
STAT 545A
Class meeting #11
Monday, October 15, 2012

Dr. Jennifer (Jenny) Bryan

Department of Statistics and Michael Smith Laboratories

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/

Review of last class
Worked with yeast growth data. For each gene in the
genome, we observed yeast growth when that gene was
deleted. Quantitative response variable is a readout for
growth. Categorical explanatory variable was chromosome.

We conducted lots of “two groups” tests, assessing whether
the distribution of growth is same or different for gene
(deletions) on different chromosomes.

Presented 120 p-values -- from all possible pairs of
chromosomes -- as a heatmap. Upgrades included color
scheme, supplementing w/ original density plots, rational
ordering of the chromosome factor, and probit
transformation of the p-values.

Growth phenotype
D

en
si

ty

0.0
0.2
0.4
0.6

4 6 8 10 12

A / I B / II

4 6 8 10 12

C / III D / IV

E / V F / VI G / VII

0.0
0.2
0.4
0.6

H / VIII
0.0
0.2
0.4
0.6

I / IX J / X K / XI L / XII

M / XIII

4 6 8 10 12

N / XIV O / XV

4 6 8 10 12

0.0
0.2
0.4
0.6

P / XVISame underlying data-
generating distribution?
Assess with a “two
groups” test.

> peek(tgtRes)
 chromoA chromoB t wilcox ks chisq
23 2 10 5.077492e-01 1.260279e-01 4.265804e-02 3.055263e-02
28 2 15 2.749797e-02 1.080776e-04 3.271894e-06 1.146343e-06
43 4 5 7.906832e-22 1.154823e-23 0.000000e+00 4.340871e-19
65 5 16 7.659286e-08 7.746156e-07 7.007464e-06 2.444194e-04
74 6 15 3.601006e-02 2.847043e-03 6.857203e-03 3.464897e-02
90 8 14 1.344403e-02 1.278636e-01 4.284638e-02 5.906893e-03
119 14 16 4.117154e-01 9.092607e-01 2.626741e-01 9.915321e-02

Consider various tests and all
possible pairwise comparisons
(120, in this case).

Review

rational
color
scale

rational order,
add densities

transformation emphasizes
important differences

row

co
lu

m
n

A / I

B / II

C / III

D / IV

E / V

F / VI

G / VII

H / VIII

I / IX

J / X

K / XI

L / XII

M / XIII

N / XIV

O / XV

P / XVI

A / I B / I
I
C / I

II
D / I

V
E / V F / V

I

G / V
II

H / V
III

I /
IX

J /
 X

K / X
I
L /

 XII

M / X
III

N / X
IV

O / X
V
P / X

VI

0.0

0.2

0.4

0.6

0.8

1.0

Colors based on 'GnBu' palette from RColorBrewer

A / I

B / II

C / III

D / IV

E / V

F / VI

G / VII

H / VIII

I / IX

J / X

K / XI

L / XII

M / XIII

N / XIV

O / XV

P / XVI

A / I B / I
I
C / I

II
D / I

V
E / V F / V

I

G / V
II

H / V
III

I /
IX

J /
 X

K / X
I
L /

 XII

M / X
III

N / X
IV
O / X

V
P / X

VI

0.0

0.2

0.4

0.6

0.8

1.0

D / IV
G / VII
H / VIII
F / VI
I / IX
B / II

N / XIV
L / XII
J / X

P / XVI
C / III

O / XV
K / XI

M / XIII
A / I
E / V

Ordered by Jenny

D / IV

G / VII

H / VIII

F / VI

I / IX

B / II

N / XIV

L / XII

J / X

P / XVI

C / III

O / XV

K / XI

M / XIII

A / I

E / V

D / I
V
G / V

II

H / V
III

F / V
I

I /
IX

B / I
I

N / X
IV

L /
 XII

J /
 X
P / X

VI
C / I

II

O / X
V

K / X
I

M / X
III A / I E / V

0.0

0.2

0.4

0.6

0.8

1.0

D / IV
G / VII
H / VIII
F / VI
I / IX
B / II

N / XIV
L / XII
J / X

P / XVI
C / III

O / XV
K / XI

M / XIII
A / I
E / V

Ordered by Jenny, probit transformed p−values

D / IV

G / VII

H / VIII

F / VI

I / IX

B / II

N / XIV

L / XII

J / X

P / XVI

C / III

O / XV

K / XI

M / XIII

A / I

E / V

D / I
V
G / V

II

H / V
III

F / V
I

I /
IX

B / I
I

N / X
IV

L /
 XII

J /
 X
P / X

VI
C / I

II

O / X
V

K / X
I

M / X
III A / I E / V

1e−04
0.001

0.01
0.05
0.1

0.5

1

Present 120 p-
values in a figure
(vs. table)

> peek(tgtRes)
 chromoA chromoB t wilcox ks chisq
23 2 10 5.077492e-01 1.260279e-01 4.265804e-02 3.055263e-02
28 2 15 2.749797e-02 1.080776e-04 3.271894e-06 1.146343e-06
43 4 5 7.906832e-22 1.154823e-23 0.000000e+00 4.340871e-19
65 5 16 7.659286e-08 7.746156e-07 7.007464e-06 2.444194e-04
74 6 15 3.601006e-02 2.847043e-03 6.857203e-03 3.464897e-02
90 8 14 1.344403e-02 1.278636e-01 4.284638e-02 5.906893e-03
119 14 16 4.117154e-01 9.092607e-01 2.626741e-01 9.915321e-02

Review

Basics of a hypothesis test

• Specify a null hypothesis, H0

• Choose a test statistic

• Determine the distribution for the test statistic under H0

• Convert the observed test statistic into a p-value

“The p-value is the probability under H0 of
observing a value of the test statistic the
same or more extreme than what was
actually observed.”
All of Statistics by Larry Wasserman. Springer, 2004. GoogleBooks search. via
myilibrary
All of Nonparametric Statistics by Larry Wasserman. Springer, 2006.
via SpringerLink | via myilibrary | GoogleBooks search.

http://books.google.com/books?id=th3fbFI1DaMC&lpg=PP1&dq=statistics%2520inauthor%253Awasserman&lr=&as_brr=0&as_pt=BOOKS&pg=PP1%23v=onepage&q=&f=false
http://books.google.com/books?id=th3fbFI1DaMC&lpg=PP1&dq=statistics%2520inauthor%253Awasserman&lr=&as_brr=0&as_pt=BOOKS&pg=PP1%23v=onepage&q=&f=false
http://lib.myilibrary.com/Browse/Open.asp?ID=18966
http://lib.myilibrary.com/Browse/Open.asp?ID=18966
http://www.springerlink.com/content/n73352/?p=126f963d20b84d2098eb9990d8742dc2&pi=3
http://www.springerlink.com/content/n73352/?p=126f963d20b84d2098eb9990d8742dc2&pi=3
http://lib.myilibrary.com/Browse/Open.asp?ID=61915
http://lib.myilibrary.com/Browse/Open.asp?ID=61915
http://books.google.com/books?id=neHDoLq9jycC&lpg=PP1&dq=nonparametric%2520statistics%2520inauthor%253Awasserman&lr=&as_drrb_is=q&as_minm_is=0&as_miny_is=&as_maxm_is=0&as_maxy_is=&as_brr=0&as_pt=BOOKS&pg=PP1%23v=onepage&q=&f=false
http://books.google.com/books?id=neHDoLq9jycC&lpg=PP1&dq=nonparametric%2520statistics%2520inauthor%253Awasserman&lr=&as_drrb_is=q&as_minm_is=0&as_miny_is=&as_maxm_is=0&as_maxy_is=&as_brr=0&as_pt=BOOKS&pg=PP1%23v=onepage&q=&f=false

Critiquing the classical approach

• It can be impossible or really difficult or time-consuming to
derive the null distribution of the test statistic

• In many settings, the classical hypothesis testing approach leaves
us with few or no options

• If we think about hypothesis testing from first principles and we
have a decent computer (and decent programming skills!), we
can often empirically determine, or at least approximate very
well, this null distribution and/or the p-value.

• Resampling methods, such as permutation tests and the
bootstrap, take this approach.

• Key reference: An Introduction to the Bootstrap, by Efron and
Tibshirani, Chapman & Hall / CRC, 1993. GoogleBooks search.

http://books.google.com/books?id=gLlpIUxRntoC&lpg=PP1&ots=A6zvZ7PaF0&dq=%2522introduction%2520to%2520the%2520bootstrap%2522&pg=PP1%23v=onepage&q=&f=false
http://books.google.com/books?id=gLlpIUxRntoC&lpg=PP1&ots=A6zvZ7PaF0&dq=%2522introduction%2520to%2520the%2520bootstrap%2522&pg=PP1%23v=onepage&q=&f=false

x = data observed from one chromosome
y = data observed from another chromosome

Regard x as a realization of X ∼ F.
Regard y as a realization of Y ∼ G.

F = G?

(biological questions: are the genes on different
chromosomes equally important to fitness? is there a
relationship between gene location and gene function
or essentiality?)

Null hypothesis: F = G (= H)

Possible test statistic: |avg (x) - avg (y)|

Observed value of test statistic = t

How much evidence does t
present against the null hypothesis?

t = x − y

Under null, X and Y have same
distribution. Let’s call it H.

What is the distribution of the test
statistic under the null?

If we knew H, we could draw nx observations
from it -- call this x* -- and another ny

observations from it -- call this y*.

Compute t* = |avg x* - avg y*|.

t* = x * − y *

Compute t* = |avg x* - avg y*|.

Generate B such observations t* (B large).

What proportion of the t* are as or more extreme
as t? That’s basically your bootstrap p-value.

Done! Sort of. We don’t actually know H, though.

t* = x * − y *

Here we can estimate H with an empirical distribution
function.

How to generate data from this estimate of H?
Resample with replacement.

Amalgamate x and y into one sample. Under the null,
they are iid H. Give mass 1/(nx + ny) to each
observation. That’s the empirical distribution

function. That’s a decent estimate of H.

x = data observed from one chromosome, e.g. 10
y = data observed from another chromosome, e.g. 11

Regard x as a realization of X ∼ F.
Regard y as a realization of Y ∼ G.

F = G?

Growth phenotype

D
en

si
ty

0.0

0.1

0.2

0.3

0.4

0.5

6 8 10 12

● ●● ●●● ●● ●● ●● ●● ●●● ●● ● ●●●●● ● ●●● ●● ●●● ●●● ● ●● ● ●● ●● ● ●●●●● ●● ●●● ●● ●●● ● ●● ●●●● ●●●●●● ● ●● ● ●●● ●●● ● ●● ● ●●● ● ●●● ●● ●● ●●● ●●● ●●● ●● ●● ●●●● ●● ●● ● ●● ●● ● ●●● ●● ●●● ●●● ●● ● ● ●●●●●●● ●● ●●● ●● ●● ●● ● ●● ● ●● ●● ●●● ● ●● ●●● ●● ●●● ●●● ●● ●● ● ●●● ● ● ●● ● ●● ●●●●● ●●●●● ● ● ●● ● ●●●●● ●●●● ●● ●●●●● ●●● ●● ●● ●● ● ●● ●●●● ● ●● ● ●●● ●●● ●●●● ●● ●● ●● ● ●●● ●●● ●● ● ●● ● ●●● ●● ●●● ● ●● ●● ● ●● ● ● ●● ●● ● ●●●● ●●● ●● ●●● ● ●● ● ● ●● ●● ● ●

x = 8.94

J / X
0.0

0.1

0.2

0.3

0.4

0.5

●●● ● ● ●● ●● ● ●● ●● ●●●● ●● ●●● ● ● ●● ●● ● ●● ● ● ●● ●● ●● ●●● ●●●● ●●● ●●●●● ● ● ●● ●● ●●● ● ●● ●●● ●● ●●● ●●●●●● ●● ●● ●● ● ●●● ● ● ● ●● ●● ●● ● ●●●● ●● ●●●● ●● ●● ●● ● ●● ●●●● ●● ● ●●●●●● ●● ● ●●● ●● ●● ● ●●● ●● ●● ●●● ●● ●● ●●● ●●● ●●● ●●● ●● ●● ● ● ●● ●● ●● ●● ●● ●●●●●●● ●●● ●●● ●●● ●●●● ●●● ●●● ● ●●● ●● ●● ●●● ●●● ●● ●● ●● ● ●● ● ● ●● ●●● ●● ●●●● ● ●●●●● ●●● ●●● ● ●●●● ●●● ●● ●● ●● ●●●● ● ●●● ● ●●● ● ● ●●●● ●● ● ●●● ● ●●●

y = 9.2

K / XI

Specify a null hypothesis H0: F = G (= H)

jChromo <- c(10, 11)
kDat <- droplevels(subset(hDat, chromo %in% jChromo))
str(kDat) # 627 obs. of 4 variables:
(chromoCounts <- table(kDat$chromo))

densityplot(~ pheno | chromoPretty, kDat,
 xlab = "Growth phenotype",
 panel = function(x, ...) {
 panel.densityplot(x, ...)
 grid.text(paste(length(x), 'genes'),
 x = 0.1, y = 0.9,
 just = c("left", "center"),
 gp = gpar(fontfamily = "sans"))
 })

Growth phenotype

D
en

si
ty

0.0

0.1

0.2

0.3

0.4

0.5

6 8 10 12

● ●● ●●● ●
● ●

●
●●

●●
●

●● ●● ● ●●
●●● ●

●●●
●●●●

●
●●●

● ●
● ● ●

●
●

●
●

●●
●

●●
●

● ●
●

● ●
●

●●● ● ●● ●●●●
●
●
●

●●
●

● ●
●

●●●● ●●● ●
●● ● ●●● ● ●●

●
●● ●● ●●●

●
●

● ●
●

● ●
●

●● ●
●●

● ●● ●● ●
●●

●● ● ●
●

●
●

●
●

●● ●●●
●● ● ●

●●●●●●● ●● ●●● ●● ●● ●● ● ●● ●●● ●● ●●● ● ●
● ●●● ●

●
●●●

●●● ●●●● ●●●● ● ● ●●● ●● ●●●●● ●●●●
● ● ●●●

●
●●●●● ●●●● ●●

●●●●● ●●
●

●● ●●
●

● ● ●
● ●●●

● ● ●● ● ●●● ●●
● ●●●

● ●
● ●● ●● ●●●● ●●●

●●
● ●● ●●●● ●

●
●●● ● ●

● ●●
● ●●

●
● ●● ●● ● ●●

●
● ●●● ●

● ●●● ● ●● ● ● ●
● ●

● ● ●

325 genes

J / X

6 8 10 12

●●● ● ● ●● ●● ● ●●
●● ●●

●
● ●● ●●● ● ● ●● ●● ● ●● ● ● ●●

●
● ●● ●

●
●

●●●● ●●●●●●●●
●

● ●
● ●● ●●● ● ●●

●
●

● ●● ●●● ●
●●●●● ●● ●●

●
● ●

●●● ● ● ●
●

● ●●●● ● ●●●●●●
●●●●●●
●● ●● ● ●●●●●●●

●
●

●●●●●●
●● ● ●●

● ●
● ●● ● ●●

● ●●
●● ●

●
● ●● ●●●●●

●
●

● ●●● ●●● ●●
●

● ● ●
●●

●
● ●●

●●●● ●●●●
●
●

● ●
●● ●●● ●

●●
●●●

● ●●●
●

●● ●
●●● ●● ●●

●●
● ●●● ●● ●● ●

●
●

●●● ●●●
●●● ●● ●●●● ● ●●●●

●
●●● ●●● ● ●
●●●

●
●

● ●●
●●
●

● ●●●
● ●

●●● ●●
●●

● ● ●●
●

●
●

●
● ●

●
● ● ●●●

302 genes

K / XI

Example of customizing a
lattice plot ... re-defining
the panel function ‘on the
fly’. Computing on the
‘packet’ and writing text
on the panel.

> ## isolate data for this pair of chromosomes
> kDat <- droplevels(subset(hDat, chromo %in% jChromo))
...
> ## compute the observed test statistic
> (chromoMeans <- with(kDat,
+ tapply(pheno, chromo, mean)))
 10 11
8.943558 9.203379

> (obsTestStat <- abs(chromoMeans[1] - chromoMeans[2]))
 10
0.2598215

> densityplot(~ pheno | chromoPretty, kDat,
+ xlab = "Growth phenotype", layout = c(1,2),
+ panel = function(x, ...) {
+ panel.densityplot(x, ...)
+ mu <- mean(x)
+ panel.abline(v = mu, lty = 'dotted')
+ if(packet.number() == 1) {
+ avgText <- bquote(bar(x) == .(round(mu, 2)))
+ } else {
+ avgText <- bquote(bar(y) == .(round(mu, 2)))
+ }
+ grid.text(avgText, x = 0.1, y = 0.9,
+ just = c("left", "center"))
+ })

More computing on the ‘packet’, adding a
vertical line, and writing math on the panel
(read up on plotmath()).

Growth phenotype
D

en
si

ty

0.0

0.1

0.2

0.3

0.4

0.5

6 8 10 12

● ●● ●●
● ●● ●● ●● ●

● ●●
●

●
● ● ●●●●●

● ●●● ●●●●● ●●● ● ●● ● ●● ●● ● ●●●●
● ●● ●●● ●● ●●● ● ●● ●●●●

●●●●
●● ● ●● ●●

●● ●●● ●●● ● ●●● ● ●●● ●● ●● ●●
●

●
●● ●●● ●● ●● ●●●● ●● ●● ●●● ●● ● ●●● ●● ●●● ●●● ●● ● ● ●●●●●●● ●● ●●● ●● ●● ●● ● ●

●
●

●●
●

● ●●●
● ●● ●●● ●● ●●● ●●● ●●●● ●●

●● ● ● ●● ● ●● ●
●

●●●
●●●●● ● ●●● ● ●●●●● ●●●● ●● ●●●●● ●●● ●● ●● ●● ● ●

● ●●●● ● ●
● ● ●●● ●●● ●●●● ●

● ●● ●●
●●●● ●●● ●●

● ●● ● ●
●● ●● ●

●● ● ●● ●● ● ●● ● ● ●●
●● ● ●●●● ●●● ●● ●●● ● ●● ● ● ●● ●● ● ●

x = 8.94

J / X

0.0

0.1

0.2

0.3

0.4

0.5

●●● ● ● ●● ●● ● ●●●● ●
●●● ●● ●●● ● ● ●● ●● ● ●● ●
● ●● ●● ●● ●●● ●●●●
●●●●●●●●

● ● ●● ●● ●●● ● ●● ●●● ●● ●●
● ●●●●●● ●● ●● ●

● ● ●●● ● ● ● ●● ●● ●● ● ●●●●
●● ●●●● ●●

●
● ●● ●
●●●●●●●● ● ●●

●●●● ●●
● ●●● ●● ●●

● ●●● ●● ●● ●
●● ●● ●●●●● ●●●

●
●● ●●● ●● ●● ● ●●● ●● ●● ●

●●● ●●●●
●●● ●●● ●●●

●●● ●
●●● ●●●

●●● ● ●●● ●●
●● ●●● ●●● ●

● ●● ●● ● ●●● ●●● ●●● ●●
●

●
●● ● ●●
●●● ●●● ●●●

●
●●●●

●●● ●
● ●● ●● ●●●● ● ●●● ●●

●● ● ● ●●●● ●● ● ●●● ● ●
●●

y = 9.2

K / XI

t = x − y

Choose a test statistic

Let’s try this:

> (chromoMeans <- with(kDat,
+ tapply(pheno, chromo, mean)))
 10 11
8.943558 9.203379

> (obsTestStat <- abs(chromoMeans[1] - chromoMeans[2]))
 10
0.2598215

x = 8.94
y = 9.2
t = x − y = 0.26

Growth phenotype

D
en

si
ty

0.0

0.1

0.2

0.3

0.4

0.5

6 8 10 12

● ●● ●●
● ●● ●● ●● ●

● ●●
●

●
● ● ●●●●●

● ●●● ●●●●● ●●● ● ●● ● ●● ●● ● ●●●●
● ●● ●●● ●● ●●● ● ●● ●●●●

●●●●
●● ● ●● ●●

●● ●●● ●●● ● ●●● ● ●●● ●● ●● ●●
●

●
●● ●●● ●● ●● ●●●● ●● ●● ●●● ●● ● ●●● ●● ●●● ●●● ●● ● ● ●●●●●●● ●● ●●● ●● ●● ●● ● ●

●
●

●●
●

● ●●●
● ●● ●●● ●● ●●● ●●● ●●●● ●●

●● ● ● ●● ● ●● ●
●

●●●
●●●●● ● ●●● ● ●●●●● ●●●● ●● ●●●●● ●●● ●● ●● ●● ● ●

● ●●●● ● ●
● ● ●●● ●●● ●●●● ●

● ●● ●●
●●●● ●●● ●●

● ●● ● ●
●● ●● ●

●● ● ●● ●● ● ●● ● ● ●●
●● ● ●●●● ●●● ●● ●●● ● ●● ● ● ●● ●● ● ●

x = 8.94

J / X

0.0

0.1

0.2

0.3

0.4

0.5

●●● ● ● ●● ●● ● ●●●● ●
●●● ●● ●●● ● ● ●● ●● ● ●● ●
● ●● ●● ●● ●●● ●●●●
●●●●●●●●

● ● ●● ●● ●●● ● ●● ●●● ●● ●●
● ●●●●●● ●● ●● ●

● ● ●●● ● ● ● ●● ●● ●● ● ●●●●
●● ●●●● ●●

●
● ●● ●
●●●●●●●● ● ●●

●●●● ●●
● ●●● ●● ●●

● ●●● ●● ●● ●
●● ●● ●●●●● ●●●

●
●● ●●● ●● ●● ● ●●● ●● ●● ●

●●● ●●●●
●●● ●●● ●●●

●●● ●
●●● ●●●

●●● ● ●●● ●●
●● ●●● ●●● ●

● ●● ●● ● ●●● ●●● ●●● ●●
●

●
●● ● ●●
●●● ●●● ●●●

●
●●●●

●●● ●
● ●● ●● ●●●● ● ●●● ●●

●● ● ● ●●●● ●● ● ●●● ● ●
●●

y = 9.2

K / XI

Is this “big” or “extreme” and, therefore, suggests we should
reject H0?

Ideally, we would generate lots of datasets from the (unknown)
distribution H and get an empirical null distribution for this
test statistic. But we don’t know H

t = x − y = 0.26

Under null, X and Y have same distribution. Let’s
call it H. Estimate H with the empirical

distribution of the amalgamated x’s and y’s.

Generate bootstrap data by resampling with
replacement. Draw nx observations from it and
call this x*, generate another ny observations

and call this y*.

Compute t* = |avg x* - avg y*|. t* = x * − y *

> ## enter the world of the null hypothesis
> ## one bootstrap sample
> set.seed(12)
> z <- kDat$pheno
> xStar <- sample(z, size = chromoCounts[1], replace = TRUE)
> yStar <- sample(z, size = chromoCounts[2], replace = TRUE)
> bootDat <- with(kDat,
+ data.frame(pheno = c(xStar, yStar),
+ chromo, chromoPretty))
> (bootMeans <- with(bootDat,
+ tapply(pheno, chromo, mean)))
 10 11
8.980664 9.062216
> (bootTestStat <- abs(diff(bootMeans)))
 11
0.08155161

> (obsTestStat <- abs(chromoMeans[1] - chromoMeans[2]))
 10
0.2598215

<snip, snip>

> (bootTestStat <- abs(diff(bootMeans)))
 11
0.08155161

observed data

enforcing H0

bootstrap data

Growth phenotype

D
en

si
ty

0.0

0.1

0.2

0.3

0.4

0.5

6 8 10 12

● ●● ●●
● ●● ●● ●● ●

● ●●
●

●
● ● ●●●●●

● ●●● ●●●●● ●●● ● ●● ● ●● ●● ● ●●●●
● ●● ●●● ●● ●●● ● ●● ●●●●

●●●●
●● ● ●● ●●

●● ●●● ●●● ● ●●● ● ●●● ●● ●● ●●
●

●
●● ●●● ●● ●● ●●●● ●● ●● ●●● ●● ● ●●● ●● ●●● ●●● ●● ● ● ●●●●●●● ●● ●●● ●● ●● ●● ● ●

●
●

●●
●

● ●●●
● ●● ●●● ●● ●●● ●●● ●●●● ●●

●● ● ● ●● ● ●● ●
●

●●●
●●●●● ● ●●● ● ●●●●● ●●●● ●● ●●●●● ●●● ●● ●● ●● ● ●

● ●●●● ● ●
● ● ●●● ●●● ●●●● ●

● ●● ●●
●●●● ●●● ●●

● ●● ● ●
●● ●● ●

●● ● ●● ●● ● ●● ● ● ●●
●● ● ●●●● ●●● ●● ●●● ● ●● ● ● ●● ●● ● ●

x = 8.94

J / X

0.0

0.1

0.2

0.3

0.4

0.5

●●● ● ● ●● ●● ● ●●●● ●
●●● ●● ●●● ● ● ●● ●● ● ●● ●
● ●● ●● ●● ●●● ●●●●
●●●●●●●●

● ● ●● ●● ●●● ● ●● ●●● ●● ●●
● ●●●●●● ●● ●● ●

● ● ●●● ● ● ● ●● ●● ●● ● ●●●●
●● ●●●● ●●

●
● ●● ●
●●●●●●●● ● ●●

●●●● ●●
● ●●● ●● ●●

● ●●● ●● ●● ●
●● ●● ●●●●● ●●●

●
●● ●●● ●● ●● ● ●●● ●● ●● ●

●●● ●●●●
●●● ●●● ●●●

●●● ●
●●● ●●●

●●● ● ●●● ●●
●● ●●● ●●● ●

● ●● ●● ● ●●● ●●● ●●● ●●
●

●
●● ● ●●
●●● ●●● ●●●

●
●●●●

●●● ●
● ●● ●● ●●●● ● ●●● ●●

●● ● ● ●●●● ●● ● ●●● ● ●
●●

y = 9.2

K / XI

pheno

D
en

si
ty

0.0

0.1

0.2

0.3

0.4

6 8 10 12

● ●● ●●● ●● ●● ●● ●● ●●● ●● ● ●●●●● ● ●●● ●●●●
● ●●● ● ●● ● ●● ●

● ● ●●●●● ●● ●●● ●● ●●● ● ●● ●●●● ●●●
●●● ● ●● ●●●● ●●●●●● ● ●●● ● ●●● ●● ●● ●●● ●●● ●●● ●● ●● ●●●● ●● ●● ●●● ●● ● ●

●
● ●● ●●● ●●● ●● ● ● ●●

●●●●● ●● ●●● ●●
●

●
●

● ● ●
● ●●● ●● ●●● ● ●● ●●● ●● ●●● ●●● ●●●● ●●●● ● ● ●●● ●● ●●●●● ●●●●● ● ●●● ● ●●●●● ●●●● ●● ●●●●● ●●● ●● ●● ●● ● ●● ●●●● ● ●● ● ●●● ●●● ●●●● ●● ●● ●● ●●●● ●●● ●● ● ●● ●●●● ●● ●●● ● ●● ●● ● ●● ● ● ●● ●● ●

●●●● ●●● ●● ●●● ● ●● ● ● ●● ●● ● ●
●●● ●

● ●● ●● ● ●●●● ●
●●● ●● ●●● ●

● ●● ●●● ●●
● ●●● ●● ●● ●●● ●●●● ●●●●●●●● ● ●●● ●● ●●● ●●● ●●● ●● ●●● ●●●●●● ●● ●● ●● ● ●●● ●
●

●
●● ●●●● ● ●●●●●● ●●●●●● ●● ●● ● ●●

●
●●●●● ● ●●●●●● ●● ● ●●● ●● ●● ● ●●● ●● ●● ●●● ●● ●●●

●● ●●● ●●● ●●● ●● ●● ● ●●● ●● ●● ●●●● ●●●●●●● ●●● ●●● ●●● ●●●● ●●● ●●● ● ●●● ●● ●● ●●● ●●● ●● ●● ●
● ● ●●● ●●● ●●● ●● ●●●● ● ●●●●● ●●● ●●● ● ●●●● ●●● ●● ●● ●● ●●●● ● ●●● ●●●● ● ● ●●●

●
●

●● ●●● ● ●●●

Bootstrap data
D

en
si

ty

0.0

0.1

0.2

0.3

0.4

6 8 10 12

● ●●●
● ● ●●●● ●

● ●●● ●
● ●● ●● ● ● ●● ●● ●● ●●● ●● ●●●● ●● ●●●●● ● ●●

●● ●●
●● ●

●● ●●●●●● ● ●● ●
● ●●● ● ●●● ●● ●● ●●● ●●●● ●● ●● ●● ●● ●● ●●● ●●●●● ●● ●● ●● ●●●

●● ● ●● ●●● ●● ●● ●●● ●●● ● ●●● ●● ●● ●●
● ●●● ●●● ●

●● ●●● ●●●
●

●● ● ●● ●●●● ●● ● ●●● ● ●● ●● ●●●●● ●●●●●●●● ●●●● ●● ●●● ●● ●● ●● ● ●●●● ●●● ● ● ●● ●● ● ● ●● ●●
● ●●

●● ●●● ●● ● ●●● ●●● ● ●● ●●● ● ●●● ●● ●●●
●

●● ● ●●●● ●● ● ●●● ●●● ●●
●●●● ●●

●● ● ●●● ●●●● ●●● ●● ●
●●●●

●
● ●●●● ●● ●●● ●
● ●●●●● ●● ●●

x = 8.98

J / X

0.0

0.1

0.2

0.3

0.4

●●● ● ●● ●● ●●● ● ● ●●●
● ●●● ●● ●●●● ●●● ●●●●● ●● ●● ●●● ●● ● ●●

●● ●●●● ●
● ●● ●● ●● ●●● ●

●● ●●●● ●●● ●● ●●● ●●●●●● ● ● ●●● ●● ●●● ● ●●● ●●●● ●●●●● ● ●●●
●● ●●●●● ●●●●●● ●●

●
● ●● ●● ●●● ●● ● ●●● ●● ● ●● ● ●● ● ●●● ●●●●●●●●● ●● ●●●●● ●●

●
● ●●● ●●
●

●● ●●● ●● ●● ●●
●●

● ● ●●● ● ●●● ●● ● ● ●● ●●●●● ●● ● ●●● ●● ●● ●●● ●● ●● ●● ● ●●● ●● ●
●● ●

●●●●● ●●● ●● ●● ●●●●
●

● ●● ● ●● ●● ●● ●●● ● ●● ●●● ●●●● ●●● ●● ●● ●
● ●● ● ● ●● ●● ● ● ●●

y = 9.06

K / XI

Observed value of test statistic = t

t = x − y
> (obsTestStat <- abs(chromoMeans[1] - chromoMeans[2]))
 10
0.2598215

Compute t* = |avg x* - avg y*| from a
bootstrap sample.

t* = x * − y *

> z <- kDat$pheno
> xStar <- sample(z, size = chromoCounts[1], replace = TRUE)
> yStar <- sample(z, size = chromoCounts[2], replace = TRUE)
> (bootTestStat <- abs(mean(xStar) - mean(yStar)))
[1] 0.08155161

So far, the observed test statistic looks pretty extreme!
Let’s scale up a bit

> (obsTestStat <- abs(chromoMeans[1] - chromoMeans[2]))
 10
0.2598215

> B <- 10
> bootTestStat <- rep(NA, B)
> for(i in 1:B) {
+ xStar <- sample(z, size = chromoCounts[1], replace = TRUE)
+ yStar <- sample(z, size = chromoCounts[2], replace = TRUE)
+ bootTestStat[i] <- abs(mean(xStar) - mean(yStar))
+ }
> bootTestStat
 [1] 0.15247928 0.30081709 0.12843223 0.15073749 0.03807447 0.06039104
 [7] 0.17752854 0.07507814 0.03981151 0.10984116
> mean(bootTestStat >= obsTestStat)
[1] 0.1

What proportion of the t* are as or more extreme
as t? That’s basically your bootstrap p-value.

What proportion of the t* are as or more extreme
as t? That’s basically your bootstrap p-value.

> (obsTestStat <- abs(chromoMeans[1] - chromoMeans[2]))
 10
0.2598215

...
> bootTestStat
 [1] 0.23677776 0.21074474 0.16380568 0.13258165 0.01663695 0.07176389
 [7] 0.09824504 0.20745668 0.11928580 0.27759690
> mean(bootTestStat >= obsTestStat)
[1] 0.1

bootstrap test stats = |avg x* − avg y*|

D
en

si
ty

0

1

2

3

4

5

0.0 0.1 0.2 0.3 0.4

●
●●

●
● ● ●●● ●

bootstrap p−value = 0.1

Are you drunk with power now?

• You really can pursue hypothesis testing now with
whatever test statistic you find to be most relevant.

• Or ... you can work confidently with a “classical” test
statistic without making assumptions about normality or
‘n large’ ...

• Let’s try a much larger value of B.

How to ...

Determine the distribution for the test statistic under H0

???

Use the empirical distribution of the amalgamated
data as a stand-in for the unknown H.

Generate as many “bootstrap” datasets as you like.
Compute the “bootstrap” test statistics.
Use the empirical distribution of these as your best
guess at the null distribution of our test statistic.

observed
data

enforce H0

bootstrap
data

Growth phenotype

D
en

si
ty

0.0

0.1

0.2

0.3

0.4

0.5

6 8 10 12

● ●● ●●
● ●● ●● ●● ●

● ●●
●

●
● ● ●●●●●

● ●●● ●●●●● ●●● ● ●● ● ●● ●● ● ●●●●
● ●● ●●● ●● ●●● ● ●● ●●●●

●●●●
●● ● ●● ●●

●● ●●● ●●● ● ●●● ● ●●● ●● ●● ●●
●

●
●● ●●● ●● ●● ●●●● ●● ●● ●●● ●● ● ●●● ●● ●●● ●●● ●● ● ● ●●●●●●● ●● ●●● ●● ●● ●● ● ●

