Statistical modeling with
stochastic processes

Alexandre Bouchard-Cote
Lecture 6,VWednesday March 16




Program for today

* |ntroduction to Bayesian non-parametrics
= The Dirichlet Process: Theoretical foundations

= Basic properties: posterior conjugacy, predictive
distribution, etc

= Chinese Restaurant, Polya Urn, etc.

= Basic probabilistic inference
= Collapsed sampler
= Slice sampler
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Review
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(Finite) Dirichlet distribution

Distribution on the parameters of categorical/multinomial
distributions f. .

Equivalent: distribution on k

the simplex

N
parameter \
_ second
Density: for «; > 0 barameter
R _ _
a;—1
Z(Oé) i—1 Y/ -
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Equivalent notation

Mixture model: (UBC student height with 2 components)
say we have only 3 observations
2
T G = ZWC5{9(C)}
c=1

Mean height / / \
for men 4
20 \XI X2 x3 | 1 92 93 HG~G
0 \
) &\

Mean heigh \\
for women v — v v v v
\/1\‘ > Ty | yvi y2 Y3

Vi | ¢i ~ N(¢i ,variance)

7
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Samples from G
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Definition: Dirichlet Process

Let Go be a distribution on a sample space €2 (the base
distribution) ap be a positive real number (the concentration),
and (41, ..., Ax) be a partition of Q. We say

G~ DP(CV(), G())
..e., G Is a Dirichlet Process, If
(G(A1),...,G(Ar)) ~ Dir(agGo(A1),...,a0Go(Ag))

for all partitions and all .




Does this make sense/exists?

Kolmogorov consistency: check the marginals are
consistent under marginalization

In this case: check that the marginals are consistent
when refining partitions

A> Bz/
A Bi1\ B3
(G(A41), G(A42)) (G(B1), G(B2), G(B3))

(U1, Un) (V1, V2, V3)




Constructive argument

Claim' the random probability distribution constructed

__________
" s
.* ..

concentration oo

’ " We will denote | J: 1,2,3, ..
11 ‘o Aictrih it , :
B3, ~ Beta(1, ap) this distribution | _; b
4 over z by 5-
(96 ~ G() < GEM(OCO) )
Start with a stick of length 1, and breaka [c=1,2.3, .
segment of length £ for 71, keep the rest 9
m = 61 y \
At step c, if the length of the stick Likelihood
remaining is L, set: —— mixture G’ = Z TcO{0(c)}
component

= bl = B H (1 — ﬁ]) parameters

J:3<c
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Samples from G

Unit length stick p Mixture proportions

=)

Ordered 1ild Gy locations

R A
< >
o [ [ ® . Q() A
° c . @\q, R A AR A A TA TMean paramete
A
. ®e «® ° T A TAA A

o, © o © A A
‘e * O A sample from G’ : a distribution with

Cree o o o, countably infinite support
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Back to the proof that
G = G in distribution

Reference: ‘A constructive definition of Dirichlet
Priors’ (1994) Jayaram Sethuraman.




Goal: showing two definitions are equivalent

Kolmogorov consistency

B

B>

_

B3

Stick-breaking construction

——

Strategy: showing that for all partitions (41, ..., Ax), the
constructed process G " has finite Dirichlet marginals

(G/(Al), c ey G/(Ak)) ~ Dif((XOGQ(Al), - . ,Oé()GQ(Ak))

Wednesday, March 16, 2011



Key observation: ‘self-similarity’

Definitions: G’ = f(3.0) = >  medio();
c=1

G = (01, B2,...)" = (62,03, .-)
Observation: G’ = 7,651y + (1 — m) f(3*,0%)
=m0y + (1 = m)G"  for G’ = G”
Notation: G' = 8oy + (1 —m1)G *

How we’ll use it: we will show that if there is a distribution
that satisfies this equation, it is unique; and that the finite
Dirichlet distribution satisfies it




Detailed plan

Finite Dirichlet
distributions satisfy Equation (*) has a
equation (%) unique solution
N /
G’ satisfies ;hegirggigils of G’ has Dirichlet
equation (¥) Y = marginals

equation (%)

G=q




Lemma: uniqueness of the solution of *

Notation: G = 7T15{9(1)} + (1 — 7T1)G//
VvV Tew v *
yv= U + W V

Properties we use:

- G ”Is independent of (U, W)

_PO<W<1/2)>0

(Proof of uniqueness on the board)




Detailed plan

Finite Dirichlet
distributions satisfy Equation (*) has a
equation (*) unique solution
N /

The marginals of
— (G salisfy —
equation (%)

G’ has Dirichlet
marginals

(G’ satisfies
equation (%)

G=q




Lemmas

k
Lemma 1. Let: U ~ Dir(aq,...,ax), g = Zai
i=1
Vi~ Dir(Vh SR 7716)

W ~ Beta(ag,Yo) all indep.

