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Program for today

 Introduction to Bayesian non-parametrics
 Chinese Restaurant

 Basic probabilistic inference
 Collapsed sampler
 Slice sampler
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Review
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=
2∑

c=1

πcδ{θ(c)}

Equivalent notation

Mixture model: (UBC student height with 2 components) 
say we have only 3 observations

y1

x1

y2

x2

y3

x3θ(1)

θ(2)

π

Mean height 
for men

Mean height 
for women y1

θ1

y2

θ2

y3

θ3

G

yi  | θi  ~ N(θi ,variance)

A ‘token’

A ‘type’

θi |G ~ G 
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Samples from G

What we had:

What we now have:

Var
ian

ce 
par

am
ete

r

Mean parameter

Var
ian

ce 
par

am
ete

r

Mean parameter
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Constructive argument

=
∞∑

c=1

πcδ{θ(c)}G’

θc

πc

Likelihood 
mixture 

component 
parameters

βj

c = 1, 2, 3, ...

c = 1, 2, 3, ...

j = 1, 2, 3, ...

βj ∼ Beta(1, α0)
iid

θc ∼ G0

iid

We will denote 
this distribution 

over π by 
GEM(α0)

1

β1
β2(1-β1)

β3(1-β2) (1-β1)
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Moments

Let G ~ DP(α0, G0) and A be a measurable set

The first and second moments of G(A):

- Mean: G0(A)
- Variance: G0(A) G0(Ac) / (α0 + 1)
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α′
0 = α0 + n

(
G(A1), . . . , G(Ak)

)∣∣θ1, . . . , θn ∼
Dir

(
α0G0(A1) + n1, . . . ,α0G0(Ak) + nk

)

nj =
n∑

i=1

δ{θi}(Aj)

G′
0 =

α0

α0 + n
G0 +

1
α0 + n

n∑

i=1

δ{θi}

Conjugacy

Suppose now we have several draws from G:

where:

Therefore the posterior parameters are:
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More on Polya Urns
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Review: Pólya Urn

Thought experiment: Consider an urn, with initially R 
red marbles and B blue marbles.  

At each step, draw one marble at random, and put it 
back in the urn after adding another one of the same 
color

Question: does this process converge to a certain 
red:blue ratio?  What is this ratio?
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Review: Pólya Urn

Thought experiment: Consider an urn, with initially R 
red marbles and B blue marbles.  

Question: does this process converge to a certain 
red:blue ratio?  What is this ratio?

Soln: Let α0 = R + B G0 = Bern
(

R

B + R

)

(Solution described 
on the board)
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Another way of simulating Pólya Urns

Original description/sampling scheme: 
An example of a collapsed (marginalized) 
sampler

G

...

G

...

Question: is it possible to 
describe an alternative 
algorithm that samples G 
(using the stick breaking 
representation) and then 
samples the observations 
θ1, θ2, ... ?

G

θ1 θ2 θn

θ1 θ2 θn θn
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Another way of simulating Pólya Urns

Description of the naive ‘algorithm’: 

1. Sample a list of stick lengths π1, π2, ... ~ GEM(R+B) 
2. Sample one stick ‘color‘ θ1, θ2, ... for each stick 

segment using G0 = Bin(R/R+B)
3. To sample a ball, throw a dart on the stick and return 

the color θ1 of the stick segment
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Precision on notation

θ1 θ2 θ3

θ1

Description of the naive ‘algorithm’: 

1. Sample a list of stick lengths π1, π2, ... ~ GEM(R+B) 
2. Sample one stick ‘color‘ θ1, θ2, ... for each stick 

segment using G0 = Bin(R/R+B)
3. To sample a ball, throw a dart on the stick and look 

at the index x of the stick
4. Return the color θ1 = θx of the sampled stick 

segment

A ‘token’A ‘type’
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Another way of simulating Pólya Urns

Problem: running time (before getting first draw θ1) is 
infinite

Solution: lazy computation
1. Sample a list of stick lengths 
π1, π2, ... ~ GEM(R+B) 

2. Sample one stick ‘color’ for each stick 
segment using G0 = Bin(R/R+B)

3. To sample an urn draw, throw a dart on 
the stick and return the color of the 
stick segment

Do this part 
only on demand 

(when it’s 
absolutely 
required)
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Another way of simulating Pólya Urns

