
Sparse Distributed
Memories in a Bounded

Metric State Space
Alexandre Bouchard-Côté

Supervisor: Doina Precup
Reasoning and Learning Lab, McGill University

Sponsored by: NSERC, McGill School of Computer Science.

Part 0

• Motivations for studying Sparse Distributed
Memories (SDM) architectures [1].

• Description of the architecture.

[1] Kanerva, P. (1993). Sparse distributed memory and related models. In M. Hassoun (Ed.),
Associated neural memories: Theory and implementation, 50-76. N.Y.: Oxford University Press.

The problem we are
interested in:

• A Markov decision chain. Described by:

• A specification (S, A, {P(s,⋅)(a)}a∈A) of the
dynamic behavior of the environment,

• An ordering of the policies derived with
(g : S × A × S → ℝ, γ).

• Enough to find the optimal cost-to-go/state-
action value functions of the problem.

• We know algorithms that can find these
value functions (e.g. Q-learning).

• When |S| is too large we want to approximate
value functions instead.

• It brings new problems:

• If nonlinear approximators are used, the
convergence guarantees are lost.

• If linear approximators are used, then some of
the convergence results are recovered, but we
get a new problem: the curse of dimensionality.

• SDM reconciles the best of both approaches.

Approximate RL

• Assumptions on S needed to define an SDM:

- It must be a metric space:
d : S × S → ℝ+

- It must be bounded (for concreteness).

• A SDM architecture is equipped with:

• a similarity function
σ : S × S → [0, 1] s.t. (1 - σ) is a metric on S

• A set of basis points or hard locations
B := {s1, …, sK : si ∈ S} with weights wi.

Description of SDM based on: D. Precup, B. Ratitch. (2004). Sparse distributed
memories for on-line, value-based reinforcement learning. ECML, 2004.

What is a SDM architecture?

• When we want to approximate the value of
the targeted function at a given point s∈S,
we first find the set H of actived locations.

• Then the weights corresponding to the
active locations are summed:

∑ σ(sk, s) wk

∑ σ(sk, s)

• We can train the SDM architecture using
the standard gradient descent update:
∆w := ∇g [f(s) - g(s)]
where g(·) is the current approximation,
∇g, the gradient with respect to the
weights and f(s) is the training sample.

• Note that (∇g)i takes this simple form:

σ(si, s)

∑ σ(sk, s)

1. It is a linear approximation architecture
(good position for convergence results),

2. The density of the hard locations across the
space need not be constant (we could put
more hard locations on “important”
regions of the state space).

Important
observations:

• Good surprise: a version of Q-learning
converges w. pr. 1 when it uses an
interpolative SDM architecture (approximate
value iteration algorithms do not have such
guarantees usually).

• Not so good surprise: an important result
on the non-divergence of SARSA fails to
apply in our case.

• Fortunately, TD(λ) still converges w. pr. 1.

Part 1: Convergence?

• The tabular version works by iteratively
composing the bellman equation seen as a
self-map in the space of value functions:
(T(J))(i) := max ∑ pij(a)(g(i, a, j) + J(j))
Jk+1 := T(Jk), Jk arbitrary element
where the max is taken over a∈A, the sum
is taken over j∈S:={1, …, n}, i∈S, g is the
cost function, and p(·), the transition
probability matrices.

Value iteration
techniques

• By the Banach Fixed Point Theorem, the
tabular version converges (in complete
spaces)

• In the case of approximate versions of the
value iteration algorithm we don’t have
such a convergence guarantee. Even worse:
it is proven that approximate Q-learning, a
state-action value iteration algorithm, can
diverge (even with some linear
approximators).

• However, for interpolative SDM, there is a
special convergence result that applies...

• Definition of an interpolative SDM.

• Example: symmetric triangular functions

✓

✗

• Theorem [3]: convergence of a form of Q-
learning for interpolative approximators.
The main assumptions of this theorem:

• The approximator must be an
interpolative non-expansion.

• The set of states must be a Polish space
(the homeomorphic image of a complete
and separable metric space).

• The exploration policy must be
stationary... can we relax this condition?

[3] C. Szepesvári, W. Smart (2004).
Interpolation-based Q-learning. ECML, 2004.

• SARSA is an optimistic algorithm. This makes
the analysis of its convergence difficult.

• There is a non-divergence result for the case
of a finite state space.

Policy
improvement

Policy
evaluation

Initial
policy

Cost-to-
go or
state-
action
value

function

Improved
policy

SARSA: A Policy Iteration Method

• The proof of this theorem [4] uses the following
facts to build a region of convergence:

- If the policy were not changed at each iteration,
the weights would converge to a fixed point,

- There are finitely many policies the algorithm
can consider.

• The second argument clearly does not hold for an
arbitrary metric space.

• On the other hand, I wrote a proof based on the
one given by Bertsekas and Tsitsiklis that
generalizes the convergence of TD(λ) in general
state spaces.

[4] G. Gordon. (2000). Reinforcement Learning with Function Approximation Converges to a
Region. NIPS, 2000.

• Empirical behavior on a low-dimensional
problem of an implementation of the
version of Q-learning and SARSA that we
discussed.

• Design of a specialized data structure for
the storage and retrieval of hard locations.

• Potential extensions to SDM architectures
and future work.

Part 2: Exorcising the
Curse

• The environment: the mountain car domain.

• However... the Q-learning algorithm suffers
relatively often of dramatic instabilities:

SARSAQ-learning

Convergence in practice
of SARSA and Q-learning

• Potential explanations of this phenomenon:

- Could be caused by the discontinuities
introduced by the max operator,

- or by the stationary exploration policy.

• Conclusion: policy iteration is preferred.

• It is possible to use the first phases of
learning to construct the set of hard locations
so that it has desirable properties [5].

• However, this algorithm involves a large
amount of insertion/deletion of hard
locations:

• A specialized data structure is necessary if we
want our method to scale.

[5] D. Precup, B. Ratitch. (2004). Sparse distributed memories for on-line, value-based
reinforcement learning. ECML, 2004.

Dynamic allocation
algorithms in practice

• A hash-based data structure for interpolative
SDM’s in a finite dimensional vector space. The
idea: use the fact that there is a δ such that for all
set of hard locations H:
d(x1, x2) ≥ δ ⇒ σ(x1, x2) = 0 ∀ x1,2 ∈ H

• Partition the space into cells of length 2δ in each
dimension. Only the cells intersecting the activated
region of the input location need to be examined.

• The data structure works well in practice:

With the hash
Without the hash

• A sequence of decreasing σi instead of a
constant σ.
Motivation: automatic radius selection, fast
learning with a good asymptotic resolution.

• Attach similarity functions σxi
 to hard

locations instead of having a global σ (a new
data structure would be needed using
reversed indexing).
Motivation: an architecture that uses
characteristics of the approximated function
to distribute hard locations.

Extensions to SDM:

