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Part 0

• Motivations for studying Sparse Distributed 
Memories (SDM) architectures [1].

• Description of the architecture.

[1] Kanerva, P. (1993). Sparse distributed memory and related models. In M. Hassoun (Ed.), 
Associated neural memories: Theory and implementation, 50-76. N.Y.: Oxford University Press.



The problem we are 
interested in:

• A Markov decision chain. Described by:

• A specification (S, A, {P(s,⋅)(a)}a∈A) of the 
dynamic behavior of the environment,

• An ordering of the policies derived with 
(g : S × A × S → ℝ, γ).

• Enough to find the optimal cost-to-go/state-
action value functions of the problem.

• We know algorithms that can find these 
value functions (e.g.  Q-learning).



• When |S| is too large we want to approximate 
value functions instead.

• It brings new problems:

• If nonlinear approximators are used, the 
convergence guarantees are lost.

• If linear approximators are used, then some of 
the convergence results are recovered, but we 
get a new problem: the curse of dimensionality.

• SDM reconciles the best of both approaches. 

Approximate RL



• Assumptions on S needed to define an SDM:

- It must be a metric space:
d : S × S → ℝ+

- It must be bounded (for concreteness).

• A SDM architecture is equipped with: 

• a similarity function
σ : S × S → [0, 1] s.t. (1 - σ) is a metric on S

• A set of basis points or hard locations
B := {s1, …, sK : si ∈ S} with weights wi. 

Description of SDM based on: D. Precup, B. Ratitch. (2004). Sparse distributed 
memories for on-line, value-based reinforcement learning. ECML, 2004.

What is a SDM architecture?



• When we want to approximate the value of 
the targeted function at a given point s∈S, 
we first find the set H of actived locations.

• Then the weights corresponding to the 
active locations are summed:

∑ σ(sk, s) wk

∑ σ(sk, s)



• We can train the SDM architecture using 
the standard gradient descent update:
∆w := ∇g [f(s) - g(s)]
where g(·) is the current approximation, 
∇g, the gradient with respect to the 
weights and f(s) is the training sample.

• Note that (∇g)i takes this simple form:

σ(si, s)

∑ σ(sk, s)



1. It is a linear approximation architecture 
(good position for convergence results),

2. The density of the hard locations across the 
space need not be constant (we could put 
more hard locations on “important” 
regions of the state space).

Important 
observations:



• Good surprise: a version of Q-learning 
converges w. pr. 1 when it uses an 
interpolative SDM architecture (approximate 
value iteration algorithms do not have such 
guarantees usually).

• Not so good surprise: an important result 
on the non-divergence of SARSA fails to 
apply in our case.

• Fortunately, TD(λ) still converges w. pr. 1.

Part 1: Convergence?



• The tabular version works by iteratively 
composing the bellman equation seen as a 
self-map in the space of value functions:
(T(J))(i) := max ∑ pij(a)( g(i, a, j) + J(j) )
Jk+1 := T( Jk ),  Jk arbitrary element
where the max is taken over a∈A, the sum 
is taken over j∈S:={1, …, n}, i∈S, g is the 
cost function, and p(·), the transition 
probability matrices.

Value iteration 
techniques



• By the Banach Fixed Point Theorem, the 
tabular version converges (in complete 
spaces)

• In the case of approximate versions of the 
value iteration algorithm we don’t have 
such a convergence guarantee. Even worse: 
it is proven that approximate Q-learning, a 
state-action value iteration algorithm, can 
diverge (even with some linear 
approximators).

• However, for interpolative SDM, there is a 
special convergence result that applies...



• Definition of an interpolative SDM.

• Example: symmetric triangular functions

✓

✗



• Theorem [3]: convergence of a form of Q-
learning for interpolative approximators. 
The main assumptions of this theorem:

• The approximator must be an 
interpolative non-expansion.

• The set of states must be a Polish space 
(the homeomorphic image of a complete 
and separable metric space).

• The exploration policy must be 
stationary... can we relax this condition?

[3] C. Szepesvári, W. Smart (2004). 
Interpolation-based Q-learning. ECML, 2004.



• SARSA is an optimistic algorithm. This makes 
the analysis of its convergence difficult.

• There is a non-divergence result for the case 
of a finite state space.

Policy 
improvement

Policy 
evaluation

Initial 
policy

Cost-to-
go or 
state-
action 
value 

function

Improved 
policy

SARSA: A Policy Iteration Method



• The proof of this theorem [4] uses the following 
facts to build a region of convergence:

- If the policy were not changed at each iteration, 
the weights would converge to a fixed point,

- There are finitely many policies the algorithm 
can consider.

• The second argument clearly does not hold for an 
arbitrary metric space.

• On the other hand, I wrote a proof based on the 
one given by Bertsekas and Tsitsiklis that 
generalizes the convergence of TD(λ) in general 
state spaces.

[4] G. Gordon. (2000). Reinforcement Learning with Function Approximation Converges to a 
Region. NIPS, 2000.



• Empirical behavior on a low-dimensional 
problem of an implementation of the 
version of Q-learning and SARSA that we 
discussed.

• Design of a specialized data structure for 
the storage and retrieval of hard locations.

• Potential extensions to SDM architectures 
and future work.

Part 2: Exorcising the 
Curse



• The environment: the mountain car domain.

• However... the Q-learning algorithm suffers 
relatively often of dramatic instabilities:

SARSAQ-learning

Convergence in practice 
of SARSA and Q-learning



• Potential explanations of this phenomenon: 

- Could be caused by the discontinuities 
introduced by the max operator,

- or by the stationary exploration policy.

• Conclusion: policy iteration is preferred.



• It is possible to use the first phases of 
learning to construct the set of hard locations 
so that it has desirable properties [5].

• However, this algorithm involves a large 
amount of insertion/deletion of hard 
locations:

• A specialized data structure is necessary if we 
want our method to scale.

[5] D. Precup, B. Ratitch. (2004). Sparse distributed memories for on-line, value-based 
reinforcement learning. ECML, 2004.

Dynamic allocation 
algorithms in practice



• A hash-based data structure for interpolative 
SDM’s in a finite dimensional vector space. The 
idea: use the fact that there is a δ such that for all 
set of hard locations H:
d(x1, x2) ≥ δ ⇒ σ(x1, x2) = 0   ∀ x1,2 ∈ H

• Partition the space into cells of length 2δ in each 
dimension. Only the cells intersecting the activated 
region of the input location need to be examined.



• The data structure works well in practice:

With the hash
Without the hash



• A sequence of decreasing σi instead of a 
constant σ.
Motivation: automatic radius selection, fast 
learning with a good asymptotic resolution.

• Attach similarity functions σxi
 to hard 

locations instead of having a global σ (a new 
data structure would be needed using 
reversed indexing).
Motivation: an architecture that uses 
characteristics of the approximated function 
to distribute hard locations.

Extensions to SDM:


