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Abstract

Summary: Poor measurement of explanatory variables occurs frequently in

observational studies. Error-prone observations may lead to biased estimation and

loss of power in detecting the impact of explanatory variables on the response.

We consider misclassified binary exposure in the context of case-control studies,

assuming the availability of validation data to inform the magnitude of the misclas-

sification. A Bayesian adjustment to correct for the misclassification is investigated.

Simulation studies show that the Bayesian method can have advantages over non-

Bayesian counterparts, particularly in the face of a rare exposure, small validation
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sample-sizes, and uncertainty about whether exposure misclassification is differen-

tial or non-differential. The method is illustrated via application to several real

studies.

Keywords: Bayesian methods; case-control study; exposure misclassification; simulation-

extrapolation.

1 Introduction

In biomedical studies, the misclassification problem arises when a categorical exposure

variable T is not precisely recorded. Instead of T , an approximate measurement or a

surrogate, X is obtained. Replacing T with X in data analysis without accounting for the

misclassification does not generally lead to valid inference about the association between

T and a health-related response Y . Hence, the goal of adjustment for mismeasurement

is to achieve valid inference about the (T, Y ) relationship from (X, Y ) data. In this

paper, we restrict ourself to misclassification problems on a binary exposure variable (T

=0, 1) in case-control studies (Y = 0, 1 for controls, cases) and no other covariates at

play. We consider the setting whereby a “validation subsample” is available, i.e, for

the majority of subjects only (X, Y ) data are obtained, but for a (randomly-selected)

minority (T,X, Y ) are obtained. Such a design can arise when X is inexpensive and/or

quick to measure whereas T is expensive and/or time-consuming to measure. Table 1

described the data structure. While each cell aij in the validation data is fully specified

(i = 0, 1,j = 1, 2, 3, 4), only margins a05, a06, a15, a16 in the main data are recorded.

It is sometimes sensible to assume the conditional distribution of X given T and

Y does not depend on Y , which is known as nondifferential misclassification. In other

circumstances, the sampling scheme of case-control studies (explanatory variables are
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retrieved after the diagnosis) may well lead to the so called differential measurement error,

i.e. the conditional distribution of the surrogate X given the unobservable exposure T also

depends on the response Y . When information about covariates is collected through some

“self-report” mechanism, subjects with target clinical outcomes may tend to erroneously

“blame” a set of risk factors for their conditions, or “ignore” previous exposure to avoid

any connection between behaviour and disease.

There is a large literature on correcting for exposure mismeasurement, for example

Barron [1], Marshall [2], Lyles [3], Carroll et al. [4]. Most work approaches the problem

from a frequentist perspective, assuming complete knowledge of whether the misclassifi-

cation is nondifferential or differential. The simulation extrapolation method and latent

class logistic regression model were developed to tackle the same problem [5, 6]. On the

other hand, the dramatic improvement of computational capability and the development

of indirect simulation techniques such as Markov chain Monte Carlo (MCMC) make it

possible to explore misclassification problems from a Bayesian perspective [7, 8, 9, 10].

In fact, partial prior knowledge of misclassification probabilities is often accessible to

medical researchers, which makes Bayesian analysis an appealing approach.

Therefore in this paper, we primarily introduce a series of Bayesian methods suit-

able for different misclassification assumptions. Their performance will be closely com-

pared to those of the maximum likelihood estimates (MLEs) and simulation extrapola-

tion (SIMEX) method, using simulation studies and real-life examples. Section 2 presents

detailed methodology for the proposed Bayesian methods. Section 3 discusses the com-

parative behaviours of the three methods based on simulation studies. Sections 4 and

5 present the performances of Bayesian and other methods via case-control studies with

misclassified exposure variables and validation sub-samples. Section 6 provides some

concluding remarks.
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2 Bayesian adjustment for misclassification

Let us denote the true exposure prevalences amongst controls and cases by ri = P (T =

1|Y = i), i = 0, 1. The retrospective odds ratio describing the correlation between the

response and explanatory variable is defined as

Φr =
r1/(1 − r1)
r0/(1 − r0)

.

Sensitivity (SN) and specificity (SP ) jointly measure the magnitude of exposure mis-

classification. In the scenarios subject to differential misclassification, the surrogate X

and the response Y are not independent, given the unobserved true exposure T . The sen-

sitivities and specificities among cases and controls can be formulated as, SNi = P (X =

1|T = 1, Y = i), SPi = P (X = 0|T = 0, Y = i), i = 0, 1. Prevalences of the apparent ex-

posure for diseased and non-diseased individuals are denoted by r∗i = P (X = 1|Y = i) =

riSNi + (1 − ri)(1 − SPi), i = 0, 1. The degree of misclassification can also be expressed

by the positive predictive value (PPV) and negative predictive value (NPV), where

PPVi = P (T = 1|X = 1, Y = i) =
SNiri

SNiri + (1 − SPi)(1 − ri)
(1)

NPVi = P (T = 0|X = 0, Y = i) =
SPi(1 − ri)

SPi(1 − ri) + (1 − SNi)ri
(2)

It is easy to justify that, in the main study the actual number of subjects of positive

exposure status (bi1) amongst those who are apparently exposed in either case or control

group (ai5) follows a Binomial distribution, i.e. bi1 ∼ Binomial(ai5, PPVi). Similarly,

conditioning on the number of cases or controls with negative apparent exposure status

(ai6), the number of truly unexposed subjects (bi4) follows Binomial(ai6, NPVi), for i =

0, 1.

When the nondifferential misclassification condition is fulfilled, meaning the condi-

tional distribution of X|T, Y does not depend on Y , it follows immediately that SN0 =

SN1 = SN, SP0 = SP1 = SP . However it is worth pointing out that, nondifferential
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misclassification does not imply equality of cases and controls regarding the predictive

values (PPVi, NPVi).

2.1 Prior distributions

The exposure prevalances r0, r1, sensitivities SN0, SN1, and specificities SP0, SP1 are

the parameters of interest. By converting into a logit scale, logit(x) = log{x/(1−x)}, the

prior information concerning these parameters can be modeled using bivariate normal dis-

tributions [11]. The actual exposure prevalences (ri), sensitivities(SNi) and specificities

(SPi) of X as a surrogate for T are assumed to be uncorrelated of one another, with,

 logit(r0)

logit(r1)

 ∼ N

 µ1

µ2

 ,

 σ2
1 ρ1σ1σ2

ρ1σ1σ2 σ2
2

 ,

 logit(SN0)

logit(SN1)

 ∼ N

 ν1

ν2

 ,

 τ2
1 ρ2τ1τ2

ρ2τ1τ2 τ2
2

 ,

 logit(SP0)

logit(SP1)

 ∼ N

 γ1

γ2

 ,

 δ2
1 ρ3δ1δ2

ρ3δ1δ2 δ2
2

 .

It follows immediately that,

logit(SN0) − logit(SN1) ∼ N(ν1 − ν2, τ
2
1 + τ2

2 − 2ρ2τ1τ2) (3)

logit(SP0) − logit(SP1) ∼ N(γ1 − γ2, δ
2
1 + δ2

2 − 2ρ3δ1δ2) (4)

Our prior beliefs can be reflected through the hyperparameters, µi, σi, νi, τi, γi, δi

and ρj. For instance, we proceed to set the prior distributions on the misclassification

parameters as follows. We set ν1 = ν2, γ1 = γ2, τ 2
1 = τ 2

2 , δ2
1 = δ2

2 to reflect an absence

of knowledge about the “direction” of possible differentiality in the exposure assessment,

with the assigned values to these quantities then reflecting prior belief about the extent of
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exposure misclassification. Put another way, we are expressing exchangeable prior beliefs

about the misclassification of controls versus the misclassification of cases.

As a result, setting ρ2 = ρ3 = 1 implies that SN0 = SN1 and SP0 = SP1, which

corresponds to nondifferential misclassification. Conversely, setting ρ2 = ρ3 = 0 im-

plies independence of SN0 and SN1, and independence of SP0 and SP1. This intuitively

reflects the notion that sensitivities or specificities are free to vary by themselves, and

can be interpreted as “fully differential” misclassification. We will describe situations in

between (0 < ρj < 1, j = 2, 3) as corresponding to “nearly nondifferential” misclassifica-

tion, particularly when each ρj is close to one. This setting is useful when investigators

postulate that the nondifferential assumption might hold, and that should it be violated,

the extent of violation is not likely to be severe.

Similarly, we set µ1 = µ2 and σ1 = σ2 to be “unbiased”, a priori concerning the

direction of any exposure-disease association. The particular choice of values is dictated

by belief about plausible values for exposure prevalence. We can then choose ρ1 to obtain

plausible prior for the effect size.

2.2 Posterior simulation

As is common in problems with “latent structure”, we can implement Bayesian inference

via simulation from the distribution of parameters and unobservables given observables.

In the fully-differential and nearly-nondifferential cases, this amounts to sampling from

the distribution of parameter θ = (r0, r1, SN0, SN1, SP0, SP1) and latent variables bij

given observed data aij. It is easy to verify that in the related problem where the prior

on θ is comprised of independent uniform distributions (or more generally independent

beta distributions) for each parameter, that Gibbs sampling is possible. That is, in the

related problem each component of θ has a standard “full conditional” distribution. Gibbs
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sampling has the nice features that (i) no tuning constants are involved, and (ii) proposed

moves are always accepted. Therefore we adapt this approach to the actual problem at

hand by implementing a Metropolis-Hastings algorithm, using the full-conditionals for

the related problem to generate proposals. Thus tuning is still not needed. Moreover, the

acceptance probability for each proposal will depend only on the ratio of prior densities,

i.e., the specified prior based on bivariate normal distributions versus the uniform prior

in the related problem. Thus we find high acceptance rates, and in general this algorithm

performs well. Note also that the same computational strategy can be adopted in the

nondifferential case, via the smaller parameter vector θ = (r0, r1, SN, SP ). The Bayesian

method is implemented in R and downloadable from http://www.stat.ubc.ca/People/

Home/index.php?person=gustaf.

3 Simulation Studies

3.1 Data Simulation

In order to demonstrate the comparative performance of Bayesian adjustment against

other statistical approaches, we conduct a simulation study using both relatively low

((r0, r1) = (0.0400, 0.0698)) and high ((r0, r1) = (0.250, 0.375)) exposure prevalences,

implying an odds ratio Φ = {r1/(1−r1)}/{r0/(1−r0)} of 1.8 for the true exposure T and

the response Y in either case. At each prevalence setting, four misclassification scenarios

concerning different levels of differentiality are built. Under each scenario, 400 datasets

each of sample size 960 are generated (
∑4

j=1 aij = 80, ai5 + ai6 = 400).

Data in scenario 1 are simulated under nondifferential misclassification, with increas-

ing degrees of differentiality in scenarios 2, 3, and 4. To mimic the occurrence of erro-

neously “blaming” or “ignoring” a risk factor, we let the misclassification arising for the

cases grow across scenarios, as follows.
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• Scenario 1 : (SN0, SN1)=(0.80, 0.80), (SP0, SP1)=(0.90, 0.90)

• Scenario 2 : (SN0, SN1)=(0.80, 0.75), (SP0, SP1)=(0.90, 0.85)

• Scenario 3 : (SN0, SN1)=(0.80, 0.70), (SP0, SP1)=(0.90, 0.80)

• Scenario 4 : (SN0, SN1)=(0.80, 0.65), (SP0, SP1)=(0.90, 0.75)

Three Bayesian methods, adopting nondifferential, nearly nondifferential and differ-

ential prior distributions respectively, are applied to each dataset, to adjust for possible

misclassifications and assess the association between the true exposure and outcome.

3.2 Choice of Hyperparameters

According to Section 2, under the assumptions that µ1 = µ2 = µ, σ1 = σ2 = σ, ν1 = ν2,

γ1 = γ2 = γ, τ1 = τ2 = τ and δ1 = δ2 = δ, we assign µ = −1.946, σ = 0.993 to model

the prior information that the logit true exposures are normally distributed with central

95% probability between logit(0.02) and logit(0.5). Mild correlation between r0 and r1

(ρ1 = 0.3) is selected to allow a relatively large prior standard deviation of 1.175 for

logOR around mean 0. Similarly, we set ν = γ = 1.675, τ = δ = 0.648 to represent the

prior knowledge that the logit sensitivity and logit specificity are normally distributed

within logit(0.6) and logit(0.95) with 95% probability. As discussed in Section 2, we set

ρ2 = ρ3 = 1 to reflect nondifferential misclassification; ρ2 = ρ3 = 0 to express prior belief

in differential misclassification.

