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2.1 Motivation

To motivate the Dirichlet process, let us consider a simple density estimation problem: modeling the height
of UBC students. We are going to take a Bayesian approach to this problem, considering the parameters as
random variables. In one of the most basic models, one would define a mean and variance random parameter
θ = (µ, σ2), and a height random variable normally distributed conditionally on θ, with parameters θ.1

Using a single normal distribution is clearly a defective approach, since for example the male/female sub-
populations create a skewness in the distribution, which cannot be capture by normal distributions:

The solution suggested by this figure is to use a mixture of two normal distributions, with one set of
parameters θc for each sub-population or cluster c ∈ {1, 2}. Pictorially, the model can be described as
follows:

y1

x1

y2

x2

y3

x3!(1)

!(2)

"
1- Generate a male/female relative frequence

       " ~ Beta(male prior pseudo counts, female P.C)

2- Generate the sex of each student for each i

       xi  | " ~ Mult(")

3- Generate the mean height of each cluster c

       !(c) ~ N(prior height, how confident prior)

4- Generate student heights for each i

       yi  | xi, !(1),  !(2)  ~ N(!(xi) ,variance)

Mean height 
for men

Mean height 
for women

1Yes, this has many problems (heights cannot be negative, normal assumption broken, etc). But this is only an illustration.
Moreover, some of these problems will be addressed soon.
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Here Mult is the categorical or multinomial distribution2, xi

.
∈ {1, 2} are cluster membership variables3,

yi

.
∈ (0,∞) are the observed heights, and π is the (unknown) frequency of one of the populations.

This approach can now capture non-zero skewness, but it might still not be enough. For example, other
factors such as the age of the student may also affect the distribution, and more clusters would be required
to capture these finer sub-population differences. Fortunately, the model can be extended to more clusters:
then more parameters θc are used, and π becomes a Dirichlet distribution.

This leads to the question of determining the number of clusters. This is an important question: too many
clusters will create over-fitting (good fit on the training data in terms of likelihood, but poor generalization
on new data points), too few clusters will not fully exploit the information and structure present in the
training data.

Many approaches exist for determining the complexity (the number of parameters, i.e. the dimensionality of
a continuous parameterization of the model) of a model: cross-validation, AIC, BIC, etc. In this course, we
will take another route: using nonparametric Bayesian priors. Informally, a nonparametric Bayesian prior is
a distribution over models such that the complexity of the model is also random. There is no a priori bounds
on the complexity in the model, but since we put a distribution on model complexities, as the complexity
of the models increases, one eventually gets in the tail of a distribution, which penalizes models of high
complexity. However as more data points are used to train the model, the posterior over complexity will
shift towards more complex models.

To make this idea more concrete, let us go back to the UBC height density estimation. In this case, the
Dirichlet process (a popular nonparametric prior) will remove the need to set a fixed number of clusters in
the model.

2.2 Dirichlet process as a prior for density estimation

To understand the role of Dirichlet processes in density estimation, we will start by looking at the two-
clusters model from a different point of view. Let Ω denote the set of parameters of the likelihood model (in
this example, since we have a mean and a variance parameter, Ω = R×R+), and let FΩ be a σ-algebra (i.e.
a set of events) on that set. If A ∈ FΩ, A is a set of parameters. For example in the UBC height example,
a set A would look like:
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A

Now let δθ : FΩ → {0, 1} denote a Dirac delta, which is defined as follows:

δθ(A) =
{

1 if θ ∈ A
0 o.w. ,

2in this course, unless specified otherwise, we always use multinomial distributions with the parameter n, the number of
trials, set to 1

3In this course, we do not strictly follow the convention of using capital letters for random variable, since most objects under
study will be random variables. Also, we use the notation x

.
∈ S to denote that the random variable x is S-valued.



Part 2: Basics of Dirichlet processes 2-3

and let G = πδθ1 +(1−π)δθ2 . Note that G : FΩ → [0, 1] and that G(Ω) = 1, in other words, G is distribution.
Since it is constructed from random variables, it is a random distribution. Here is an example of a realization
of G:
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As it is apparent from this figure, the prior over G has support over discrete distributions with two point
masses.

This is where the Dirichlet process comes in: it is a prior, denoted by DP, with a support over discrete with
a countably infinite number of point masses. If G ∼ DP, this means that a realization from G will look like:
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Variance parameter

In the next section, we define Dirichlet process more formally.

2.3 First definition of Dirichlet processes

A Dirichlet process has two parameters:

1. A positive real number α0 > 0, called the concentration parameter. We will see later that it can be
interpreted as a precision (inverse variance) parameter.

2. A distribution G0 : FΩ → [0, 1] called the base measure. We will see later that it can be interpreted as
a mean parameter.

Recall that by the Kolmogorov consistency theorem, in order to guarantee the existence of a stochastic
process on a probability space (Ω′,FΩ′), it is enough to provide a consistent definition of what the marginals
of this stochastic process are. As the name suggest, in the case of a Dirichlet process, the marginals are
Dirichlet distributions:

Definition 2.1 (Dirichlet Process [2]) Let α0, G0 be of the types listed above. We say that G : FΩ′ →
(FΩ → [0, 1]) is distributed according to the Dirichlet process distribution, denoted by G ∼ DP(α0, G0), if for
all measurable partitions of Ω, (A1, . . . , AK) (this means that Ak are events, Ak ∈ F , that they are disjoint,
and that their union is equal to Ω), we have:

(G(A1), G(A2), . . . , G(AK)) ∼ Dir(α0G0(A1), α0G0(A2), . . . , α0G0(AK)).
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Here G(A) : FΩ′ → [0, 1] denotes the random measure of a fixed set:
(
G(A)

)
(ω) =

(
G(ω)

)
(A), for ω ∈ Ω′.

We now need to check that these marginals are indeed consistent. The main step can be illustrated by this
example:

Proposition 2.2 : Let (A1, A2) and (B1, B2, B3) be the following two measurable partitions of Ω:

A1

A2

B1

B2

B3

(G(A1), G(A2)) (G(B1), G(B2), G(B3))
(U1, U2) (V1, V2, V3)

I.e. A1 = B1, and (B2, B3) is a partition of A2. Let U1, U2 and V1, V2, V3 be the random variables as defined
in the figure above (U1 = G(A), etc.). Then: (U1, U2)

d= (V1, V2 + V3), where the special equality symbol
denotes equality in distribution.

In order to prove this, we use an important tool in the study of Dirichlet processes: gamma representation
of Dirichlet distributions:

Lemma 2.3 If Y1, . . . , YK ∼ Gamma(αi, θ) are independent, where αi is a shape parameter and θ is the
scale parameter, then: (

Y1∑
k Yk

, . . . ,
YK∑
k Yk

)
∼ Dir(α1, . . . , αK).

Proof: A standard change of variable problem. See the wikipedia page on the Dirichlet distribution.

We now turn to the proof of proposition 2.2:

Proof: Let θ > 0 be an arbitrary scale parameter, and Yi ∼ Gamma(α0G0(Bi), θ) be independent. We have
from Lemma 2.3:

(V1, V2 + V3)
d=
(

Y1∑
k Yk

,
Y2 + Y3∑

k Yk

)
d=
(

Y1∑
k Yk

,
Y ′∑
k Yk

)
d= (U1, U2),

where Y ′ ∼ Gamma(G0(B2) + G0(B3), θ) = Gamma(G0(A2), θ) by standard properties of Gamma random
variables.

The full proof would consider any finite number of blocks, but follows the same argument. Invariance under
permutations is obvious. Therefore, we indeed have a stochastic process.

2.4 Stick breaking construction

This previous definition has the disadvantage of being non-constructive. We present in this section an
alternative, constructive definition. We prove in the next section that the two definitions are equivalent.
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The alternative definition, known as the stick breaking or GEM process goes as follows:

Definition 2.4 (Stick breaking construction [3]) Let βc ∼ Beta(1, α0) be independent. Define the stick
lengths π ∼ GEM(α0) as follows:

π1 = β1 (2.1)

πc = βc

∏
1≤c′<c

(1− βc′) for c > 1. (2.2)

The process can be understood as starting with a stick of length 1. At each step c a proportion βc is broken
and used as a stick length, and the rest is kept for the remaining ones. If at some point the stick has length
L then the new stick will have length βcL.

Since we will use π as a distribution, we need to make sure that the sum of the sticks is one a.s.:

Proposition 2.5 If π ∼ GEM(α0), then
∑∞

c=1 πc = 1 (a.s.).

Proof: We have: ∑
c:c≤n

πc = 1−
∏

j:j≤n

(1− βj)︸ ︷︷ ︸
prop. not used at step j

We therefore need to prove the following:

P

 lim
n→∞

∏
j:j≤n

(1− βj) = 0

 = 1.