Then: wWu + (1 - W)V ~ Dir(a + )

Proof: Gamma/neutral representation
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Lemmas

Lemma 2. Let; e; = a unit basis vector

]

5.
’ Y0
k

Then: > 7;Dir(y +e¢;) ~ Dir(y)
j=1

Proof: Exercise (next assignment)
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Main proof: finite Dirichlet satisfies *

Goal: showing that; |
V ~ Dir(v1, ..., 7)

satisfies equation () projected to the marginal of a
finite partition

Steps:

1- Condition on the partition indicator X in which the first

atom falls in
2- Sum over the possible values of X




Detailed plan

Finite Dirichlet
distributions satisfy Equation (*) has a
equation (%) unique solution
\ /
G’ satisfies ;hegirggigils of G’ has Dirichlet
equation (¥) Y = marginals

equation (%)




Main properties of
Dirichlet Processes




Moments

Let G ~ DP(a0, Go) and A be a measurable set

Exercise: find the first and second moments of G(A)

(Derivation of the moments on the board)




Towards conjugacy

Let G ~ DP(ao, Go) and (41, ..., Ax) be a measurable
partition. Let @ be adraw from G,i.e..0| G~ G

By multinomial-Dirichlet conjugacy, we have:
(G(Ay),...,G(Ay)) |«9 ~
Dir(onGQ(Al) -+ 5{9} (Al), . ,Oé()G()(Ak) -+ 5{9} (Ak))

Since this is true for all partitions, this means the posterior
s a Dirichlet process as well!

Reference: ‘The theory of statistics’ (1995) Mark J. Schervish
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Conjugacy

Found:

(G(Ay),...,G(AR) |0 ~
Dir(apGo(A1) + 1oy (A1), - - -, 0Go(Ag) + dgay (Ax))

Next: |dentifying the new parameters a'o and G’ of the
posterior distribution...

ap =3 (aOGO(Ak) + 5{9}(Ak)) — ap + 1

k

870 1
Gl = Go )
0 o +1 0 g1 19




General formula

Suppose now we have several draws from G:

(G(A), ..., G(Ap)) |61, ... .0, ~
DiI‘(CkQGO(Al) -+ ni, ... ,CMOGQ(Ak) -+ nk)

where:  nj = d0,3(4;)
1=1

Therefore the posterior parameters are:

ay, = ag+n

879

1 Tl
G/, = Go din.
0 Qg+ N V Oéo+n; 10
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Predictive distribution

Predictive distribution: 0,.+1/01,...,0,

Motivation for marginalizing G’ posterior inference using
MCMC on a finite state space

Let A be a measurable set, G ~ DP(Gy, ap)

917"'79n+1‘GNG ﬁ

(Derivation of the predictive dist. on the board) 0 O




Application: Pdlya Urn

Thought experiment: Consider an urn, with initially R
red marbles and B blue marbles.

At each step, draw one marble at random, and put it
back in the urn after adding another one of the same
O o0

EATSE o

Question: does this process converge to a certain
red:blue ratio? What is this ratio?




Application: Pdlya Urn

Thought experiment: Consider an urn, with initially R
red marbles and B blue marbles.

Question: does this process converge to a certain
red:blue ratio? What is this ratio?

Hint: Let aco =R+ B GozBern< " >

>..»

(Solution described
on the board)




Chinese Restaurant Process (CRP)

Idea: Instead of colors sharing colors, think about customers
sharing tables in an infinite restaurant

Initialization: The first customer sits in the first empty table.

lterate: If n customers are already sitting in the restaurant, the
next customer starts a new table with probability oo / (a0 + n);

otherwise the customer joins an existing table with probability
proportional to the number of people already at the table

b A e s

New  Join table 1?7 Join table 2?7  Start emtpy?