The choice of ρ2, ρ3 for nearly nondifferential misclassification requires extra work.

We note that by setting ρ2 = ρ3 = 0.95 we attain:

P{|logit(SN1) − logit(SN0)| < 0.1} = P{|logit(SP1) − logit(SP0)| < 0.1} = 0.3746,

and (by simulation)

P{|SN1 − SN0| < 0.01} = P{|SP1 − SP0| < 0.01} = 0.32252.
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This seems reasonable as an encapsulation of the notion that deviations from nondiffer-

entiality are not likely severe.

3.3 Model comparison

Bayesian statistical inferences are conducted based on samples drawn from 10000 MCMC

iterations, after we discard the first 1000 simulations to diminish the effect of initial

distributions.

The performance of Bayesian methods is constrasted with maximum likelihood (ML)

and SIMEX methods. MLEs for model parameters under differential misclassification are

calculated using closed-form expressions given by Lyles Lyles [3]. A numerical optimizer

(function “optim()” in R) is adopted to maximize the log likelihood under nondifferential

misclassification. The asymptotic variance of the log odds-ratio estimator is attainable

by the multivariate Delta method in these cases.

The simulation extrapolation (SIMEX) method originates in continuous measurement

error settings [12]. The method introduces artificial extra measurement error to the

data in question, in order to infer a relationship between the magnitude of measurement

error and the estimate of the exposure-disease relationship. This relationship is then

extrapolated back to the point of zero measurement error, to give an estimate which is

adjusted for this error. Recently, Küchenhoff et al. extended the SIMEX procedure to

the case of misclassified categorial data [5]. In brief, extra misclassification is introduced

by raising the misclassification matrix to a power λ > 1, for multiple values of λ. The

relationship between the point estimate of interest and λ is then extrapolated back to the

λ = 0 setting of no misclassification (i.e., misclassification matrix equal to the identity

matrix). The corresponding software package [13] allows different choices of extrapolation

function and different methods for the calculation of standard errors. We therefore reports
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multiple sets of results for SIMEX. Note also that the SIMEX procedure is operationalized

by “plugging in” estimates of sensitivity and specificity obtained from the validation data.

Thus by pooling or not-pooling the validation data across controls and cases, one can

implement SIMEX under the nondifferential or differential misclassification assumptions

respectively.

Results for all inferential schemes are reported in terms of mean-squared error of point

estimators, and coverage and average width of nominal 95% interval estimators.

Results under the higher setting of exposure prevalence are given in Table 2 (MLE

and Bayes) and Table 3 (SIMEX). Here nondifferential methods perform better when the

data truly are nondifferentially misclassified (scenario 1). Differential methods are not as

efficient under truly nondifferential misclassification, because sensitivity and specificity

are estimated separately, and therefore via less data, for controls and cases. On the other

hand, coverage of nondifferential methods deteriorates rapidly as the true misclassifica-

tion mechanism becomes more differential. The performance of Bayes and ML methods is

quite comparable, with the former having somewhat smaller MSE when differential mis-

classification is correctly assumed. Note also that in comparing Table 3 to Table 2, even

the empirically better choice of extrapolation function (quadratic rather than loglinear)

in SIMEX gives much larger MSE than the corresponding Bayes or ML procedure, par-

ticulary for the differential misclassification scenarios. This is not necessarily surprising.

While the SIMEX approach is intuitively appealing, it does not carry the large-sample

efficiency guarantees that come with likelihood-based procedures.

Results for ML and Bayes procedures in the lower exposure prevalence setting are

given in Table 4. The combination of rare exposure, relatively high sensitivity, and

relatively small validation sample size implies that for some generated datasets no subject

is truly exposed to the risk factor in the case or control group, i.e. ai1 = 0 and ai2 =

0. This leads to nonsensical ML results, either analytically in the differential case or
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numerically in the nondifferential case. Thus the ML-DF results in the table are based

on only those datasets without such empty cells in the validation data. Results are not

given in the table for the ML-NDF method, since the numerical optimization can fail