Let us fix ε > 0, and define En = (1 − βj < 1/2). Since the En’s are independent and
∑

n P(En) = ∞, we
can apply the second Borel-Cantelli lemma, and obtain:

P

 lim
n→∞

∏
j:j≤n

(1− βj) = 0

 ≤ P(En i.o.)

= 0.

If we generate independently an infinite list of stick locations, θc ∼ G0, and form

G′ =
∞∑

c=1

πcδθc , (2.3)

then we get an alternative definition for the Dirichlet process.

The high-level picture of this construction can also be understood from the following graphical model:
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=
∞∑

c=1

πcδ{θ(c)}G’

!c

"c

Likelihood 
mixture 

component 
parameters

#j

c = 1, 2, 3, ...

c = 1, 2, 3, ...

j = 1, 2, 3, ...We will denote 
this distribution 

over " by 
GEM($0)

or from the following cartoon:
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Variance 
parameter

Unit length stick ! Mixture proportions

Ordered iid G0 locations

"1

"2
"3 A sample from G’ : a distribution with 

countably infinite support

2.5 Equivalence of stick breaking and Kolmogorov consistency
definitions

In this section, we present the proof of [3] that the two definitions for the Dirichlet process (stick breaking
and by Kolmogorov consistency) introduced in the previous lecture are equivalent.

Let G is a Dirichlet Process defined by Kolmogorov consistency. Let G′ be the constructed process using
stick-breaking construction. That is,

G′ =
∞∑

c=1

πcδθ(c).

The goal is to show G = G′ in distribution.

The strategy is to show that for all partitions (A1, · · · , AK), the constructed process G′ has finite Dirichlet
marginals:

(G′(A1), · · · , G′(Ak)) ∼ Dir(α0G0(A1), · · · , α0G0(AK)).

The key observation that will make the argument possible is a self-similarity property in the stick breaking
definition. In order to explain this self-similarity in more detail, we first need to define:
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Definition 2.6 Let f be the (deterministic) map that transforms the random locations and beta variables
into a Dirichlet process, as defined in the last lecture, i.e.:

G′ = f(β, θ) =
∞∑

c=1

πcδθ(c)

Definition 2.7 For any infinite sequence β = β1, β2, . . . , let β∗ denote the infinite shifted suffix:

β∗ = (β1, β2, · · · )∗ = (β2, β3, · · · ).

We can now express the self-similarity equation as follows:

G′ = π1δ{θ(1)} + (1− π1)f(β∗, θ∗)
= π1δ{θ(1)} + (1− π1)G′′,

where G′′ d= G′.

Definition 2.8 We will use the following special equality sign to mean that there is are two random variables
G′′ d= G′ such that, by plugging-in one in the left hand side and one in the right hand side, we get standard
equality:

G′ st= π1δ{θ(1)} + (1− π1)G′. (2.4)

Note that if we have a partition (B1, . . . , BK) of the space Ω (as in the Kolmogorov definition of DPs), we
can apply the left-hand and right-hand sides of the measures in Equation (2.4) to each of these sets, and get
a self-similarity equation in terms of finite dimensional vectors:

 G′(B1)
...
G′(BK)

 st= π1

 δθ(1)(B1)
...
δθ(1)(BK)

+ (1− π1)

 G′(B1)
...
G′(BK)

 , (∗) (2.5)

We use identity (*) to show that if there is a distribution that satisfies this equation, it is unique; and that
the finite Dirichlet distribution satisfies it. To summarize the high-level plan of this proof:

=⇒

G
d= G′

G’ satisfies 

equation (*)

The marginals of 
G’ satisfy 

equation (*)
=⇒
G’ has Dirichlet 

marginals

Finite Dirichlet 
distributions satisfy 

equation (*)
Equation (*) has a 

unique solution

=⇒ =⇒

=⇒

We have shown the two leftmost items in this graph already. We now show uniqueness.

To simplify the notation, let us introduce the random variables U, V,W as follows:

G′︸︷︷︸
V

= π1δθ(1)︸ ︷︷ ︸
U

+(1− π1)︸ ︷︷ ︸
W

G′′
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so that we can write:

V
st= U + WV (2.6)

Note that G′′ is independent of (U,W ), and that W is non-degenerate, in the sense that P(0 < W < 1/2) > 0.

Claim 2.9 Under these conditions, the solution of (2.6) is unique.

Proof: Suppose V and V ′ both satisfy (2.6) but have different distributions. Let (Wn, Vn) be independent
copies of (W,V ) and define {

V1 = V
V ′

1 = V ′

{
Vn+1 = Un + WnVn

V ′
n+1 = Un + WnV ′

n

For all n,

Vn
d= V

V ′
n

d= V ′.

