X | 7T ~ Mult(7r)

6a) \
3- Generate the mean height of each cluster ¢
O) \
t O

Mean heigh \\ (9(0) ~ N(prior height, how confident prior)
for women ,\ —

I V2 V3|4- Generate student heights for each i
vi | xi, 01), 02) ~ N(Oxi) variance)

Monday, March 14, 2011 29



Equivalent notation

Mixture model: (UBC student height with 2 components)
say we have only 3 observations
2
T G = ZWC5{9(C)}
c=1

Mean height / / \
for men 4
20 \XI X2 x3 | 1 92 93 HG~G
0 \
) &\

Mean heigh \\
for women v — v v v v
\/1\‘ > Ty | yvi y2 Y3

Vi | ¢i ~ N(¢i ,variance)

7
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Samples from G
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Definition: Dirichlet Process

Let Go be a distribution on a sample space €2 (the base
distribution) ap be a positive real number (the concentration),
and (41, ..., Ax) be a partition of Q. We say

G~ DP(CV(), G())
..e., G Is a Dirichlet Process, If
(G(A1),...,G(Ar)) ~ Dir(agGo(A1),...,a0Go(Ag))

for all partitions and all .




Does this make sense/exists?

Kolmogorov consistency: check the marginals are
consistent under marginalization

In this case: check that the marginals are consistent
when refining partitions

A> Bz/
A Bi1\ B3
(G(A41), G(A42)) (G(B1), G(B2), G(B3))

(U1, Un) (V1, V2, V3)




Constructive argument

Claim: the random probability distribution constructed
below is the Dirichlet process with base distribution Gy and

concentration ao
y
B, ~ Beta(1, ag)
g iid
c ™ U0
Start with a stick of length 1, and break a
segment of length £ for 71, keep the rest

T = D1
At step c, if the length of the stick
remaining is L, set: ——

Te = BcL = [ H(l_ﬁj)

J:3<c

i=1,2,3, ..

pj

c=1,2,3, ..

O

N /
Likelihood \\ >

mixture G’ = Z 7Tc5{9(c)}
component c—1
parameters
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Samples from G

Unit length stick p Mixture proportions

=)

Ordered 1ild Gy locations

R A
< >
o [ [ ® . Q() A
° c . @\q, R A AR A A TA TMean paramete
A
. ®e «® ° T A TAA A

o, © o © A A
‘e * O A sample from G’ : a distribution with

Cree o o o, countably infinite support
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Are the samples indeed probability distributions?

Need to check: % 7, %1
c=1

Recall: Te = BcL = Be H (1 — ﬁ])

J:3<c




Goal: showing two definitions are equivalent

Kolmogorov consistency

B

B>

_

B3

Stick-breaking construction

——

Strategy: showing that for all partitions (41, ..., Ax), the
constructed process G " has finite Dirichlet marginals

(G/(Al), c ey G/(Ak)) ~ Dif((XOGQ(Al), - . ,Oé()GQ(Ak))




Key observation: ‘self-similarity’

Definitions: G’ = f(3.0) = >  medio();
c=1

G = (01, B2,...)" = (62,03, .-)
Observation: G’ = 7,651y + (1 — m) f(3*,0%)
=m0y + (1 = m)G"  for G’ = G”
Notation: G' = 8oy + (1 —m1)G *

How we’ll use it: we will show that if there is a distribution
that satisfies this equation, it is unique; and that the finite
Dirichlet distribution satisfies it




Detailed plan

Finite Dirichlet
distributions satisfy Equation (*) has a
equation (%) unique solution
N /
G’ satisfies ;hegirggigils of G’ has Dirichlet
equation (¥) equation (X) ~ marginals
G=G"

To be continued...