(or give a dubious result) for datasets with ‘near-empty’ cells in the validation data,

but it is unclear how to definitively divide the generated datasets into those which do

and don’t suffer from this problem. In general, the problem of nearly or exactly empty

cells does limit the utility of ML procedures, particularly given that rare exposures and

small validation sample-sizes are common in epidemiological settings. In contrast, the

performance of the Bayesian procedures evidenced in Table 4 seems quite reasonable,

with dramatic MSE reductions for the Bayes-DF inferences compared to ML-DF. The

smoothing which results from combining prior distributions on sensitivity and specificity

with empty or near-empty validation-data cells appears to yield much more satisfactory

inferences. Results for SIMEX estimators in the low exposure setting are not shown, but

again the overall performance is worse than Bayes and ML procedures, and the use of

“plugged-in” sensitivity and specificity estimates leads to the “empty-cell” concerns as

with ML methods.

Results for the nearly nondifferential (NNDF) Bayesian analysis, in both low and

high exposure prevalence settings, appear in Table 5. For the sake of comparison, results

are also given here for a two-stage non-Bayesian procedure that we refer to as test-then-

estimate (TTE). The first TTE step applied a likelihood ratio test to the validation

data, with the null hypothesis that the binary exposure is nondifferentially misclassified.

Then as the second step ML-DF or ML-NDF point and interval estimates are reported,

depending on whether the null is rejected or not in the first step. Again for some datasets

one or more empty validation cell aij results in zero- or one-valued estimate for sensitivity,

specificity or exposure prevalence hence yields nonsensical likelihood ratios, so that TTE

estimates and inferential results are reported for only a subset of the simulated datasets.
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The number of discarded datasets is higher in Table 5 than in Tables 2 and 4, for more

simulated datasets have one or more empty cell than those having empty (ai1, ai2) pair(s)

simultaneously. To aid comparison, the Bayes-NNDF results are reported for both (i) the

same subset of datasets as for TTE, and (ii) all datasets.

In terms of both point and interval estimate performance, Bayes-NNDF is seen to

offer good performance across scenarios, particularly in relation to either Bayes-NDF or

Bayes-DF applied in a “wrong” scenario. Bayes-NNDF is also seen to be moderately

better than TTE (in terms of both MSE and coverage) in the high exposure prevalence

setting, and very substantially better than TTE in the low prevalence setting.

4 Example: Maternal use of antibiotics during preg-

nancy and sudden infant death syndrome

We consider a case-control study on sudden infant death syndrome (SIDS) [14] to further

illustrate how Bayes, ML and SIMEX adjustments for misclassification work in practice.

During investigation of a potential impact of maternal use of antibiotics during pregnancy

on the occurrence of SIDS, surrogate exposure X was obtained from an interview question

(yes=1, no=0). Information on antibiotic use from medical records, taken to be the actual

exposure status T , was extracted for a subset of study participants. The data are shown

in Table 6. Ignoring misclassification, the X−Y log odds ratio is estimated as 0.352 with

95% confidence interval (0.101, 0.603).

The same prior distributions used in the simulation studies of Section 3 are employed

here for drawing Bayesian inferences. Study results after the various adjustments for

misclassification are presented in Table 7. Point and interval estimates of log-OR via

Bayes and ML methods are similar. Parameters are estimated with more slightly more
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certainty under the nondifferential assumption than under the differential assumption,

which is consistent with simulation findings.

Note that a considerably stronger exposure-disease association is estimated under the

nondifferential misclassification assumption than under the differential misclassification

assumption, with ‘significance’ (i.e., interval estimate excluding zero) in the former case

but not the latter. Moreover, the validation-data evidence concerning differentiality is

equivocal (likelihood ratio test P-value of 0.096 for the null hypothesis of nondifferential

misclassication). Therefore, the Bayes-NNDF analysis may be viewed as an appropriate

compromise between the nondifferential and differential analyses, with a tempered point

estimate (relative to NDF) but still significant interval estimate.

The behaviour of SIMEX estimates in this example requires some comment. The

extrapolation of the estimated log odds-ratio as a function of the misclassification mag-

nitude is depicted in Figure 1. In line with the Bayes and ML results, adding further

misclassification pushes estimates toward the null in the nondifferential case but away

from the null in the differential case. In the nondifferential case, both choices of ex-

trapolation function appear to fit the simulated data well. Extrapolating back to the

no misclassification setting, however, produces adjusted estimates which are much more

extreme than those obtained by either Bayes or ML methods.