Solution: lazy computation
1. Throw a dart
2. Sample the minimum number of 
πi’s ~ GEM(R+B) needed, and their colors

3. Return the color of the sampled segment
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Another way of simulating Pólya Urns

Solution: lazy computation
1. Throw a dart
2. Sample the minimum number of 
πi’s ~ GEM(R+B) needed, and their color

3. Return the color of the sampled segment
4. Throw a second dart
5. Check if there is enough πi’s, and sample some 

more if needed
6. ...
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Related metaphor:
Chinese Restaurant 

Process

18Monday, March 21, 2011



α0 = 1

Chinese Restaurant Process (CRP)

Idea: Instead of balls sharing colors, think about customers 
sharing tables in an infinite restaurant

Initialization: The first customer sits in the first empty table.

Iterate: If n customers are already sitting in the restaurant, the 
next customer starts a new table with probability α0 / (α0 + n); 
otherwise the customer joins an existing table with probability 
proportional to the number of people already at the table

New Join table 1?
2/6

Join table 2?
1/6

Start emtpy?
3/6

E.g.:
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How the CRP relates to the DP & Polya urn

Consider the stick breaking 
representation of the DP, but 
only looking at the cluster 
indicators xi

Variant: you can also add to 
the metaphor that each table 
sample a dish θ from G0

- When G0  is over two 
atoms, equivalent to  
Polya urn 

θc

πc

βj

c = 1, 2, 3, ...

c = 1, 2, 3, ...

j = 1, 2, 3, ...

y1

x1

y2

x2

y3

x3

We will denote 
this distribution 

over x’s by 
CRP(α0)
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xi|x1, . . . , xi−1, xi+1, . . . , xn

Chinese Restaurant Process (CRP)

Notation: let xn denote the table index for customer n.  If 
there are t tables and customer n creates a new table, set 
xn = t +1, and suppose we have sampled according to the 
CRP:

 x1, x2, ..., xn ~ CRP(α0)

But for MCMC, we will need:

This seems hard: xi +1, xi +2, ..., xn all seem to depend on 
the table xi picked...
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Exchangeability

Key observation: we know there is a prior π (the GEM(α0) 
stick breaking distribution) such that the xi are iid 
conditionally on π 

In other words: the fact that CRP emerges as the predictive 
distribution of the GEM means CRP is exchangeable: for all 
permutation σ,

π

x1 x2 x3

x1, x2, . . . , xn
d= xσ(1), xσ(2), . . . , xσ(n)
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Consequence of exchangeability

xi|x1, . . . , xi−1, xi+1, . . . , xn
To compute

simply treat xi as if it was the last customer to enter the 
restaurant!  We know how to do this already!
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Consequence of exchangeability

This also means that CRP(α0) can be viewed as a 
distribution over partitions ρ of {1, 2, ..., n}, CRP(ρ, α0)
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Labeled vs. unlabeled partitions

For (labeled) partitions: {1, 2}, {3} ≠ {1}, {2, 3}

For unlabeled partitions:  {1, 2}, {3} = {1}, {2, 3}

Today: we will need labels so let’s keep them for now

Later: we will see what we get when we remove the labels 
(Ewen’s formula)
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Consequence of exchangeability

This also means that CRP(α0) can be viewed as a distribution 
over labeled partitions ρ of {1, 2, ..., n}, CRP(ρ, α0)

This is because the only information needed for computing 
CRP(x, α0) is the number of tables of each sizes

E.g.: all you need to know to compute the CRP(1) probability of 
the seating arrangement below is that there is one table with 3 
customers, and 2 tables with 1 customer
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Dirichlet Processes 
applied to a statistical 

problem: cluster analysis
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Clustering

Informally: Find ‘clusters’ or groups 
of related data points

To make this formal, let’s 
assume the data was 
generated from a DP mixture 
model.  The task is to partition 
the data points into clusters.

Let’s say the task here is to 
partition into two clusters (DP 
still useful in this situation!)y1

x1

y2

x2

y3

x3

Parameters of 
each mixture 
component

θc

πc

c = 1, 2, 3, ...

c = 1, 2, 3, ...
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Clustering

Informally: Find ‘clusters’ or groups 
of related data points

To make this formal, let’s 
assume the data was 
generated from a DP mixture 
model.  The task is to partition 
the data points into clusters.