Using the property P(0 < W < 1/2) > 0 and the independence statements, we can apply the second Borel-
Cantelli lemma (see Proposition 2.5 for an example of applying the second Borel-Cantelli in more details),
to obtain:

|Vn+1 − V ′
n+1| = |Wn||Vn − V ′

n|

=
n∏

m=1

|Wm||V1 − V ′
1 |

a.s.−→ 0.

Hence, the solution of (2.6) is unique.

The final step is to show that (finite) Dirichlet distributions satisfy equation (*) as well:

Claim 2.10 If Z ∼ Dir(α0G0(B1), . . . , α0G0(BK)) is a Dirichlet-distributed random variables, then the
following holds:

π1

 δθ(1)(B1)
...
δθ(1)(BK)

+ (1− π1)

 Z1

...
ZK

 ∼ Dir(α0G0(B1), . . . , α0G0(BK))

We will need the following two easy lemmas:

Lemma 2.11 Let U ∼ Dir(α1, . . . , αK), V ∼ Dir(γ1, . . . , γK), and W ∼ Beta(α0, γ0) be independent ran-
dom variables, where α0 =

∑K
k=1 αk and similarly for γ0. Then:

WU + (1−W )V ∼ Dir(α + γ).

Lemma 2.12 Let ej denote a K − dimensional unit vector (ej(k) = 1 for k = j and 0 otherwise), γ̄j =
γj/γ0. Then:

K∑
j=1

γ̄j Dir(γ + ej) ∼ Dir(γ).
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We can now prove Claim 2.10:

Proof: Let us denote the random vector (δθ(1)(B1), . . . , δθ(1)(BK) by X, and observe that

X ∼ Mult(G0(B1), . . . , G0(BK)).

Conditioning on X = ej , we have:(
π1X + (1− π1)Z|X = ej

) d= π1 Dir(ej) + (1− π1)Z
= Dir(γ + ej) (by Lemma 2.11),

where, γ is defined as follows:
γj

γ0
= P(X = ej) = G0(Bj)

Finally, we sum over the possible values of X and use Lemma 2.12 to get:

π1X + (1− π1)Z ∼ Dir(γ).

That is, Z satisfies Equation (*). Hence, G = G′ in distribution.

2.6 Main properties of Dirichlet Processes

2.6.1 Moments

In this section, we derive the first and second moments of G(A), for G ∼ DP(α0, G0) and A ⊂ Ω. To do
that, we use the Kolmogorov definition and consider the partition (A,Ac) of Ω. We get:

(G(A), G(Ac)) ∼ Dir(α0G0(A), α0G0(Ac)).

This implies that:

G(A) ∼ Beta(F,G),

where x denotes α0G0(A), and y denotes α0G0(Ac).

The first moment of G(A) is therefore

E[G(A)] =
x

x + y
=

α0G0(A)
α0G0(A) + α0G0(Ac)

= G0(A),

and the second moment of G(A) is

Var[G(A)] =
xy

(x + y)2(1 + x + y)

=
α2

0G0(A)(1−G0(A))
α2

0(α0 + 1)

=
G0(A)(1−G0(A))

α0 + 1
.

This gives an interpretation of α0 as a precision parameter for the Dirichlet process.
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2.6.2 Conjugacy

Let G ∼ DP(α0, G0). Recall that since G is a measure-valued random variable, we can sample random
variables θ from realizations of G, i.e. we define θ by θ|G ∼ G.4 Note that we are using the underscore to
differentiate the random variables θi used in the stick breaking construction from the samples θ from the
Dirichlet process. Note that θ = θx for a random x sampled from a multinomial distribution with parameters
given by the sticks x ∼ Mult(π).5

In this section we show that the Dirichlet process is conjugate in the following sense: G|θ ∼ DP(α′0, G
′
0) for

α′0, G
′
0 defined below.

To prove this result, we first look at the posterior of the finite dimensional distributions:

Lemma 2.13 If (B1, . . . , BK) is a measurable partition of Ω, then:

(G(B1), . . . , G(BK))|θ ∼ Dir
(
α0G0(B1) + δ{θ}(B1), . . . , α0G0(BK) + δ{θ}(BK)

)
.

Proof: Define the random variables Z = (G(B1), . . . , G(BK)) and X = (δθ(1)(B1), . . . , δθ(1)(BK). We have:

Z ∼ Dir(α0G0(B1), . . . , α0G0(BK))
X|Z ∼ Mult(Z).

The result therefore follows by standard Dirichlet-multinomial conjugacy.

Since this result is true for all partitions, this means that the posterior is a Dirichlet process as well by the
Kolmogorov consistency definition.

We can now obtain the parameters α′0, G
′
0 of the updated Dirichlet process. To get α0, we take the sum

of the parameters of any finite dimensional Dirichlet distribution, obtaining α′0 = α0 + 1. To get G′
0, we

normalize the expression in the conclusion of Lemma 2.13 to get:

G′
0 =

α0

α0 + 1
G0 +

1
α0 + 1

δ{θ}

α′0 = α0 + 1.

This formula can be generalized to the case of multiple observations, by applying it n times:

Proposition 2.14 Suppose G ∼ DP(α0, G0) and θi|G ∼ G for i ∈ {1, . . . , n}, iid given G. Then the
posterior has the following distribution:

G|θ1, . . . , θn ∼ DP

(
α0 + n,

α0

α0 + n
G0 +

1
α0 + n

n∑
i=1

δ{θi}

)
.

2.6.3 Predictive distribution and the Chinese Restaurant Process (CRP)

Using the same notation as the previous section, we now seek to find an expression for the predictive distri-
bution θn+1|θ1, . . . , θn. Pictorially (using crosses to indicate marginalization, and shading for conditioning):

4Recall that the notation θ|G ∼ G means: for all bounded h, E[h(θ)|G] =
R

h(x)G( dx) =
P∞

c=1 πch(θc) for π ∼ GEM(α0)
and θc ∼ G0 independent.

5Note that finite multinomial distributions over {1, 2, . . . , K} can be extended to distributions over the infinite list {1, 2, . . . },
in which case they take as parameters an infinite list of non-negative real numbers that sum to one (e.g.: sticks from the stick
breaking construction). We will show in the next lecture how sampling from such generalized multinomials can be implemented
in practice.
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G

θ1 θnθ2

...

This will be useful for designing MCMC samplers over a finite state space (i.e. samplers that avoid the
difficulty of representing infinite objects such as π).

Proposition 2.15 Let A ⊂ Ω be measurable, G ∼ DP(α0, G0), and θi|G ∼ G. Then the predictive distribu-
tion is characterized by:

P(θn+1 ∈ A|θ1, · · · , θn) =
α0

α + n
G0(A) +

1
α0 + n

n∑
i=1

δθi
(A).

A popular metaphor to interpret this formula is the Chinese Restaurant Process (CRP), in which customers
(data points) enter sequentially in a restaurant and sit down at a table (which either contains other customers
already, or is empty). When the table is empty, the customer samples a dish θ ∼ G0, and when there are
already customers, the dish selected by the first customer at that table is shared by the new customer.

Suppose customer n + 1 enters the restaurant, and we want to define a probability over where he will sit
given the seating arrangement of the first n customers. The formula can be interpreted as the following
decision diagram over the possible outcomes:

Join table # 1

with n1 

customers 

already sitting 

there

Pick a Table

... Join table # t

with n1 

customers 

already sitting 

there

Create a new 

table 

α0

n + α0

n1

n + α0

nt

n + α0

Pick the dish 

selected by 

the first 

customer at 

that table

Pick the dish 

selected by 

the first 

customer at 

that table

Pick a new dish 
using G0 (note: the 
support of the G0 

could be 
uncountable)

...

Here is an example, with α0 = 1 of numerical probabilities of the table choices derived from the previous
decision diagram:

New Join table 1?

2/6

Join table 2?

1/6

Start emtpy?

3/6
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Given α0 and G0, this process defines a distribution over dishes eaten by customers. We will denote the
outcome of this process by (θ1, θ2, . . . , θn) ∼ CRP(α0, G0), where we denote the dish eaten by customer i by
θi. The distribution over (θ1, . . . , θn) has the following important property:

Proposition 2.16 The distribution over the list of dishes eaten by customers in a CRP is exchangeable,
i.e. if θ1, θ2, . . . , θn ∼ CRP(α0, G0) and σ : {1, . . . , n} → {1, . . . , n} is a permutation, then

(θ1, θ2, . . . , θn) d= (θσ(1), θσ(2), . . . , θσ(n)). (2.7)

The proof follows directly from the fact that CRP emerged as the predictive distribution of draws from a
Dirichlet process. It can also be done directly, which we leave as an exercise.