5 Example: HSV-2 and invasive cervical cancer

The second example describes a case-control study consisting of 732 subjects of cervical

cancer and 1312 community or hospital controls with negative cervical cancer diagnosis

[15]. Researchers were interested in assessing the impact of herpes simplex virus type 2

(HSV-2, a binary variable) in the development of invasive cervical cancer. The exposure

status was detected by the western blot assay, which produced error-prone measurements.
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A refined, more accurate procedure was performed on a randomly selected sample of study

subjects (selected without regard to their disease status), in order to assess the misclas-

sification rates. The data are displayed in Table 8. It is noticeable from the validation

and main data that the exposure prevalence of HSV-2 is high in both cases and controls.

Carroll et al. observed from the validation sample that the misclassification differs be-

tween cases and controls (Fisher’s exact two-sided test implied a greater sensitivity for

the cases, p=0.049), and proposed a pseudo-likelihood model to adjust for the differential

measurement error [16].

Ignoring measurement error arising from the inaccurate western blot procedure, the

naive log odds ratio is estimated as 0.453 (standard error = 0.093), with 95% confidence

interval (0.271, 0.635), indicating HSV-2 is positively correlated with the occurrence of

invasive cervical cancer. We conduct Bayesian adjustment under three misclassification

situations (NDF, NNDF and DF), again using the prior distributions for logit transformed

sensitivities and specificities described in Section 3. For logit(ri), a flat prior with large

variance is used here to generate posterior inference (µ=-1.946, σ=100). Similar results

are observed when same hyperparameters for logit(ri) stated in Section 3 are used (µ=-

1.946, σ=0.993).

Table 9 presents results of the various analyses. For all three methods (Bayes, ML,

SIMEX), moving from the nondifferential assumption to the differential assumption moves

the point estimate of the exposure-disease association toward the null, and causes the left

endpoint of the interval estimate to move from positive to negative, i.e., “significance” is

lost. (More precisely, for SIMEX this occurs under the quadratic extrapolation but not

under the loglinear extrapolation, with Figure 2 suggesting that the quadratic extrapo-

lation is more appropriate.)

As Carroll, Gail, and Lubin [16] pointed out, there is moderate evidence to show

measurement error is differential across cases and controls. Sensitivities estimated from
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validation data alone are 0.78 for cases and 0.5 for controls. Nevertheless, if both the com-

plete and incomplete data are considered, a likelihood ratio test for the nondifferentiality

of misclassification with 2 degrees of freedom, generates a p-value at 0.073, indicating

lack of evidence to reject the null at 5% significance level. The same test based merely

on the validation data reports a consistent result (p-value= 0.084). Hence, it seems more

appropriate to interpret the differentiality of measurement as borderline. One advantage

of Bayesian adjustment emerges in this context, as it can incorporate the “in-between”

scenario of nearly nondifferential misclassification via an appropriate prior distribution.

As expected, the NNDF analyis yields a posterior mean and SD falling in between those

arising from the NDF and DF assumptions. The resulting interval estimate is wholly

positive, providing evidence for a positive exposure-disease association without concern

about imposing an overly-strong assumption of nondifferential misclassification.

As a final point, we note that the Bayesian parameter estimates are consistent with

the results given by Skrondal and Rabe-Hesketh [6] for these data, using generalized

latent variable modeling techniques.

6 Discussion

Mismeasurement of exposure is an issue of broad concern in epidemiological studies, and

there is a substantial literature on adjusting inferences on exposure-disease relationships

in light of such mismeasurement. Bayesian methods, likelihood methods, and SIMEX

methods are three general tools for implementing such adjustments. At least in the con-

text of misclassified binary exposure, this paper has illustrated several positive attributes

of the Bayesian approach. First, Bayesian methods can provide more reasonable and sta-

ble inferences when the resulting data are sparse, which is of particular relevance to small

validation datasets in rare exposure contexts. Second, the infusion of prior information
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offered by the Bayesian approach can be used to good effect. Rather than committing to

nondifferential or ‘fully’ differential assumptions concerning the exposure misclassifica-

tion, a prior can be constructed to represent a ‘nearly nondifferential’ assumption. That

is, the analyst can assert that substantial deviations from nondifferentiality are unlikely.