●
●

●●
●

● ●●●
● ●● ●●● ●● ●●● ●●● ●●●● ●●

●● ● ● ●● ● ●● ●
●

●●●
●●●●● ● ●●● ● ●●●●● ●●●● ●● ●●●●● ●●● ●● ●● ●● ● ●

● ●●●● ● ●
● ● ●●● ●●● ●●●● ●

● ●● ●●
●●●● ●●● ●●

● ●● ● ●
●● ●● ●

●● ● ●● ●● ● ●● ● ● ●●
●● ● ●●●● ●●● ●● ●●● ● ●● ● ● ●● ●● ● ●

x = 8.94

J / X

0.0

0.1

0.2

0.3

0.4

0.5

●●● ● ● ●● ●● ● ●●●● ●
●●● ●● ●●● ● ● ●● ●● ● ●● ●
● ●● ●● ●● ●●● ●●●●
●●●●●●●●

● ● ●● ●● ●●● ● ●● ●●● ●● ●●
● ●●●●●● ●● ●● ●

● ● ●●● ● ● ● ●● ●● ●● ● ●●●●
●● ●●●● ●●

●
● ●● ●
●●●●●●●● ● ●●

●●●● ●●
● ●●● ●● ●●

● ●●● ●● ●● ●
●● ●● ●●●●● ●●●

●
●● ●●● ●● ●● ● ●●● ●● ●● ●

●●● ●●●●
●●● ●●● ●●●

●●● ●
●●● ●●●

●●● ● ●●● ●●
●● ●●● ●●● ●

● ●● ●● ● ●●● ●●● ●●● ●●
●

●
●● ● ●●
●●● ●●● ●●●

●
●●●●

●●● ●
● ●● ●● ●●●● ● ●●● ●●

●● ● ● ●●●● ●● ● ●●● ● ●
●●

y = 9.2

K / XI

pheno

D
en

si
ty

0.0

0.1

0.2

0.3

0.4

6 8 10 12

● ●● ●●● ●● ●● ●● ●● ●●● ●● ● ●●●●● ● ●●● ●●●●
● ●●● ● ●● ● ●● ●

● ● ●●●●● ●● ●●● ●● ●●● ● ●● ●●●● ●●●
●●● ● ●● ●●●● ●●●●●● ● ●●● ● ●●● ●● ●● ●●● ●●● ●●● ●● ●● ●●●● ●● ●● ●●● ●● ● ●

●
● ●● ●●● ●●● ●● ● ● ●●

●●●●● ●● ●●● ●●
●

●
●

● ● ●
● ●●● ●● ●●● ● ●● ●●● ●● ●●● ●●● ●●●● ●●●● ● ● ●●● ●● ●●●●● ●●●●● ● ●●● ● ●●●●● ●●●● ●● ●●●●● ●●● ●● ●● ●● ● ●● ●●●● ● ●● ● ●●● ●●● ●●●● ●● ●● ●● ●●●● ●●● ●● ● ●● ●●●● ●● ●●● ● ●● ●● ● ●● ● ● ●● ●● ●

●●●● ●●● ●● ●●● ● ●● ● ● ●● ●● ● ●
●●● ●

● ●● ●● ● ●●●● ●
●●● ●● ●●● ●

● ●● ●●● ●●
● ●●● ●● ●● ●●● ●●●● ●●●●●●●● ● ●●● ●● ●●● ●●● ●●● ●● ●●● ●●●●●● ●● ●● ●● ● ●●● ●
●

●
●● ●●●● ● ●●●●●● ●●●●●● ●● ●● ● ●●

●
●●●●● ● ●●●●●● ●● ● ●●● ●● ●● ● ●●● ●● ●● ●●● ●● ●●●

●● ●●● ●●● ●●● ●● ●● ● ●●● ●● ●● ●●●● ●●●●●●● ●●● ●●● ●●● ●●●● ●●● ●●● ● ●●● ●● ●● ●●● ●●● ●● ●● ●
● ● ●●● ●●● ●●● ●● ●●●● ● ●●●●● ●●● ●●● ● ●●●● ●●● ●● ●● ●● ●●●● ● ●●● ●●●● ● ● ●●●

●
●

●● ●●● ● ●●●

Bootstrap data

D
en

si
ty

0.0

0.1

0.2

0.3

0.4

6 8 10 12

● ●●●
● ● ●●●● ●

● ●●● ●
● ●● ●● ● ● ●● ●● ●● ●●● ●● ●●●● ●● ●●●●● ● ●●

●● ●●
●● ●

●● ●●●●●● ● ●● ●
● ●●● ● ●●● ●● ●● ●●● ●●●● ●● ●● ●● ●● ●● ●●● ●●●●● ●● ●● ●● ●●●

●● ● ●● ●●● ●● ●● ●●● ●●● ● ●●● ●● ●● ●●
● ●●● ●●● ●

●● ●●● ●●●
●

●● ● ●● ●●●● ●● ● ●●● ● ●● ●● ●●●●● ●●●●●●●● ●●●● ●● ●●● ●● ●● ●● ● ●●●● ●●● ● ● ●● ●● ● ● ●● ●●
● ●●

●● ●●● ●● ● ●●● ●●● ● ●● ●●● ● ●●● ●● ●●●
●

●● ● ●●●● ●● ● ●●● ●●● ●●
●●●● ●●

●● ● ●●● ●●●● ●●● ●● ●
●●●●

●
● ●●●● ●● ●●● ●
● ●●●●● ●● ●●

x = 8.98

J / X

0.0

0.1

0.2

0.3

0.4

●●● ● ●● ●● ●●● ● ● ●●●
● ●●● ●● ●●●● ●●● ●●●●● ●● ●● ●●● ●● ● ●●

●● ●●●● ●
● ●● ●● ●● ●●● ●

●● ●●●● ●●● ●● ●●● ●●●●●● ● ● ●●● ●● ●●● ● ●●● ●●●● ●●●●● ● ●●●
●● ●●●●● ●●●●●● ●●

●
● ●● ●● ●●● ●● ● ●●● ●● ● ●● ● ●● ● ●●● ●●●●●●●●● ●● ●●●●● ●●

●
● ●●● ●●
●

●● ●●● ●● ●● ●●
●●

● ● ●●● ● ●●● ●● ● ● ●● ●●●●● ●● ● ●●● ●● ●● ●●● ●● ●● ●● ● ●●● ●● ●
●● ●

●●●●● ●●● ●● ●● ●●●●
●

● ●● ● ●● ●● ●● ●●● ● ●● ●●● ●●●● ●●● ●● ●● ●
● ●● ● ● ●● ●● ● ● ●●

y = 9.06

K / XI

> z <- kDat$pheno
> xStar <- sample(z, size = chromoCounts[1], replace = TRUE)
> yStar <- sample(z, size = chromoCounts[2], replace = TRUE)
> abs(mean(xStar) - mean(yStar)) # bootstrap test statistic
[1] 0.08155161

t = x − y = 0.26
t* = x * − y * = 0.08

1 bootstrap sample (“baby steps”)

observed
data

enforce H0

bootstrap data

Growth phenotype

D
en

si
ty

0.0

0.1

0.2

0.3

0.4

0.5

6 8 10 12

● ●● ●●
● ●● ●● ●● ●

● ●●
●

●
● ● ●●●●●

● ●●● ●●●●● ●●● ● ●● ● ●● ●● ● ●●●●
● ●● ●●● ●● ●●● ● ●● ●●●●

●●●●
●● ● ●● ●●

●● ●●● ●●● ● ●●● ● ●●● ●● ●● ●●
●

●
●● ●●● ●● ●● ●●●● ●● ●● ●●● ●● ● ●●● ●● ●●● ●●● ●● ● ● ●●●●●●● ●● ●●● ●● ●● ●● ● ●

●
●

●●
●

● ●●●
● ●● ●●● ●● ●●● ●●● ●●●● ●●

●● ● ● ●● ● ●● ●
●

●●●
●●●●● ● ●●● ● ●●●●● ●●●● ●● ●●●●● ●●● ●● ●● ●● ● ●

● ●●●● ● ●
● ● ●●● ●●● ●●●● ●

● ●● ●●
●●●● ●●● ●●

● ●● ● ●
●● ●● ●

●● ● ●● ●● ● ●● ● ● ●●
●● ● ●●●● ●●● ●● ●●● ● ●● ● ● ●● ●● ● ●

x = 8.94

J / X

0.0

0.1

0.2

0.3

0.4

0.5

●●● ● ● ●● ●● ● ●●●● ●
●●● ●● ●●● ● ● ●● ●● ● ●● ●
● ●● ●● ●● ●●● ●●●●
●●●●●●●●

● ● ●● ●● ●●● ● ●● ●●● ●● ●●
● ●●●●●● ●● ●● ●

● ● ●●● ● ● ● ●● ●● ●● ● ●●●●
●● ●●●● ●●

●
● ●● ●
●●●●●●●● ● ●●

●●●● ●●
● ●●● ●● ●●

● ●●● ●● ●● ●
●● ●● ●●●●● ●●●

●
●● ●●● ●● ●● ● ●●● ●● ●● ●

●●● ●●●●
●●● ●●● ●●●

●●● ●
●●● ●●●

●●● ● ●●● ●●
●● ●●● ●●● ●

● ●● ●● ● ●●● ●●● ●●● ●●
●

●
●● ● ●●
●●● ●●● ●●●

●
●●●●

●●● ●
● ●● ●● ●●●● ● ●●● ●●

●● ● ● ●●●● ●● ● ●●● ● ●
●●

y = 9.2

K / XI

pheno

D
en

si
ty

0.0

0.1

0.2

0.3

0.4

6 8 10 12

● ●● ●●● ●● ●● ●● ●● ●●● ●● ● ●●●●● ● ●●● ●●●●
● ●●● ● ●● ● ●● ●

● ● ●●●●● ●● ●●● ●● ●●● ● ●● ●●●● ●●●
●●● ● ●● ●●●● ●●●●●● ● ●●● ● ●●● ●● ●● ●●● ●●● ●●● ●● ●● ●●●● ●● ●● ●●● ●● ● ●

●
● ●● ●●● ●●● ●● ● ● ●●

●●●●● ●● ●●● ●●
●

●
●

● ● ●
● ●●● ●● ●●● ● ●● ●●● ●● ●●● ●●● ●●●● ●●●● ● ● ●●● ●● ●●●●● ●●●●● ● ●●● ● ●●●●● ●●●● ●● ●●●●● ●●● ●● ●● ●● ● ●● ●●●● ● ●● ● ●●● ●●● ●●●● ●● ●● ●● ●●●● ●●● ●● ● ●● ●●●● ●● ●●● ● ●● ●● ● ●● ● ● ●● ●● ●

●●●● ●●● ●● ●●● ● ●● ● ● ●● ●● ● ●
●●● ●

● ●● ●● ● ●●●● ●
●●● ●● ●●● ●

● ●● ●●● ●●
● ●●● ●● ●● ●●● ●●●● ●●●●●●●● ● ●●● ●● ●●● ●●● ●●● ●● ●●● ●●●●●● ●● ●● ●● ● ●●● ●
●

●
●● ●●●● ● ●●●●●● ●●●●●● ●● ●● ● ●●

●
●●●●● ● ●●●●●● ●● ● ●●● ●● ●● ● ●●● ●● ●● ●●● ●● ●●●

●● ●●● ●●● ●●● ●● ●● ● ●●● ●● ●● ●●●● ●●●●●●● ●●● ●●● ●●● ●●●● ●●● ●●● ● ●●● ●● ●● ●●● ●●● ●● ●● ●
● ● ●●● ●●● ●●● ●● ●●●● ● ●●●●● ●●● ●●● ● ●●●● ●●● ●● ●● ●● ●●●● ● ●●● ●●●● ● ● ●●●

●
●

●● ●●● ● ●●●

Bootstrap data

D
en

si
ty

0.0

0.1

0.2

0.3

0.4

6 8 10 12

● ●●●
● ● ●●●● ●

● ●●● ●
● ●● ●● ● ● ●● ●● ●● ●●● ●● ●●●● ●● ●●●●● ● ●●

●● ●●
●● ●

●● ●●●●●● ● ●● ●
● ●●● ● ●●● ●● ●● ●●● ●●●● ●● ●● ●● ●● ●● ●●● ●●●●● ●● ●● ●● ●●●

●● ● ●● ●●● ●● ●● ●●● ●●● ● ●●● ●● ●● ●●
● ●●● ●●● ●

●● ●●● ●●●
●

●● ● ●● ●●●● ●● ● ●●● ● ●● ●● ●●●●● ●●●●●●●● ●●●● ●● ●●● ●● ●● ●● ● ●●●● ●●● ● ● ●● ●● ● ● ●● ●●
● ●●

●● ●●● ●● ● ●●● ●●● ● ●● ●●● ● ●●● ●● ●●●
●

●● ● ●●●● ●● ● ●●● ●●● ●●
●●●● ●●

●● ● ●●● ●●●● ●●● ●● ●
●●●●

●
● ●●●● ●● ●●● ●
● ●●●●● ●● ●●

x = 8.98

J / X

0.0

0.1

0.2

0.3

0.4

●●● ● ●● ●● ●●● ● ● ●●●
● ●●● ●● ●●●● ●●● ●●●●● ●● ●● ●●● ●● ● ●●

●● ●●●● ●
● ●● ●● ●● ●●● ●

●● ●●●● ●●● ●● ●●● ●●●●●● ● ● ●●● ●● ●●● ● ●●● ●●●● ●●●●● ● ●●●
●● ●●●●● ●●●●●● ●●

●
● ●● ●● ●●● ●● ● ●●● ●● ● ●● ● ●● ● ●●● ●●●●●●●●● ●● ●●●●● ●●

●
● ●●● ●●
●

●● ●●● ●● ●● ●●
●●

● ● ●●● ● ●●● ●● ● ● ●● ●●●●● ●● ● ●●● ●● ●● ●●● ●● ●● ●● ● ●●● ●● ●
●● ●

●●●●● ●●● ●● ●● ●●●●
●

● ●● ● ●● ●● ●● ●●● ● ●● ●●● ●●●● ●●● ●● ●● ●
● ●● ● ● ●● ●● ● ● ●●

y = 9.06

K / XI

(n <- nrow(kDat)) # 627 obs
B <- 10000
bootDat <-
 matrix(sample(kDat$pheno, size = B * n, replace = TRUE),
 nrow = n, ncol = B)
str(bootDat)
num [1:627, 1:10000] 10.08 10.07 10.03 9.26 8.28 ...
bootTestStats <-
 apply(bootDat, 2, computeAbsDifferenceOfMeans, jFact = kDat$chromo)

t = x − y = 0.26

t* = x * − y * = 0.17

B = 10,000 bootstrap samples

and 9,997
more like this
..........

t* = x * − y * = 0.07

t* = x * − y * = 0.03

No explicit loops!

(Bootstrap) Growth phenotype

D
en

si
ty

0.0

0.1

0.2

0.3

0.4

0.5

6 8 10 12

●● ●●● ●●● ●● ● ●●● ● ●●●●● ●●● ●●● ●● ● ●●● ●●● ● ●● ●●●● ●● ●● ● ● ●●●● ●●●● ●●●●● ●●● ● ●●● ●●● ● ●● ●● ●●●● ●●●● ● ●● ● ●● ● ●●●● ●●● ●● ●●● ●●● ● ● ●● ●● ● ● ●● ●● ● ●●●●● ● ●● ●●● ● ●● ● ●●● ●● ●● ●●● ●●● ● ●●●●● ●● ●● ●● ●● ●●● ● ●● ●● ●●● ●● ●● ● ●● ●●● ●● ●●● ●● ●● ●●● ● ●●●●●● ● ●●● ● ●● ●● ●● ●●● ●● ●●● ●● ●●● ●● ●● ●●● ●● ●● ●●●●●● ● ●●● ● ●● ●● ● ●●● ●●● ●●● ●●●● ●● ●●● ●●●● ●●● ●●● ●●●● ● ●● ●●● ●● ●●●● ●● ●●●● ●●●● ●●●● ●● ●●●● ●● ●● ● ●● ● ●

µ = 8.95
1

J
/ X

●●● ●● ●●● ●● ● ●●● ●● ●●● ●●● ● ●● ●●● ●● ●● ●●●● ● ●●● ●● ●● ●● ●●● ●●● ● ●●● ●●●●●●●● ●●● ●● ●●● ● ●●● ●●●● ●●●●● ●●●● ●●●●● ●●● ●● ●●●●● ●●● ●● ●●●● ●● ● ●● ●●● ● ●● ●●● ●●●● ●● ●●● ●●● ●●●● ● ●● ● ●●● ●●●● ●●● ●●● ●●●● ●● ●● ●● ●●● ● ●●● ●● ●●● ●● ● ●● ●● ● ●● ●● ●●● ● ●●● ● ●●●●● ● ● ●●● ●● ● ●● ●● ●●● ● ●●● ●● ●●●● ● ●●●● ●● ●●● ●● ●●●● ●●●●●●● ●● ●● ●● ●● ●●● ● ●●● ●●● ● ●● ●● ●● ●● ●●● ●●●● ● ●● ● ●● ●● ●● ●● ●●●● ●● ● ●●● ●●● ●● ● ● ●●● ●● ●●

µ = 8.98
2

J
/ X

6 8 10 12

● ●● ●● ●●●● ●● ●●● ●●● ●● ●● ●●● ● ●●●●● ● ●●● ●● ● ●●●● ●● ●● ●●● ●●● ●● ●●● ● ● ●●● ●● ● ●● ●● ●●● ● ●●●● ● ●● ●●● ●●● ●● ● ●● ●● ●● ●●● ● ●● ● ●●● ● ●●●● ●● ●●●●● ●● ● ●● ●● ●●●●● ●●●● ●●● ●● ●●● ●● ●●● ●● ●●● ● ●● ●● ●● ●●●● ●● ●●● ●● ●●●●● ●●● ●●● ●●●●●●●● ● ●●●● ●●● ●●● ●● ●●●●●●●●● ●●●● ● ●● ●●● ●● ●● ●●●● ●● ● ●● ●●● ● ●●● ●●●● ●● ●● ●●●● ●● ●● ● ●● ● ●● ●● ●●● ●●●● ●● ● ●●● ● ●● ●●●●● ●● ●● ●● ● ●● ●● ●●●● ●● ●● ●●●● ● ●●● ●● ● ●●●●●● ●● ●●●

µ = 9.17
3

J
/ X

●● ●●●●●● ● ● ●●● ●●●●● ●●● ●● ●●●●● ●●●● ●●● ●● ●●● ● ●● ●●● ●●● ●●●●●● ●●●●● ● ●●● ●●●● ● ●●●● ●●●● ● ●●●● ●● ●● ● ●●●● ●● ●● ● ●● ●●●●● ●●●● ● ●●●●●●● ●●● ●● ●● ●●● ●●●●● ● ●●●●● ●● ●●●● ●●●● ●● ●● ●● ●●●● ●●● ● ●●● ● ●●● ● ●●●●● ●●●●● ●● ●● ●● ●● ●● ●●●● ● ●● ● ● ●●● ● ●●● ●● ● ●●●●● ● ●●● ●● ●●● ● ●●●● ●●● ●●● ●●● ●●● ●●●●●●●● ●● ●●● ●● ● ●● ●● ●●●● ●●● ●● ●●●● ● ●● ●● ●●●● ●● ●●● ●●●● ●●● ●● ● ●●● ●● ● ●

µ = 9.13

1

K
/ X

I

6 8 10 12

● ●● ●●●● ●● ●● ●● ●●● ●● ● ● ●●●● ● ●● ● ●● ●●● ●● ●● ● ●● ●● ● ●●●● ●●●● ●●●●● ●● ●● ●●● ●● ●● ● ●●●● ●● ●● ●● ● ●● ●●●●● ●● ● ●● ●●●●●● ●● ●● ●●●●●●● ●● ●● ●● ●● ●● ●● ●● ●●●●●● ●●● ● ●●●● ●●●● ●● ●●●● ●●●● ● ●●● ●●● ●● ●●●●● ●●● ●●●●● ●● ●● ●● ●●●● ●●●● ●● ●●● ●●●● ●● ●●● ●● ●●●● ●●●● ●●●● ●●● ●● ●●●● ●●●●● ●●● ● ●●●● ● ●● ● ●●●● ● ●● ●● ●●●● ●● ●●● ●● ●●● ●●● ●●●● ●●● ●● ●●● ●● ●● ● ●●● ●●● ●●● ●●● ● ●●●● ●●

µ = 9.05

2

K
/ X

I

0.0

0.1

0.2

0.3

0.4

0.5

● ●●● ●●●●●●● ●● ●●● ●●● ●●●● ●●● ●● ●●● ●●● ●●● ● ●●●●● ●●●●● ● ●●●● ●●● ●●●● ●● ●● ●● ●●●●●● ●● ● ●●●● ● ●●●● ● ●●● ●●● ●●● ●● ●● ●●●● ●●● ●●● ●●● ●●●●● ● ●●●●● ●●●●● ● ●● ●● ●● ● ●●● ● ●●● ●●●● ●●●● ●●●● ●● ● ● ●● ● ●●●●●●● ●● ● ●● ● ●● ●● ● ●●● ● ●● ● ●● ● ●●●● ●● ●●●● ● ●● ●●● ● ●●●●● ●●● ●●●● ● ●●● ●●●● ●● ●●● ● ●●●● ●●●● ●● ●● ●● ●● ●●●●● ●●●●● ●●● ●● ●● ●●●●● ●●● ●● ●● ●● ● ● ●●●● ●●● ●●●● ●●●●●● ● ●●●

µ = 9.2

3

K
/ X

I

(n <- nrow(kDat)) # 627 obs
B <- 10000
bootDat <-
 matrix(sample(kDat$pheno, size = B * n, replace = TRUE),
 nrow = n, ncol = B)
str(bootDat)
num [1:627, 1:10000] 9.73 6.15 9.96 9.4 9.46 ...

....

....

bootDat

n = 325 + 302 = 627 rows by B = 10,000 columns

each column is 1
bootstrap sample

You can often generate all the boostrap data at once, i.e.
no need to explicitly loop for b = 1 to B.

(Bootstrap) Growth phenotype

D
en

si
ty

0.0

0.1

0.2

0.3

0.4

0.5

6 8 10 12

●● ●●● ●●● ●● ● ●●● ● ●●●●● ●●● ●●● ●● ● ●●● ●●● ● ●● ●●●● ●● ●● ● ● ●●●● ●●●● ●●●●● ●●● ● ●●● ●●● ● ●● ●● ●●●● ●●●● ● ●● ● ●● ● ●●●● ●●● ●● ●●● ●●● ● ● ●● ●● ● ● ●● ●● ● ●●●●● ● ●● ●●● ● ●● ● ●●● ●● ●● ●●● ●●● ● ●●●●● ●● ●● ●● ●● ●●● ● ●● ●● ●●● ●● ●● ● ●● ●●● ●● ●●● ●● ●● ●●● ● ●●●●●● ● ●●● ● ●● ●● ●● ●●● ●● ●●● ●● ●●● ●● ●● ●●● ●● ●● ●●●●●● ● ●●● ● ●● ●● ● ●●● ●●● ●●● ●●●● ●● ●●● ●●●● ●●● ●●● ●●●● ● ●● ●●● ●● ●●●● ●● ●●●● ●●●● ●●●● ●● ●●●● ●● ●● ● ●● ● ●

µ = 8.95
1

J
/ X

●●● ●● ●●● ●● ● ●●● ●● ●●● ●●● ● ●● ●●● ●● ●● ●●●● ● ●●● ●● ●● ●● ●●● ●●● ● ●●● ●●●●●●●● ●●● ●● ●●● ● ●●● ●●●● ●●●●● ●●●● ●●●●● ●●● ●● ●●●●● ●●● ●● ●●●● ●● ● ●● ●●● ● ●● ●●● ●●●● ●● ●●● ●●● ●●●● ● ●● ● ●●● ●●●● ●●● ●●● ●●●● ●● ●● ●● ●●● ● ●●● ●● ●●● ●● ● ●● ●● ● ●● ●● ●●● ● ●●● ● ●●●●● ● ● ●●● ●● ● ●● ●● ●●● ● ●●● ●● ●●●● ● ●●●● ●● ●●● ●● ●●●● ●●●●●●● ●● ●● ●● ●● ●●● ● ●●● ●●● ● ●● ●● ●● ●● ●●● ●●●● ● ●● ● ●● ●● ●● ●● ●●●● ●● ● ●●● ●●● ●● ● ● ●●● ●● ●●

µ = 8.98
2

J
/ X

6 8 10 12

● ●● ●● ●●●● ●● ●●● ●●● ●● ●● ●●● ● ●●●●● ● ●●● ●● ● ●●●● ●● ●● ●●● ●●● ●● ●●● ● ● ●●● ●● ● ●● ●● ●●● ● ●●●● ● ●● ●●● ●●● ●● ● ●● ●● ●● ●●● ● ●● ● ●●● ● ●●●● ●● ●●●●● ●● ● ●● ●● ●●●●● ●●●● ●●● ●● ●●● ●● ●●● ●● ●●● ● ●● ●● ●● ●●●● ●● ●●● ●● ●●●●● ●●● ●●● ●●●●●●●● ● ●●●● ●●● ●●● ●● ●●●●●●●●● ●●●● ● ●● ●●● ●● ●● ●●●● ●● ● ●● ●●● ● ●●● ●●●● ●● ●● ●●●● ●● ●● ● ●● ● ●● ●● ●●● ●●●● ●● ● ●●● ● ●● ●●●●● ●● ●● ●● ● ●● ●● ●●●● ●● ●● ●●●● ● ●●● ●● ● ●●●●●● ●● ●●●

µ = 9.17
3

J
/ X

●● ●●●●●● ● ● ●●● ●●●●● ●●● ●● ●●●●● ●●●● ●●● ●● ●●● ● ●● ●●● ●●● ●●●●●● ●●●●● ● ●●● ●●●● ● ●●●● ●●●● ● ●●●● ●● ●● ● ●●●● ●● ●● ● ●● ●●●●● ●●●● ● ●●●●●●● ●●● ●● ●● ●●● ●●●●● ● ●●●●● ●● ●●●● ●●●● ●● ●● ●● ●●●● ●●● ● ●●● ● ●●● ● ●●●●● ●●●●● ●● ●● ●● ●● ●● ●●●● ● ●● ● ● ●●● ● ●●● ●● ● ●●●●● ● ●●● ●● ●●● ● ●●●● ●●● ●●● ●●● ●●● ●●●●●●●● ●● ●●● ●● ● ●● ●● ●●●● ●●● ●● ●●●● ● ●● ●● ●●●● ●● ●●● ●●●● ●●● ●● ● ●●● ●● ● ●

µ = 9.13

1

K
/ X

I
6 8 10 12

● ●● ●●●● ●● ●● ●● ●●● ●● ● ● ●●●● ● ●● ● ●● ●●● ●● ●● ● ●● ●● ● ●●●● ●●●● ●●●●● ●● ●● ●●● ●● ●● ● ●●●● ●● ●● ●● ● ●● ●●●●● ●● ● ●● ●●●●●● ●● ●● ●●●●●●● ●● ●● ●● ●● ●● ●● ●● ●●●●●● ●●● ● ●●●● ●●●● ●● ●●●● ●●●● ● ●●● ●●● ●● ●●●●● ●●● ●●●●● ●● ●● ●● ●●●● ●●●● ●● ●●● ●●●● ●● ●●● ●● ●●●● ●●●● ●●●● ●●● ●● ●●●● ●●●●● ●●● ● ●●●● ● ●● ● ●●●● ● ●● ●● ●●●● ●● ●●● ●● ●●● ●●● ●●●● ●●● ●● ●●● ●● ●● ● ●●● ●●● ●●● ●●● ● ●●●● ●●