One can also ignore the dishes and view this process as a distribution over seating arrangements of customers.
There are actually two ways of defining these seating arrangements, which we will respectively call labeled and
unlabeled customer partitions. Labeled partitions correspond to the case where we can distinguish customers
from each other (e.g. when there are observations attached to them and we are computing a posterior).
Unlabeled partitions correspond to the case where we cannot distinguish customer from each other, in which
case for example the partition {{1, 2, 3}, {4, 5}} is deemed equivalent to the partition {{1, 2, 4}, {3, 5}}.

Since we will be interested in attaching likelihood models and observation, which will generally make cus-
tomers distinguishable,6 we will focus on a the distribution induced by this process on labeled partitions,
which we will denote by CRP(α0).7 If ρ = {{1, 2, 3}, {4, 5}} for example, CRP(ρ;α0) for α0 = 1 is 1/60,
which comes from applying the conditional probabilities of the CRP decision diagram 5 times:

CRP({{1, 2, 3}, {4, 5}};α0) =CRP({{1}}|{};α0)×
CRP({{1, 2}}|{{1}};α0)×
CRP({{1, 2, 3}}|{{1, 2}};α0)×
CRP({{1, 2, 3}, {4}}|{{1, 2, 3}};α0)×
CRP({{1, 2, 3}, {4, 5}}|{{1, 2, 3}, {4}};α0)

=1× 1
2
× 2

3
× 1

4
× 1

5

=
1
60

.

Here we denote the conditional probability of a new seating arrangement given the previous one by CRP(ρ′|ρ;α0).

By Proposition 2.16, this is a well defined probability distribution since the order at which we construct
the partition does not matter. For example, using the customer order 4 → 5 → 3 → 2 → 1 instead of
1 → 2 → 3 → 4 → 5, we get the same result:

CRP({{1, 2, 3}, {4, 5}};α0) =CRP({{4}}|{};α0)×
CRP({{4, 5}}|{{4}};α0)×
CRP({{4, 5}, {3}}|{{4, 5}};α0)×
CRP({{4, 5}, {2, 3}}|{{4, 5}, {3}};α0)×
CRP({{1, 2, 3}, {4, 5}}|{{4, 5}, {2, 3}};α0)

=1× 1
2
× 1

3
× 1

4
× 2

5

=
1
60

.

6Except when G0 has a countable support, in which case there may be identical observations with positive probability.
7Note that the notation for the dish-less version of the CRP can be distinguished from the dish version by the absence of a

base measure parameters in the former.
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Finally, it is also possible to define a distribution over the seating arrangement viewed as an unlabeled
partition. Note that an unlabeled partition of n customers can be viewed as a histogram that tells you for
each table size s, how many tables there are of that size, as, or equivalently, as a list of non-negative integers
a1, a2, . . . , an such that a1 + 2a2 + 3a3 + · · ·+ nan = n.

The distribution over unlabeled partitions that arise from the CRP is called Ewen’s Sampling Formula
(ESF), and we denote it by (a1, a2, . . . , an) ∼ ESF(α0). Since a relabeling ρ′ of a labeled partition ρ does not
change CRP(ρ;α0) (e.g. CRP({{1, 2}, {3}};α0) = CRP({{1, 3}, {2}};α0)), Ewen’s formula can be obtained
by multiplying the expression for the CRP by the number of labeled partitions corresponding to an unlabeled
one. As an exercise, you can show that this leads to the following formula:

ESF(a1, a2, . . . , an;α0) =
n!

α0(α0 + 1) · · · (α0 + n− 1)

n∏
j=1

α
aj

0

jaj aj !
,

2.6.4 Application: Polya urn

In this section, we use the result of the previous section to find the limit of the following process:

Definition 2.17 (Polya urn) Consider an opaque urn with R red balls and B blue balls initially. At each
step, one ball is drawn at random from the urn. If the ball drawn is red, an extra red ball is added to the urn;
if the drawn ball is blue, an extra blue ball is added. The drawn ball is also reinserted (so there is a total of
one more ball at each iteration):

We are interested in finding an expression for the asymptotic ratio of red:blue balls in the urn as the number
of steps go to infinity. In contrast to the Markov chain results, this asymptotic ratio is random (because the
process is not Markovian). As an exercise, use the result of the previous section and a Dirichlet process with
α0 = R + B and G0 = Mult(R/R + B,B/R + B) to find the distribution of the asymptotic ratio. See [1] for
more on the connection between Polya urns and Dirichlet processes.
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