Let’s say the task here is to 
partition into two clusters (DP 
still useful in this situation!)y1

x1

y2

x2

y3

x3

Parameters of 
each mixture 
component

θc

πc

c = 1, 2, 3, ...

c = 1, 2, 3, ...

The part in red is the part 
called a DP; the whole model 
is called a DP mixture model
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1[xi = xj ] != 1[x′
i = x′

j ]

∑

i<j

1
[
1[xi = xj ] != 1[x′

i = x′
j ]

]

Clustering

Loss function: Rand loss Rand(x, x’) between the true 
partition x’ and a putative partition x’

Rand loss: The number of pairs of data points i, j such 
that:

In other words, you incur a loss of one each time you either 
(1) put together two points that did not belong together, or 
(2) did not put together two points that are in the same 
cluster in the true partition

Let’s call this 
ρi,j
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∑

i<j

1
[
1[xi = xj ] != ρi,j

]

argminρ

{
E

[
Rand(x, ρ)

∣∣∣y
]

: ρ is a partition
}

Rand(x, ρ) =

We have all the ingredients for the Bayes estimator

Bayes estimator:

Joint probability over 
knowns and unknowns Loss function

y1

x1

y2

x2

y3

x3

Parameters of 
each mixture 
component

!c

"c

c = 1, 2, 3, ...

c = 1, 2, 3, ...

(Simplifications of the Bayes estimator on the board)
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Computing the Bayes estimator

Two steps:

1.Computing the posterior that pairs of data points come 
from the same cluster: MCMC

2.Plug-in these numbers into the minimization problem and 
solve it (in this case this can be done efficiently using a 
min-flow algorithm*)

*Optional: If you are interested, you can read about the second step in 
Thomas H.; Leiserson, Charles E.; Rivest, Ronald L.; Stein, Clifford 
(2009). Introduction to Algorithms (3rd ed.). MIT Press. 
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Computing the posterior 
distribution of Dirichlet 
Process mixture models

32Monday, March 21, 2011



Overview

E[f(π, θ, x, y)|y]

Goal: computing a conditional expectation (e.g. for a Bayes 
estimator)

We will cover two samplers: 
Collapsed sampler Slice sampler

...
x1 x2 xn

π

...y1 y2 yn

θ ...

π

x1 x2 xn

...y1 y2 yn

θ

33Monday, March 21, 2011



Overview

E[f(π, θ, x, y)|y]

Goal: computing a conditional expectation (e.g. for a Bayes 
estimator)

We will cover two samplers: 

Collapsed sampler Slice sampler

Pros + Easy to implement
+ Rao-Blackwellized

+ Flexible conditions on loss
+ Easy to parallelize

Cons
- Restrictions on the loss 
- Restr. on the likelihood
- No easy parallelization

- Harder to implement
- Aux. variables: less efficient
- Memory needs
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Overview

Collapsed sampler Slice sampler

Pros + Easy to implement
+ Rao-Blackwellized

+ Flexible conditions on loss
+ Easy to parallelize

Cons
- Restrictions on the loss 
- Restr. on the likelihood
- No easy parallelization

- Harder to implement
- Aux. variables: less efficient
- Memory needs
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Collapsed Gibbs: restrictions on the loss

E[f(π, θ, x, y)|y]

Goal: computing a conditional expectation (e.g. for a Bayes 
estimator)

Special case: sometimes, f depends only on the cluster 
indicators,

Example: clustering, where we only care about the posterior 
fraction of the time each pair of points is in the same mixture 
component

Note: can be made a bit less restrictive 
(will come back to this point later)

f(π, θ, x, y) = f(x)
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Collapsed Gibbs: conjugacy restriction

Let L(dy|θ) denote the likelihood, and for a subset of the data 
points B ⊆ {1, 2, ..., n}, let L(dyB) denote the cluster marginal 
likelihood 

Assumption: This integral can be computed analytically (i.e. 
the likelihood L is conjugate with G0, with a tractable 
normalization A(θ))

L(dyB) =
∫ ∏

i∈B

L(dyi|θ)G0(dθ)
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Collapsed Gibbs sampler: representation

Consequence of the two assumptions: we can use a MCMC 
sampler on a finite state space: the space of partitions of the 
data points

Joint distribution after 
marginalization of the 
sticks π and dishes θ:

y1

x1

y2

x2

y3

x3

Parameters of 
each mixture 
component

θc

πc

c = 1, 2, 3, ...

c = 1, 2, 3, ...