This would seem to be a particularly useful device when the data themselves do not

clearly support or refute nondifferentiality, as occured in both our real-data examples.

References

[1] B. A. Barron. The effects of misclassification on the estimation of relative risk.

Biometrics, 33:414–418, 1977.

[2] R. J. Marshall. Validation study methods for estimating exposure proportions and

odds ratios with misclassified data. Journal of Clinical Epidemiology, 43:941–947,

1990.

[3] R. H. Lyles. A note on estimating crude odds ratios in case-control studies with

differentially misclassified exposure. Biometrics, 58:1034–1037, 2002.

[4] R. J. Carroll, D. Ruppert, L. A. Stefanski, and C. M. Crainiceanu. Measurement

Error in Nonlinear Models, volume 105 of Monographs on Statistics and Applied

Probability. Chapman & Hall/CRC, Boca Raton, second edition, 2006.

[5] H. Küchenhoff, S. M. Mwalili, and E. Lesaffre. A general method for dealing with

misclassification in regression: the misclassification simex. Biometrics, 62:85–96,

2006.

[6] A. Skrondal and S. Rabe-Hesketh. Generalized Latent Variable Modeling: multilevel,

16



longitudinal, and structural equation models. Chapman & Hall/CRC, Boca Raton,

2004.

[7] P. Gustafson. Measurement Error and Misclassification in Statistics and Epidemi-

ology: Impacts and Bayesian Adjustments, volume 13 of Interdisciplinary Statistics.

Chapman & Hall/CRC, Boca Raton, 2004.

[8] G. J. Prescott and P. H Garthwaite. A simple bayesian analysis of misclassified

binary data with a validation substudy. Biometrics, 58:454–458, 2002.

[9] P. Mclnturff, W. O. Johnson, D. Cowling, and I. A. Gardner. Modelling risk when

binary outcomes are subject to error. Statistics in Medicine, 23:1095–1109, 2004.

[10] M. Ladouceur, E. Rahme, C. A. Pineau, and J. Lawrence. Robustness of prevalence

estimates derived from misclassified data from administrative aatabases. Biometrics,

63:272–279, 2007.

[11] S. Greenland. Sensitivity analysis, monte carlo risk analysis, and bayesian uncer-

tainty assessment. Risk Analysis, 21:579–583, 2001.

[12] J. R. Cook and L. A. Stefansk. Simulation-extrapolation estimation in parametric

measurement error eodels. Journal of the American Statistical Association, 89:1314–

1328, 1994.
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Table 1: Validation data and main data

Validation Data Main Data

Y=1 Y=0 Y=1 Y=0

T X=1 X=0 X=1 X=0 X=1 X=0 X=1 X=0

T=1 a11 a12 a01 a02 b11 b12 b01 b02

T=0 a13 a14 a03 a04 b13 b14 b03 b04

N a11 + a13 a12 + a14 a01 + a03 a02 + a04 a15 a16 a05 a06

Table 2: Comparative performance of MLE and Bayesian models on simulated data
(Nrep=400) given high exposure prevalences

ML-NDF ML-DF Bayes-NDF Bayes-DF
Scenario 1 MSE 0.035 0.071 0.034 0.054

Coverage 0.968 0.950 0.963 0.963
Width 0.768 1.066 0.779 1.018

Scenario 2 MSE 0.058 0.095 0.055 0.076
Coverage 0.925 0.94 0.915 0.948
Width 0.823 1.112 0.823 1.054

Scenario 3 MSE 0.092 0.095 0.083 0.076
Coverage 0.863 0.945 0.855 0.960
Width 0.873 1.145 0.860 1.078

Scenario 4 MSE 0.138 0.083 0.120 0.067
Coverage 0.798 0.950 0.790 0.958
Width 0.918 1.170 0.896 1.102
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Table 4: Comparative performance of MLE(Nrep<400) and Bayesian (Nrep=400) models
on simulated data given low exposure prevalences. For the ML-DF procedure, the number
in parentheses indicates the number of datasets excluded due to having zero truly exposed
subject in a group.

