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Program for today

 Wrapping up Variational methods
 Examples: Mean field and Belief propagation
 Theoretical framework

 Introduction to Bayesian non-parametrics
 The Dirichlet Process: Theoretical foundations
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Precisions from last time

Importance sampling vs. Independence chain

Theoretical work: ‘Comparing Importance Sampling and the 
Metropolis Algorithm’ Federico Bassetti and Persi Diaconis

‘It follows that importance sampling and the Metropolis 
algorithm are roughly comparable for this example.’

Empirical comparison: ??
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A(xt−1 → xprop) = min
{

1,
target(xt−1)q(xprop|xt−1)
target(xprop)q(xt−1|xprop)

}

Find the potential bugs

Loop....
1. Propose a new state xprop according to q( x | xt-1) 
2. Compute:

3. Generate a Unif[0,1] number u
.... while u > A(xt-1 ➛ xprop)
Set xt to xprop

- Ratio is upside down !
- Mixing of kernels 
distribution should not 
depend on x
- No while loop !
(c.f. rejection sampling)
- Inequality is reversed!

for t = 1 .. T
Pick a kernel q = qα, α ~ M(xt-1) 
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Variational inference
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Quick review of exponential family

and [9, 10] for computing the permanent of a matrix—we are not aware of a general treatment of
variational inference in combinatorial spaces.

There has been work on applying variational algorithms to the problem of maximization over combi-
natorial spaces [11, 12, 13, 14], but maximization over combinatorial spaces is rather different than
summation. For example, in the bipartite matching example considered in both [13] and this paper,
there is a known polynomial algorithm for maximization, but not for summation. Our approach
is also related to agreement-based learning [15, 16], although agreement-based learning is defined
within the context of unsupervised learning using EM, while our framework is agnostic with respect
to parameter estimation.

The paper is organized as follows: in Section 2 we present the measure factorization framework; in
Section 3 we show examples of this framework applied to various combinatorial inference problems;
and in Section 4 we present empirical results.

2 Variational measure factorization

In this section, we present the variational measure factorization framework. At a high level, the first
step is to construct an equivalent but more convenient exponential family. This exponential family
will allow us to transform variational algorithms over graphical models into approximation algo-
rithms over combinatorial spaces. We first describe the techniques needed to do this transformation
in the case of a specific variational inference algorithm—loopy belief propagation—and then discuss
mean-field and tree-reweighted approximations.

To make the exposition more concrete, we use the running example of approximating the value and
gradient of the log-partition function of a Bipartite Matching model (BM) over KN,N , a well-known
#P problem [17]. Unless we mention otherwise, we will consider bipartite perfect matchings; non-
bipartite and non-perfect matchings are discussed in Section 3.1. The reader should keep in mind,
however, that our framework is applicable to a much broader class of combinatorial objects. We
develop several other examples in Section 3 and in Appendix B.

2.1 Setup

Since we are dealing with discrete-valued random variables X , we can assume without loss of
generality that the probability distribution for which we want to compute the partition function and
moments is a member of a regular exponential family with canonical parameters θ ∈ RJ :

P(X ∈ B) =
∑

x∈B

exp{〈φ(x), θ〉 −A(θ)}ν(x), A(θ) = log
∑

x∈X

exp{〈φ(x), θ〉}ν(x), (1)

for a J-dimensional sufficient statistic φ and base measure ν over F = 2X , both of which are
assumed (again, without loss of generality) to be indicator functions : φj , ν : X → {0, 1}. Here
X is a superset of both C and all of the Cis. The link between this setup and the general problem
of computing

∑
x∈C f(x) is the base measure ν, which is set to the indicator function over C:

ν(x) = 1[x ∈ C], where 1[·] is equal to one if its argument holds true, and zero otherwise.

The goal is to approximate A(θ) and ∇A(θ) (recall that the j-th coordinate of the gradient, ∇jA, is
equal to the expectation of the sufficient statistic φj under the exponential family with base measure
ν [5]). We want to exploit situations where the base measure can be written as a product of I
measures ν(x) =

∏I
i=1 νi(x) such that each factor νi : X → {0, 1} induces a super-partition

function assumed to be tractable: Ai(θ) = log
∑

x∈X exp{〈φ(x),θ〉}νi(x). This computation is
typically done using dynamic programming (DP). We also assume that the gradient of the super-
partition functions is tractable, which is typical for DP formulations.

In the case of BM, the space X is a product of N2 binary alignment variables, x =
x1,1, x1,2, . . . , xN,N . In the Standard Bipartite Matching formulation (which we denote by SBM),
the sufficient statistic takes the form φj(x) = xm,n. The measure factorization we use to enforce
the matching property is ν = ν1ν2, where:

ν1(x) =
N∏

m=1

1[
N∑

n=1

xm,n ≤ 1], ν2(x) =
N∏

n=1

1[
N∑

m=1

xm,n ≤ 1]. (2)
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2

Large discrete set 
(e.g. all configs of an Ising model)
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Example of sufficient statistics

+
+

+

-
+

- -

-
+

Ising model

ϕ(x) = 

1[x1,1 = +]
1[x1,1 = -]
1[x1,2 = +]

1[x1,1 = +, x1,2 = +]
1[x1,1 = +, x1,2 = -]

...
...

One node

Pairs of nodes

‘Over-complete’ sufficient statistic

D

θ1,1,+
θ1,1,-
θ1,2,+

θ1,1,+;1,2,+
θ1,1,+;1,2,-

...
...
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What we are trying to compute

1[x1,1 = +]
1[x1,1 = -]
1[x1,2 = +]

1[x1,1 = +, x1,2 = +]
1[x1,1 = +, x1,2 = -]

...
...

D

θ1,1,+
θ1,1,-
θ1,2,+

θ1,1,+;1,2,+
θ1,1,+;1,2,-

...
...

µ1,1,+
µ1,1,-
µ1,2,+

µ1,1,+;1,2,+
µ1,1,+;1,2,-

...
...

µ = E[ϕ(X)] =

and log partition function:

Moments:
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Important properties

of this gain in accuracy, we present a new structure
mean field algorithm based on auxiliary exponential
families.

The notion of v- and b-acyclic subgraphs is different
that the notion of “overlapping cluster” used in the
work on structured mean field by Geiger et al. (2006).
Some v-acyclic graphs have overlapping clusters, some
do not; and moreover, the computational dichotomy
we establish here does not hold if the notion of v- and
b-acyclic subgraphs is replaced by that of overlapping
clusters. Note that other variational approximations
such as Expectation Propagation also have a subgraph
interpretation (Minka and Qi 2003). While this sub-
graph sometimes happens to be b-acyclic, there is no
special distinction between v- and b-acyclic graphical
approximations in the case of Bethe-energy variational
approximations. This is why we focus on mean field
approximations.

The paper is organized as follows. We present a ba-
sic introduction to structured mean field in Section 2.
We then discuss our analysis and algorithmic develop-
ments in Section 3. We present empirical results to
support our claims in Section 4 and we present our
conclusions in Section 5.

2 Background

In this section, we review the principles of mean field
approximation and set the notation. Our exposition
follows the general treatment of variational methods
presented in Wainwright and Jordan (2003) where the
Legendre-Fenchel transformation plays a central role.

2.1 Exponential families

We assume that the random variable under study, Xθ,
has a distribution in a regular exponential family P
in canonical form:

P(Xθ ∈ A) =
∫

A
exp{〈φ(x),θ〉 −A(θ)}ν( dx), (1)

A(θ) = log
∫

exp{〈φ(x),θ〉}ν( dx) (2)

for a sufficient statistics φ : X → Rd, base measure ν
and parameters θ ∈ Ω = {θ ∈ Rd : A(θ) < ∞}.

We will also use the notation Xµ where µ ∈ Rd to
denote a random variable with distribution in P such
that E[φ(Xµ)] = µ. Note that this is well defined
since φ is sufficient for θ.

We are interested in the case in which the distribu-
tion of X factors according to an undirected graph-
ical model on m vertices G = (V,E), i.e. X =
(X1, . . . , Xm), X = Xm. For simplicity of notation we

focus on the case in which the interactions are pairwise
and the base measure is discrete. However, the ideas
apply directly to the general exponential family—this
will be discussed in more detail in Section 3.

Let F = (V ×X )∪(E×X 2) be the index set for the co-
ordinates of φ (the potentials). If e = (a, b) ∈ E, then
it is understood that the following inclusion holds on
the induced sigma-algebra: σ(φe,·(X)) ⊇ σ(Xa, Xb).
Similarly, if v ∈ V , σ(φv,·(X)) ⊇ σ(Xa). We lose no
generality by requiring existence of potentials for all
vertices and edges, since we can always set their cor-
responding parameter to zero.

2.2 Convex duality

A simple but fundamental property of exponential
families is that the gradient and Hessian of the log
partition function have the following forms:

∇A(θ) = E[φ(Xθ)]
H(A(θ)) = Var[φ(Xθ)]. (3)

The second identity implies convexity, which we can
use in conjunction with the Legendre-Fenchel trans-
formation to establish an alternative form for A.

Definition 1 For an extended real-valued function f ,
the Legendre-Fenchel transformation is defined as:

f∗(x) = sup{〈x, y〉 − f(y) : y ∈ dom(f)}.

When f is convex and lower semi-continuous, f = f∗∗,
we can use convexity of A to obtain:

A(θ) = sup{〈θ,µ〉 −A∗(µ) : µ ∈ M }, (4)

where M = ∇A(Θ) is the set of realizable moments.

Formulation (4) is no more tractable than the defini-
tion of A in Equation (2): the term A∗(µ), which can
be shown to be equal to the negative of the entropy
−Hν(Xµ) (Wainwright and Jordan 2008) cannot be
computed efficiently for arbitrary µ. Hence, the objec-
tive function cannot be evaluated efficiently. On the
other hand, Equation (4) is a constrained optimization
problem that can be relaxed. Mean field methods can
be seen as a particular type of relaxation where the
sup is taken over a proper subset of M . In particu-
lar, the sup is taken over a subset of M for which the
objective function and its gradient can be evaluated
efficiently.

2.3 Graphical mean-field relaxations

In order to define this relaxation, the user needs to
provide a subset of the principal exponential family,

The gradient of the log partition function is equal to the 
moments:

The hessian of the log partition function is equal to the 
covariance matrix:
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Consequence: A is a convex function
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Road map

Hard probabilistic 
inference problems

Deterministic 
algorithms

Probabilistic inference as 
an optimization problem

B
B

B

B

P P

P
B

Ptarget(x) = P(X = x|obs, params)

λs1(A) = λs1,s2(A,R) [marginalization]

λs1,s2(A1, A2) = λs2,s1(A2, A1)

1

2 3
Two examples:
- Mean field
- Loopy Belief Propagation
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Naive mean-field and connection with Gibbs

First: let rewrite the Gibbs sampler with the exponential 
family notation

+
+

+

-
+

- -

-
+ ϕ(x) = 

1[x1,1 = -]
1[x1,2 = +]

1[x1,1 = +, x1,2 = +]
1[x1,1 = +, x1,2 = -]

...
...

D

θ1,1,-
θ1,2,+

θ1,1,+;1,2,+
θ1,1,+;1,2,-

...
...

1[x1,1 = +] θ1,1,+
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Mean field

ϕ(x) = 

1[x1,1 = -]
1[x1,2 = +]

1[x1,1 = +, x1,2 = +]
1[x1,1 = +, x1,2 = -]

...
...

1[x1,1 = +]

Note: Gibbs can be seen in this case as keeping around one 
vector st = ϕ(xt) at each iteration (where each component of s 
is in the set {0, 1}

Idea: we are going to 
keep around one vector µt 
where each component of 
µt is in the set [0, 1], and 
hope that this gives a 
good approximation to 

µ = E[ϕ(X)]
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Loopy Belief Propagation (BP)

Looking back at exact inference on a chain/tree:

... ...

X Y

View the process of 
eliminating all the variable at 
the left of X as a message 
sent from X to Y: mt(y)

What would be the next 
message, mt+1(z) that Y 
would send to the node Z at 
the right of it?

Use the notation f(y,z) for the 
factor between Y and Z

Z
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Loopy Belief Propagation (BP)

Idea: do this even if the graph is not a chain/tree

... Y

...

...

X2

X3

What would be the next 
message, mt+1(z) that Y 
would send to the node Z at 
the right of it?

Using the notation f(y,z) for 
the factors

X1m2,t(y)

m1,t(y)

m3,t(y)

Z
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Road map

Hard probabilistic 
inference problems

Deterministic 
algorithms

Probabilistic inference as 
an optimization problem

B
B

B

B

P P

P
B

Ptarget(x) = P(X = x|obs, params)

λs1(A) = λs1,s2(A,R) [marginalization]

λs1,s2(A1, A2) = λs2,s1(A2, A1)

1

2 3

Next step: expressing the 
inference tasks as a 
constrained optimization 
problem
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Representation of convex functions

How to construct a variational formulation for A?

• Key concept: convex duality (recall A is convex. . . )

• Two equivalent ways to specify convex functions

Standard / pointwise 
encoding

Encoded by intercepts of 
the supporting tangents
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Connexion: Legendre-Fenchel transformation 

An operator (a function that takes a function and 
transforms it into another function) denoted by *

Warning: for pedagogical reasons, assume for now that f 
is univariate, twice differentiable and strictly convex (can 
be made more general!!) 

Convex Duality

• The convex conjugate of f : Rd → R ∪ {+∞}, denoted f∗ makes this
equivalence explicit:

f∗(y) := sup
x∈Rd

{
〈y, x〉 − f(x)

}
,

• set f∗(x) = +∞ for unbounded values: f∗ : Rd → R ∪ {+∞}.

of this gain in accuracy, we present a new structure
mean field algorithm based on auxiliary exponential
families.

The notion of v- and b-acyclic subgraphs is different
that the notion of “overlapping cluster” used in the
work on structured mean field by Geiger et al. (2006).
Some v-acyclic graphs have overlapping clusters, some
do not; and moreover, the computational dichotomy
we establish here does not hold if the notion of v- and
b-acyclic subgraphs is replaced by that of overlapping
clusters. Note that other variational approximations
such as Expectation Propagation also have a subgraph
interpretation (Minka and Qi 2003). While this sub-
graph sometimes happens to be b-acyclic, there is no
special distinction between v- and b-acyclic graphical
approximations in the case of Bethe-energy variational
approximations. This is why we focus on mean field
approximations.

The paper is organized as follows. We present a ba-
sic introduction to structured mean field in Section 2.
We then discuss our analysis and algorithmic develop-
ments in Section 3. We present empirical results to
support our claims in Section 4 and we present our
conclusions in Section 5.

2 Background

In this section, we review the principles of mean field
approximation and set the notation. Our exposition
follows the general treatment of variational methods
presented in Wainwright and Jordan (2003) where the
Legendre-Fenchel transformation plays a central role.

2.1 Exponential families

We assume that the random variable under study, Xθ,
has a distribution in a regular exponential family P
in canonical form:

P(Xθ ∈ A) =
∫

A
exp{〈φ(x),θ〉 −A(θ)}ν( dx), (1)

A(θ) = log
∫

exp{〈φ(x),θ〉}ν( dx) (2)

for a sufficient statistics φ : X → Rd, base measure ν
and parameters θ ∈ Ω = {θ ∈ Rd : A(θ) < ∞}.

We will also use the notation Xµ where µ ∈ Rd to
denote a random variable with distribution in P such
that E[φ(Xµ)] = µ. Note that this is well defined
since φ is sufficient for θ.

We are interested in the case in which the distribu-
tion of X factors according to an undirected graph-
ical model on m vertices G = (V,E), i.e. X =
(X1, . . . , Xm), X = Xm. For simplicity of notation we

focus on the case in which the interactions are pairwise
and the base measure is discrete. However, the ideas
apply directly to the general exponential family—this
will be discussed in more detail in Section 3.

Let F = (V ×X )∪(E×X 2) be the index set for the co-
ordinates of φ (the potentials). If e = (a, b) ∈ E, then
it is understood that the following inclusion holds on
the induced sigma-algebra: σ(φe,·(X)) ⊇ σ(Xa, Xb).
Similarly, if v ∈ V , σ(φv,·(X)) ⊇ σ(Xa). We lose no
generality by requiring existence of potentials for all
vertices and edges, since we can always set their cor-
responding parameter to zero.

2.2 Convex duality

A simple but fundamental property of exponential
families is that the gradient and Hessian of the log
partition function have the following forms:

∇A(θ) = E[φ(Xθ)]
H(A(θ)) = Var[φ(Xθ)]. (3)

The second identity implies convexity, which we can
use in conjunction with the Legendre-Fenchel trans-
formation to establish an alternative form for A.

Definition 1 For an extended real-valued function f ,
the Legendre-Fenchel transformation is defined as:

f∗(x) = sup{〈x, y〉 − f(y) : y ∈ dom(f)}.

When f is convex and lower semi-continuous, f = f∗∗,
we can use convexity of A to obtain:

A(θ) = sup{〈θ,µ〉 −A∗(µ) : µ ∈ M }, (4)

where M = ∇A(Θ) is the set of realizable moments.

Formulation (4) is no more tractable than the defini-
tion of A in Equation (2): the term A∗(µ), which can
be shown to be equal to the negative of the entropy
−Hν(Xµ) (Wainwright and Jordan 2008) cannot be
computed efficiently for arbitrary µ. Hence, the objec-
tive function cannot be evaluated efficiently. On the
other hand, Equation (4) is a constrained optimization
problem that can be relaxed. Mean field methods can
be seen as a particular type of relaxation where the
sup is taken over a proper subset of M . In particu-
lar, the sup is taken over a subset of M for which the
objective function and its gradient can be evaluated
efficiently.

2.3 Graphical mean-field relaxations

In order to define this relaxation, the user needs to
provide a subset of the principal exponential family,
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Intuition
Geometric picture

• Warning: for pedagogical reasons, assume for now that f is univariate, twice
differentiable and strictly convex (can be made more general!!)

• “f acts on points, f∗ acts on tangents”

“f acts on points,  f∗ acts on tangents”: Suppose I give you 
a tangent/supporting plane.  Encoding a convex function 
can be done by giving the intercept ca
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Why this particular ‘encoding’?

Theorem: 
When f is convex (and lower semi-continuous): f** = f 

Consequence: the log partition function satisfies A** = A

What we will do with this:  First, apply the definition of 
Fenchel dual to the function A*, get:

of this gain in accuracy, we present a new structure
mean field algorithm based on auxiliary exponential
families.

The notion of v- and b-acyclic subgraphs is different
that the notion of “overlapping cluster” used in the
work on structured mean field by Geiger et al. (2006).
Some v-acyclic graphs have overlapping clusters, some
do not; and moreover, the computational dichotomy
we establish here does not hold if the notion of v- and
b-acyclic subgraphs is replaced by that of overlapping
clusters. Note that other variational approximations
such as Expectation Propagation also have a subgraph
interpretation (Minka and Qi 2003). While this sub-
graph sometimes happens to be b-acyclic, there is no
special distinction between v- and b-acyclic graphical
approximations in the case of Bethe-energy variational
approximations. This is why we focus on mean field
approximations.

The paper is organized as follows. We present a ba-
sic introduction to structured mean field in Section 2.
We then discuss our analysis and algorithmic develop-
ments in Section 3. We present empirical results to
support our claims in Section 4 and we present our
conclusions in Section 5.

2 Background

In this section, we review the principles of mean field
approximation and set the notation. Our exposition
follows the general treatment of variational methods
presented in Wainwright and Jordan (2003) where the
Legendre-Fenchel transformation plays a central role.

2.1 Exponential families

We assume that the random variable under study, Xθ,
has a distribution in a regular exponential family P
in canonical form:

P(Xθ ∈ A) =
∫

A
exp{〈φ(x),θ〉 −A(θ)}ν( dx), (1)

A(θ) = log
∫

exp{〈φ(x),θ〉}ν( dx) (2)

for a sufficient statistics φ : X → Rd, base measure ν
and parameters θ ∈ Ω = {θ ∈ Rd : A(θ) < ∞}.

We will also use the notation Xµ where µ ∈ Rd to
denote a random variable with distribution in P such
that E[φ(Xµ)] = µ. Note that this is well defined
since φ is sufficient for θ.

We are interested in the case in which the distribu-
tion of X factors according to an undirected graph-
ical model on m vertices G = (V,E), i.e. X =
(X1, . . . , Xm), X = Xm. For simplicity of notation we

focus on the case in which the interactions are pairwise
and the base measure is discrete. However, the ideas
apply directly to the general exponential family—this
will be discussed in more detail in Section 3.

Let F = (V ×X )∪(E×X 2) be the index set for the co-
ordinates of φ (the potentials). If e = (a, b) ∈ E, then
it is understood that the following inclusion holds on
the induced sigma-algebra: σ(φe,·(X)) ⊇ σ(Xa, Xb).
Similarly, if v ∈ V , σ(φv,·(X)) ⊇ σ(Xa). We lose no
generality by requiring existence of potentials for all
vertices and edges, since we can always set their cor-
responding parameter to zero.

2.2 Convex duality

A simple but fundamental property of exponential
families is that the gradient and Hessian of the log
partition function have the following forms:

∇A(θ) = E[φ(Xθ)]
H(A(θ)) = Var[φ(Xθ)]. (3)

The second identity implies convexity, which we can
use in conjunction with the Legendre-Fenchel trans-
formation to establish an alternative form for A.