(Derivation on the board)
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Collapsed Gibbs sampler: proposals

Basic idea: propose local changes to the current partition of 
the data points

Standard way: take one of the customer out of the 
restaurant, compute the unnormalized density pi for each 
possible table assignment, normalize the pi’s and sample 
from a multinomial with these parameters
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Practical notes on the standard collapsed sampler

In theory: it is irreducible (can break all the clusters and 
reform some new ones with positive probability)

In practice: breaking clusters have small probabilities, 
so it’s important to initialize the chain with every 
datapoint in its own cluster (so first sweep takes O(n2))

Large-move techniques: can remove the need to use 
such initialization (potential project here---come talk to 
me at office hours for more info)
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Next: slice sampler

Collapsed sampler Slice sampler

...
x1 x2 xn

π

...y1 y2 yn

θ ...

π

x1 x2 xn

...y1 y2 yn

θ
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Slice sampling for DP inference

Idea: use lazy computation

Problem: for posterior inference, even the small sticks 
have an impact on the posterior

Solution: using an auxiliary variable similar to the one 
used for slice sampling in univariate distributions

X

U

X ~ f(x)/Z

U | X ~ Uni[0, f(X)]

1.4. SLICE SAMPLING 27

1.4 Slice Sampling

We have seen that one of the difficulties with the Metropolis algorithm is the sensitivity to step
size. If this is too small the result is slow decorrelation due to random walk behaviour while if
it is too large the result is inefficiency due to a high rejection rate. The technique of slice sampling
provides an adaptive step size which is automatically adjusted to match the characteristics of the
distribution. Again it requires that we be able to evaluate the unnormalized distribution .

Slice sampling involves augmenting with an additional variable and then drawing samples
from the joint space. We shall see another example of this approach when we discuss hybrid
Monte Carlo in Section ??. As with rejection sampling, the goal is to sample uniformly from the
volume under the surface defined by , in other words to sample from the distribution given
by

if

otherwise

where . The marginal distribution over is given by

and so we can sample from by sampling from and then ignoring the values. This
can be achieved by alternately sampling and . Given the value of we evaluate and then
sample uniformly in the range , which is straightforward. Then we fix and sample

uniformly from the ‘slice’ through the distribution defined by . This is illustrated
in Figure ??(a).

x
(a)

u

x
( )!

p x( )~

x

xmin xmax

(b)

u

x
( )!

p x( )~

Figure 1.17: Illustration of slice sampling. (a) For a given value , a value of is chosen uniformly
in the region , which defines a ‘slice’ through the distribution, shown by the solid
horizontal lines. (b) Since sampling directly from a slice is infeasible, a new sample of is drawn
from a region which contains the previous value .

In practice it can be difficult to sample directly from a slice through the distribution and so
instead we define a sampling scheme which leaves the uniform distribution under invariant,
which can be achieved by ensuring that detailed balance is satisfied. Here we consider the case of
a univariate .

Suppose the current value of is denoted and that we have obtained a corresponding
sample . The next value of is sampled uniformly from a region which contains
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ui|xi, π ∼ Uni[0, wxi ]

Auxiliary variable

π

x1 xn

y1 yn

θ

u1 un
...

As before, adding a node 
downstream in a directed 
graphical model does not 
change the marginal of the 
original nodes

(Derivation of the joint density on the board)
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Sampling

π

xi

yi

θ

ui

...

Assignments

π

xi

yi

θ

ui

...

Aux. var. & 
sticks

π

xi

yi

θ

ui

...

Dishes

(Derivation of the sampling steps on the board)
44Monday, March 21, 2011



Sampling auxiliary variables and sticks

π

xi

yi

θ

ui

...

Aux. var. & 
sticks

π

xi

yi

θ

ui

...

Sticks

π

xi

yi

θ

ui

...

Aux. var. 
given sticks

By the chain rule:

~

(derivation of each distribution on the board)
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Sequential alternative to dart throwing

~

...

Cluster c=1

Cluster c=2

Cluster c=3

Cluster c=4

β1 1-β1

β2 1-β2

β3 1-β3

β4 1-β4

βj ∼ Beta(1, α0)
iid
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