ML-DF Bayes-NDF Bayes-DF
Scenario 1 MSE 0.535 (-9) 0.182 0.228

Coverage 0.928 0.960 0.978
Width 2.418 1.849 2.156

Scenario 2 MSE 0.501 (-17) 0.258 0.217
Coverage 0.945 0.920 0.980
Width 2.416 1.865 2.184

Scenario 3 MSE 0.512 (-18) 0.687 0.206
Coverage 0.940 0.648 0.985
Width 2.470 1.861 2.218

Scenario 4 MSE 0.499 (-16) 1.229 0.210
Coverage 0.935 0.308 0.980
Width 2.4840 1.836 2.226
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Table 6: Validation study and main study of SIDS

Validation data Main data

Y=1 Y=0

T X=1 X=0 X=1 X=0 Y X=1 X=0

T=1 29 17 21 16 Y=1 122 442

T=0 22 143 12 168 Y=0 101 479

Table 7: logÔR, SD and 95% intervals for logOR in SIDS study

log(ÔR) SD 95% intervals
Bayes-NDF 0.395 0.187 (0.034, 0.763)

Bayes-NNDF 0.303 0.198 (-0.079, 0.698)
Bayes-DF 0.211 0.215 (-0.219, 0.630)
ML-NDF 0.398 0.191 (0.024, 0.772)
ML-DF 0.193 0.221 (-0.241, 0.626)

SIMEX-NDF
quadratic, asymptotic 0.663 0.227 (0.219, 1.108)
quadratic, Jackknife 0.179 (0.313, 1.014)
loglinear, asymptotic 0.725 0.257 (0.220, 1.229)
loglinear, Jackknife 0.179 (0.374, 1.075)

SIMEX-DF
quadratic, asymptotic -0.010 0.221 (-0.443, 0.424)
quadratic, Jackknife 0.209 (-0.418, 0.399)
loglinear, asymptotic 0.276 0.110 (0.060, 0.492)
loglinear, Jackknife 0.209 (-0.133, 0.685)

23



Table 8: Validation data and main data for cervical cancer study

Validation data Main data

Y=1 Y=0

T X=1 X=0 X=1 X=0 Y X=1 X=0

T=1 18 5 16 16 Y=1 375 318

T=0 3 13 11 33 Y=0 535 701

Table 9: logÔR, SD and 95% intervals for logOR in cervical cancer study based on a flat
prior for logit(ri)

log(ÔR) SD 95% interval
Bayes-NDF 0.921 0.223 ( 0.520, 1.404)

Bayes- NNDF 0.809 0.266 (0.320, 1.356)
Bayes-DF 0.583 0.324 (-0.033, 1.262)
ML-NDF 0.958 0.237 (0.494, 1.422)
ML-DF 0.608 0.350 (-0.079, 1.295)

SIMEX-NDF
quadratic, asymptotic 0.903 0.184 (0.542, 1.264)
quadratic, Jackknife 0.133 ( 0.643, 1.164)
loglinear, asymptotic 1.198 0.239 (0.730, 1.667)
loglinear, Jackknife 0.133 (0.938, 1.459)

SIMEX-DF
quadratic, asymptotic 0.146 0.172 (-0.191, 0.482)
quadratic, Jackknife 0.137 (-0.123, 0.414)
loglinear, asymptotic 0.427 0.100 ( 0.231, 0.623)
loglinear, Jackknife 0.137 (0.158, 0.696)
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Figure 1: Plots of the estimated logOR as a function of misclassification size λ in SIDS
study. The upper-left panel is based on a quadratic extrapolation subject to NDF MC-
SIMEX. The upper-right panel is based on a loglinear extrapolation subject to NDF MC-
SIMEX. The lower-left panel is based on a quadratic extrapolation subject to DF MC-
SIMEX. The lower-right panel is based on a loglinear extrapolation subject to DF MC-
SIMEX.
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Figure 2: Plots of the estimated logOR as a function of misclassification size λ in cervical
cancer study. The upper-left panel is based on a quadratic extrapolation subject to NDF
MC-SIMEX. The upper-right panel is based on a loglinear extrapolation subject to NDF
MC-SIMEX. The lower-left panel is based on a quadratic extrapolation subject to DF
MC-SIMEX. The lower-right panel is based on a loglinear extrapolation subject to DF
MC-SIMEX.
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