Definition 1 For an extended real-valued function f ,
the Legendre-Fenchel transformation is defined as:

f∗(x) = sup{〈x, y〉 − f(y) : y ∈ dom(f)}.

When f is convex and lower semi-continuous, f = f∗∗,
we can use convexity of A to obtain:

A(θ) = sup{〈θ,µ〉 −A∗(µ) : µ ∈ M }, (4)

where M = ∇A(Θ) is the set of realizable moments.

Formulation (4) is no more tractable than the defini-
tion of A in Equation (2): the term A∗(µ), which can
be shown to be equal to the negative of the entropy
−Hν(Xµ) (Wainwright and Jordan 2008) cannot be
computed efficiently for arbitrary µ. Hence, the objec-
tive function cannot be evaluated efficiently. On the
other hand, Equation (4) is a constrained optimization
problem that can be relaxed. Mean field methods can
be seen as a particular type of relaxation where the
sup is taken over a proper subset of M . In particu-
lar, the sup is taken over a subset of M for which the
objective function and its gradient can be evaluated
efficiently.

2.3 Graphical mean-field relaxations

In order to define this relaxation, the user needs to
provide a subset of the principal exponential family,

This is just the domain of A* 

**

A(θ)

=
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Done?

of this gain in accuracy, we present a new structure
mean field algorithm based on auxiliary exponential
families.

The notion of v- and b-acyclic subgraphs is different
that the notion of “overlapping cluster” used in the
work on structured mean field by Geiger et al. (2006).
Some v-acyclic graphs have overlapping clusters, some
do not; and moreover, the computational dichotomy
we establish here does not hold if the notion of v- and
b-acyclic subgraphs is replaced by that of overlapping
clusters. Note that other variational approximations
such as Expectation Propagation also have a subgraph
interpretation (Minka and Qi 2003). While this sub-
graph sometimes happens to be b-acyclic, there is no
special distinction between v- and b-acyclic graphical
approximations in the case of Bethe-energy variational
approximations. This is why we focus on mean field
approximations.

The paper is organized as follows. We present a ba-
sic introduction to structured mean field in Section 2.
We then discuss our analysis and algorithmic develop-
ments in Section 3. We present empirical results to
support our claims in Section 4 and we present our
conclusions in Section 5.

2 Background

In this section, we review the principles of mean field
approximation and set the notation. Our exposition
follows the general treatment of variational methods
presented in Wainwright and Jordan (2003) where the
Legendre-Fenchel transformation plays a central role.

2.1 Exponential families

We assume that the random variable under study, Xθ,
has a distribution in a regular exponential family P
in canonical form:

P(Xθ ∈ A) =
∫

A
exp{〈φ(x),θ〉 −A(θ)}ν( dx), (1)

A(θ) = log
∫

exp{〈φ(x),θ〉}ν( dx) (2)

for a sufficient statistics φ : X → Rd, base measure ν
and parameters θ ∈ Ω = {θ ∈ Rd : A(θ) < ∞}.

We will also use the notation Xµ where µ ∈ Rd to
denote a random variable with distribution in P such
that E[φ(Xµ)] = µ. Note that this is well defined
since φ is sufficient for θ.

We are interested in the case in which the distribu-
tion of X factors according to an undirected graph-
ical model on m vertices G = (V,E), i.e. X =
(X1, . . . , Xm), X = Xm. For simplicity of notation we

focus on the case in which the interactions are pairwise
and the base measure is discrete. However, the ideas
apply directly to the general exponential family—this
will be discussed in more detail in Section 3.

Let F = (V ×X )∪(E×X 2) be the index set for the co-
ordinates of φ (the potentials). If e = (a, b) ∈ E, then
it is understood that the following inclusion holds on
the induced sigma-algebra: σ(φe,·(X)) ⊇ σ(Xa, Xb).
Similarly, if v ∈ V , σ(φv,·(X)) ⊇ σ(Xa). We lose no
generality by requiring existence of potentials for all
vertices and edges, since we can always set their cor-
responding parameter to zero.

2.2 Convex duality

A simple but fundamental property of exponential
families is that the gradient and Hessian of the log
partition function have the following forms:

∇A(θ) = E[φ(Xθ)]
H(A(θ)) = Var[φ(Xθ)]. (3)

The second identity implies convexity, which we can
use in conjunction with the Legendre-Fenchel trans-
formation to establish an alternative form for A.

Definition 1 For an extended real-valued function f ,
the Legendre-Fenchel transformation is defined as:

f∗(x) = sup{〈x, y〉 − f(y) : y ∈ dom(f)}.

When f is convex and lower semi-continuous, f = f∗∗,
we can use convexity of A to obtain:

A(θ) = sup{〈θ,µ〉 −A∗(µ) : µ ∈ M }, (4)

where M = ∇A(Θ) is the set of realizable moments.

Formulation (4) is no more tractable than the defini-
tion of A in Equation (2): the term A∗(µ), which can
be shown to be equal to the negative of the entropy
−Hν(Xµ) (Wainwright and Jordan 2008) cannot be
computed efficiently for arbitrary µ. Hence, the objec-
tive function cannot be evaluated efficiently. On the
other hand, Equation (4) is a constrained optimization
problem that can be relaxed. Mean field methods can
be seen as a particular type of relaxation where the
sup is taken over a proper subset of M . In particu-
lar, the sup is taken over a subset of M for which the
objective function and its gradient can be evaluated
efficiently.

2.3 Graphical mean-field relaxations

In order to define this relaxation, the user needs to
provide a subset of the principal exponential family,

Convex function are easy to optimize, right?

Problems: there are exponentially many constraints
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Constraints: realizable moments

Suppose I give you a D-dimensional vector µ and I claim 
it is the moment of a distribution for some parameters θ 
(which I don’t give you θ, but the sufficient statistics are 
known)

µ = E[ϕ(Xθ)]

I.e. claim there is a θ such that:

What could you check?

µ1,1,+
µ1,1,-
µ1,2,+

µ1,1,+;1,2,+
µ1,1,+;1,2,-

...
... 22Monday, March 14, 2011



Constraints: realizable moments

Suppose I give you a D-dimensional vector µ and I claim 
it is the moment of a distribution for some parameters θ 
(which I don’t give you θ, but the sufficient statistics are 
known)

µ = E[ϕ(Xθ)]

I.e. claim there is a θ such that:

What could you check?

µ1,1,+
µ1,1,-
µ1,2,+

µ1,1,+;1,2,+
µ1,1,+;1,2,-

...
...

µ1,1,+ =
∑

x∈{+,−}

µ1,1,+;1,2,x

Looks familiar?
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Constraints: realizable moments

Theorem: for trees, µ is a realizable moment if and only if 
pairwise marginalization conditions are met

In cyclic graphs, higher order marginalization constraints 
needed!
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Belief propagation

Main idea: even if there are cycles, use only pairwise 
marginalization constraints (a relaxation of the optimization 
problem)

It can be shown that optimizing this relaxed problem yields 
the familiar BP algorithm 
(the objective also needs to be simplified a little bit)
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Mean-field: inference by making the 
set of realizable moments simpler

5.4. Non-convexity of mean field 145

µe

M(G)

MF (G)

Fig. 5.4. Cartoon illustration of the set MF (G) of mean parameters that
arise from tractable distributions is a non-convex inner bound on M(G).
Illustrated here is the case of discrete random variables where M(G) is a
polytope. The circles correspond to mean parameters that arise from delta
distributions, and belong to both M(G) and MF (G).

Nonetheless, mean-field methods have been used successfully in a va-
riety of applications, and the lower bounding property of mean field
methods is attractive, for instance in the context of parameter estima-
tion, as we discuss at more length in the following section.

of this gain in accuracy, we present a new structure
mean field algorithm based on auxiliary exponential
families.

The notion of v- and b-acyclic subgraphs is different
that the notion of “overlapping cluster” used in the
work on structured mean field by Geiger et al. (2006).
Some v-acyclic graphs have overlapping clusters, some
do not; and moreover, the computational dichotomy
we establish here does not hold if the notion of v- and
b-acyclic subgraphs is replaced by that of overlapping
clusters. Note that other variational approximations
such as Expectation Propagation also have a subgraph
interpretation (Minka and Qi 2003). While this sub-
graph sometimes happens to be b-acyclic, there is no
special distinction between v- and b-acyclic graphical
approximations in the case of Bethe-energy variational
approximations. This is why we focus on mean field
approximations.

The paper is organized as follows. We present a ba-
sic introduction to structured mean field in Section 2.
We then discuss our analysis and algorithmic develop-
ments in Section 3. We present empirical results to
support our claims in Section 4 and we present our
conclusions in Section 5.

2 Background

In this section, we review the principles of mean field
approximation and set the notation. Our exposition
follows the general treatment of variational methods
presented in Wainwright and Jordan (2003) where the
Legendre-Fenchel transformation plays a central role.

2.1 Exponential families

We assume that the random variable under study, Xθ,
has a distribution in a regular exponential family P
in canonical form:

P(Xθ ∈ A) =
∫

A
exp{〈φ(x),θ〉 −A(θ)}ν( dx), (1)

A(θ) = log
∫

exp{〈φ(x),θ〉}ν( dx) (2)

for a sufficient statistics φ : X → Rd, base measure ν
and parameters θ ∈ Ω = {θ ∈ Rd : A(θ) < ∞}.

We will also use the notation Xµ where µ ∈ Rd to
denote a random variable with distribution in P such
that E[φ(Xµ)] = µ. Note that this is well defined
since φ is sufficient for θ.

We are interested in the case in which the distribu-
tion of X factors according to an undirected graph-
ical model on m vertices G = (V,E), i.e. X =
(X1, . . . , Xm), X = Xm. For simplicity of notation we

focus on the case in which the interactions are pairwise
and the base measure is discrete. However, the ideas
apply directly to the general exponential family—this
will be discussed in more detail in Section 3.

Let F = (V ×X )∪(E×X 2) be the index set for the co-
ordinates of φ (the potentials). If e = (a, b) ∈ E, then
it is understood that the following inclusion holds on
the induced sigma-algebra: σ(φe,·(X)) ⊇ σ(Xa, Xb).
Similarly, if v ∈ V , σ(φv,·(X)) ⊇ σ(Xa). We lose no
generality by requiring existence of potentials for all
vertices and edges, since we can always set their cor-
responding parameter to zero.

2.2 Convex duality

A simple but fundamental property of exponential
families is that the gradient and Hessian of the log
partition function have the following forms:

∇A(θ) = E[φ(Xθ)]
H(A(θ)) = Var[φ(Xθ)]. (3)

The second identity implies convexity, which we can
use in conjunction with the Legendre-Fenchel trans-
formation to establish an alternative form for A.

Definition 1 For an extended real-valued function f ,
the Legendre-Fenchel transformation is defined as:

f∗(x) = sup{〈x, y〉 − f(y) : y ∈ dom(f)}.

When f is convex and lower semi-continuous, f = f∗∗,
we can use convexity of A to obtain:

A(θ) = sup{〈θ,µ〉 −A∗(µ) : µ ∈ M }, (4)

where M = ∇A(Θ) is the set of realizable moments.

Formulation (4) is no more tractable than the defini-
tion of A in Equation (2): the term A∗(µ), which can
be shown to be equal to the negative of the entropy
−Hν(Xµ) (Wainwright and Jordan 2008) cannot be
computed efficiently for arbitrary µ. Hence, the objec-
tive function cannot be evaluated efficiently. On the
other hand, Equation (4) is a constrained optimization
problem that can be relaxed. Mean field methods can
be seen as a particular type of relaxation where the
sup is taken over a proper subset of M . In particu-
lar, the sup is taken over a subset of M for which the
objective function and its gradient can be evaluated
efficiently.

2.3 Graphical mean-field relaxations

In order to define this relaxation, the user needs to
provide a subset of the principal exponential family,

AND: 

Cartoon:

Q ⊂ P, in which the log partition and moments can
be computed.

An intuitively appealing approach to making this se-
lection is to make use of the graphical representation
of the exponential family and to choose a subset of the
edges, E′ ⊂ E, to represent a tractable subfamily. In
particular, in defining this subfamily we retain only
the potentials with indices

F ′ = {f ∈ F :f = (v, ·) for v ∈ V or
f = (e, ·) for e ∈ E′}.

The subgraph G′ = (V,E′) is generally taken to be
acyclic so that inference in the induced subfamily Q
is indeed tractable.

We denote the parameters indexing this subfamily by
ω ∈ Ξ and its moments by τ . Also we let Y denote a
generic random variable that has a distribution in Q.
The subfamily induces a tractable subset MMF ⊆ M
of moments in M :

MMF =
{

µ ∈ M : ∃ω ∈ Ξ s.t. E[φ(Y ω)] = µ
}

,

which in turn induces a tractable relaxation:

Â(θ) = sup{〈θ,µ〉 −A∗(µ) : µ ∈ MMF}. (5)

Indeed, for all µ ∈ MMF, A∗(µ) amounts to computing
the entropy of a forest-shaped graphical model:

Hν(Y ) =
∑

i∈cc(G′)

{
Hν(Yi) +

∑

j:j $=i∼j

Hν(Yj |Ypa(j))
}

.

Note that Â(θ) ≤ A(θ), which is a very useful property
when mean-field inference is used in the inner loop
of EM (Wainwright and Jordan 2008). Moreover, if
E′′ ⊆ E′, with associated mean field approximation
Ă(θ), then Ă(θ) ≤ Â(θ) ≤ A(θ).

As a consequence, adding edges in G′ = (V,E′) can
only increase the quality of the global optimum. This
does not imply that the local optimum found by the
optimization procedure will always be superior, but
we show in the experimental section that empirically
there is indeed an improvement when edges are added
to the approximation.

We also let N denote the set of realizable moments of
Q. Note that this set is formally distinct from MMF

(in particular, its elements have different dimensional-
ity).

By construction, it will be possible to perform the op-
timization over variables in Rd′

, where d′ = |F ′|. To
see why, let us define an embedding Γ : Rd′ → R∆d

(∆d = d− d′) as follows: for f ∈ F\F ′,

Γf (τ ) = E[φf (Y τ )].

We can then write the fundamental equation of mean-
field approximation:

sup{〈θ,µ〉 −A∗(µ) : µ ∈ MMF} =
sup{〈ω, τ 〉+ 〈ϑ,Γ(τ )〉 −A∗(τ ) : τ ∈ N }, (6)

where θ = (ω,ϑ). Note the slight abuse of notation:
we use A to denote the partition function of both ex-
ponential families; the notation can always be disam-
biguated by inspecting the dimensionality of the pa-
rameter vector.

The right-hand side of Equation (6) makes it clear that
the mean field optimization problem is different than
performing inference in Q, the latter being:

sup{〈ω, τ 〉 −A∗(τ ) : τ ∈ N }.

In particular, the function Γ on the right-hand side
of Equation (6) is generally non-convex. The precise
form of Γ will be established shortly.

The left-hand side of Equation (6) gives another per-
spective on the mean-field optimization problem: here
we have a convex objective, but the optimization is
over a non-convex set (Wainwright and Jordan 2008).

Note that Equation (6) allows us to perform the opti-
mization in the smaller space Rd′

; this is a key algo-
rithmic consequence of the mean-field approximation.

2.4 Generic fixed point updates

Let G(τ ) = 〈ω, τ 〉+〈ϑ,Γ(τ )〉−A∗(τ ). We take partial
derivatives to obtain stationary point conditions. By
the definition of Γ:

∂G

∂τf
(τ ) = ωf +

∑

g∈F\F ′

ϑg
∂Γg

∂τf
(τ )− ∂A∗

∂τi
(τ )

where f ∈ F ′.

It will be useful to represent this update in vector no-
tation; for this purpose, we introduce the following
definition.

Definition 2 The embedding Jacobian is the (trans-
posed) Jacobian matrix of Γ:

J =
(∂Γg

∂τf

)

f,g

for f ∈ F ′, g ∈ F\F ′.

With this definition, we obtain the concise expression:

∇G = ω + Jϑ−∇A∗.

A necessary condition for optimality is therefore:

∇A∗ = ω + Jϑ (7)
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Recommended readings

MCMC: 

 Overview of theory and practice: ‘Markov chains for exploring posterior 
distributions.’  (1994)  L. Tierney.  

 Tricks of the trade:  Part IV of ‘Information Theory, Inference, and 
Learning Algorithms.’ (2003) D. MacKay.

 Fast sampler for Ising model I haven’t covered: ‘Nonuniversal critical 
dynamics in Monte Carlo simulations. ‘ (1987) R.H. Swendsen and J.-S. 
Wang. 

 Computing partition function from samples: ‘Marginal likelihood from 
the Gibbs output’ (1995)  S. Chib.;  Also: ‘Simulating ratios of normalizing 
constants via a simple identity: a theoretical exploration’ (1996) X.-L. Meng 
and W.H. Wong.
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Recommended readings

Variational: 

 Overview of theory: Chapters 1-5 of ‘Graphical models, exponential 
families, and variational inference.’ (2008) M. J. Wainwright and M. I. 
Jordan. 

 More on the Mean Field: Background section of ‘Optimization of 
Structured Mean Field Objectives’.  (2009)  A. Bouchard and M.I. Jordan.
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Dirichlet Processes
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Recall: motivation in density estimation

Mixture model: (UBC student height with 2 components) 
say we have only 3 observations

y1

x1

y2

x2

y3

x3θ(1)

θ(2)

π
1- Generate a male/female relative frequence
       π ~ Beta(male prior pseudo counts, female P.C)

2- Generate the sex of each student for each i
       xi  | π ~ Mult(π)

3- Generate the mean height of each cluster c
       θ(c) ~ N(prior height, how confident prior)

4- Generate student heights for each i
       yi  | xi, θ(1),  θ(2)  ~ N(θ(xi) ,variance)

Mean height 
for men

Mean height 
for women
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φi|G ∼ G

=
2∑

c=1

πcδ{θ(c)}

Equivalent notation

Mixture model: (UBC student height with 2 components) 
say we have only 3 observations

y1

x1

y2

x2

y3

x3θ(1)

θ(2)

π

Mean height 
for men

Mean height 
for women y1

ϕ1

y2

ϕ2

y3

ϕ3

G

yi  | ϕi  ~ N(ϕi ,variance)
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Samples from G

What we have:

What we want:

Var
ian

ce 
par

am
ete

r

Mean parameter

Var
ian

ce 
par

am
ete

r

Mean parameter
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Definition: Dirichlet Process

Let G0 be a distribution on a sample space Ω (the base 
distribution) α0 be a positive real number (the concentration), 
and (A1, ..., Ak) be a partition of Ω.  We say

i.e., G is a Dirichlet Process, if

for all partitions and all k.

G ∼ DP(α0, G0)

(G(A1), . . . , G(Ak)) ∼ Dir(α0G0(A1), . . . ,α0G0(Ak))
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Does this make sense/exists?

Kolmogorov consistency: check the marginals are 
consistent under marginalization

In this case: check that the marginals are consistent 
when refining partitions

A1

A2

B1

B2

B3

(G(A1), G(A2)) (G(B1), G(B2), G(B3))
(U1, U2) (V1, V2, V3)
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π1 = β1

=
∞∑

c=1

πcδ{θ(c)}

πc = βcL = βc

∏

j:j<c

(1− βj)

Constructive argument

Claim: the random probability distribution constructed 
below is the Dirichlet process with base distribution G0 and 
concentration α0

G’

θc

πc

Likelihood 
mixture 

component 
parameters

βj

c = 1, 2, 3, ...

c = 1, 2, 3, ...

j = 1, 2, 3, ...

βj ∼ Beta(1, α0)

θc ∼ G0

iid

iid

Start with a stick of length 1, and break a 
segment of length β1 for π1, keep the rest

At step c, if the length of the stick 
remaining is L, set:
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Samples from G

Var
ian

ce 
par

am
ete

r
Mean parameter

Unit length stick β Mixture proportions

Ordered iid G0 locations

θ1

θ2
θ3 A sample from G’ : a distribution with 

countably infinite support
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n∑

c=1

πc
a.s.−→ 1

πc = βcL = βc

∏

j:j<c

(1− βj)

Are the samples indeed probability distributions?

Need to check:

Recall:
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(G′(A1), . . . , G′(Ak)) ∼ Dir(α0G0(A1), . . . ,α0G0(Ak))

Goal: showing two definitions are equivalent

Kolmogorov consistency Stick-breaking construction

Strategy: showing that for all partitions (A1, ..., Ak), the 
constructed process G’ has finite Dirichlet marginals

B1

B2

B3
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β∗ = (β1, β2, . . . )∗ = (β2, β3, . . . )

G′ d= G′′

G′ = f(β, θ) =
∞∑

c=1

πcδ{θ(c)}

G′ = π1δ{θ(1)} + (1− π1)f(β∗, θ∗)

= π1δ{θ(1)} + (1− π1)G′′

G′ st= π1δ{θ(1)} + (1− π1)G′

Key observation: ‘self-similarity’

Definitions:

Observation:

for

How we’ll use it: we will show that if there is a distribution 
that satisfies this equation, it is unique; and that the finite 
Dirichlet distribution satisfies it

Notation: *
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=⇒

G
d= G′

Detailed plan

G’ satisfies 
equation (*)

The marginals of 
G’ satisfy 

equation (*)
=⇒

G’ has Dirichlet 
marginals

Finite Dirichlet 
distributions satisfy 

equation (*)
Equation (*) has a 
unique solution

=⇒ =⇒

=⇒

To be continued...
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