µ = 9.05

2

K
/ X

I

0.0

0.1

0.2

0.3

0.4

0.5

● ●●● ●●●●●●● ●● ●●● ●●● ●●●● ●●● ●● ●●● ●●● ●●● ● ●●●●● ●●●●● ● ●●●● ●●● ●●●● ●● ●● ●● ●●●●●● ●● ● ●●●● ● ●●●● ● ●●● ●●● ●●● ●● ●● ●●●● ●●● ●●● ●●● ●●●●● ● ●●●●● ●●●●● ● ●● ●● ●● ● ●●● ● ●●● ●●●● ●●●● ●●●● ●● ● ● ●● ● ●●●●●●● ●● ● ●● ● ●● ●● ● ●●● ● ●● ● ●● ● ●●●● ●● ●●●● ● ●● ●●● ● ●●●●● ●●● ●●●● ● ●●● ●●●● ●● ●●● ● ●●●● ●●●● ●● ●● ●● ●● ●●●●● ●●●●● ●●● ●● ●● ●●●●● ●●● ●● ●● ●● ● ● ●●●● ●●● ●●●● ●●●●●● ● ●●●

µ = 9.2

3

K
/ X

I

function to compute my test statistic
computeAbsDifferenceOfMeans <- function(jResp, jFact) {
 groupMeans <- tapply(jResp, jFact, mean)
 return(abs(groupMeans[1] - groupMeans[2]))
}

bootTestStats <-
 apply(bootDat, 2, computeAbsDifferenceOfMeans, jFact = kDat$chromo)

“To each column of bootData, apply my
function to compute the test statistic.”

....

....

bootDat

n = 325 + 302 = 627 rows by B = 10,000 columns

each column is 1
bootstrap sample

You can then use an apply function to compute the test
statistic for each bootstrap data set. No need to explicitly
loop for b = 1 to B.

Bootstrap test statistics

||x −− y||

D
en
si
ty

0

2

4

6

0.0 0.1 0.2 0.3 0.4 0.5

> bootTestStats <-
+ apply(bootDat, 2, computeAbsDifferenceOfMeans, jFact = kDat$chromo)

> densityplot(~ bootTestStats,
+ xlab = expression(group("|", bar(x) - bar(y),"|")),
+ main = "Bootstrap test statistics",
+ plot.points = FALSE, n = 200, ref = TRUE,
+ panel = function(x, ...) {
+ panel.densityplot(x, ...)
+ panel.abline(v = obsTestStat, lty = 'dotted')
+ })

> ## bootstrap p-value
> mean(bootTestStats >= obsTestStat)
[1] 0.0172

> t.test(pheno ~ chromo, kDat)$p.value
[1] 0.01940612

> wilcox.test(pheno ~ chromo, kDat)$p.value
[1] 0.001156313

p-value

Bootstrap p-value is awfully
close to that from Welch’s t-
test. That’s comforting.
Wilcoxon p-value is yet
smaller -- perhaps due to
greater efficiency in large
samples w/ non-normal data.

(Bootstrap) Growth phenotype

D
en

si
ty

0.0

0.1

0.2

0.3

0.4

0.5

6 8 10 12

●● ●●●● ●● ●● ●● ●● ●● ●●●● ● ●●● ●● ● ●● ●●● ●● ●● ●●● ●●● ● ●●●● ●● ●●● ●● ●● ●● ●●● ● ●● ●●● ●●● ●●● ●●●● ●●●● ●● ●●● ●● ● ●● ●●●●● ●●● ● ●●●●● ●● ●● ●●●●● ●●●● ●● ●● ●● ●●● ●●●● ●● ●● ●● ●● ●●●● ●●●● ●●● ●●● ●●● ●●● ●●● ●● ●● ●●●●● ●●● ●● ●●●●● ●● ●● ●●● ●●● ● ●●● ●●● ●●●●●● ●●●●● ●● ● ●● ● ●●●●● ●●●● ● ●● ●● ●●● ●●● ●● ●● ●●● ●●● ● ●●● ● ●● ●● ●●● ●● ●●● ●● ●● ● ●● ●●●● ●●● ●●●● ● ●●● ●● ●●●● ● ● ●●● ●● ●● ●●● ●●●● ●● ● ●● ●● ●●●●● ●● ●●●●●

µ = 9.03
1

J
/ X

●●●●●● ● ●●●●● ●●● ●● ●●● ●● ●● ● ●● ●●● ●●●● ●●● ●●●● ● ●● ●●● ●●● ● ●●● ● ●● ● ●●● ●● ●●●● ● ●● ●● ●●●●●● ●●●● ●● ● ●●●●● ●●● ●● ●●●●● ●●●● ●● ●● ●●●●●●● ● ●● ●● ● ●● ●●●●● ●●●●● ●●●● ● ●● ●●●●● ●●●● ●● ●● ●●●● ●●● ●●● ●●● ● ● ●●●● ● ●●●●● ● ●● ● ●● ●● ●●● ●● ●●●● ●● ●●●●● ●● ●● ●●●●● ●● ●●●●●●● ● ●●● ●● ●●●●● ●● ●●●●● ● ●● ●● ●●● ●● ●● ● ● ●●●●● ● ●● ●●● ●● ●● ●● ●● ●●●●●● ●●● ●● ● ●● ●●● ● ●● ●●●● ●●● ● ●● ●●●●● ●●● ●● ● ●●● ●● ●● ●●●● ●●

µ = 9.12
2

J
/ X

6 8 10 12

●●● ● ●● ●●●●● ● ●●● ●●● ●● ●●● ● ●●● ●● ●●● ●● ●●● ●●● ● ●●● ● ●●● ● ●●● ●●● ● ●●● ●●●●● ●●● ● ●●●● ●● ●● ●●● ● ● ●●● ●●● ● ●●●●●●●● ● ●●●●● ●●●● ●●●●●●● ●● ● ●●●●●● ●●●● ● ●●● ●● ●●● ●● ●● ●●●● ● ● ●● ●● ●● ● ●● ●●●● ● ●● ● ●● ●●●●●● ●●●●● ●● ●●● ● ●●●● ●● ●● ●● ●●● ●●● ●● ●● ●● ●●●● ●● ●● ● ●● ● ●●●●● ● ●● ●●● ●●● ●●● ●●●● ●●● ●●● ●●● ● ●●● ● ●● ●●●●● ●●● ●●●● ●● ●●●●● ● ●●●● ●●● ●●●● ●● ●●●● ●● ●● ●● ● ●●●●●●●● ●● ●● ●●● ● ●●● ●● ●● ●● ●●●●

µ = 9.21
3

J
/ X

● ●● ●● ●●● ● ●●●● ● ●●● ●● ● ●● ● ●● ● ●●● ●● ●●●● ●●●●● ●●●●●● ●●● ● ●●● ● ●● ● ●● ●● ●●● ● ● ●●● ●● ●● ● ●●● ● ●● ●● ● ● ●● ●●●●● ●●● ● ● ● ●● ● ●●● ● ●● ●● ●● ● ●● ●●● ● ●●●● ●●● ●●● ● ●● ●● ●● ● ●●● ●● ●●● ●●● ●● ● ●●● ● ●● ●●● ●● ●●●●● ●●● ●●●● ●● ●●●● ●●● ●●● ●●● ●●●●● ●●● ●● ●● ●● ●●● ●● ●●● ● ●●●● ●●● ●● ●●●● ● ●●● ●●● ●● ● ●●●●●●●● ●●● ● ●● ●●● ●● ● ●● ●●● ● ●● ●● ●● ●● ●●●●●● ●● ●●●●●●● ●● ●● ●●●●●●● ●● ●●● ●● ●●

µ = 9.02

1

K
/ X

I

6 8 10 12

●● ●● ● ●●●● ●● ● ●● ●●● ●●● ●●● ●● ●● ●● ● ● ●● ●● ●● ● ●●●● ●●● ● ●● ● ●● ●● ●● ●● ●● ●●●●● ● ● ●●● ●● ● ●● ● ●●● ●● ● ●● ●● ●● ● ●●● ●●● ● ●● ●●●● ●● ●● ●● ●● ●● ●● ●●●●● ●●● ●● ●●● ●●●●●●● ●● ●● ●● ●● ●● ●● ●● ●●● ●● ●●● ●● ●● ●● ●● ●● ●●●●●● ●● ● ●●●● ●●●● ●●● ●●● ●● ●● ●●● ●●●● ●●● ●●●●● ●● ●●● ●● ●● ●●● ●● ●●●●● ●● ●● ● ●●●●●● ●●● ● ● ●● ●● ●●●●● ●●● ●●● ●●● ●● ●● ●● ●● ●●●● ●●●● ●●●●● ● ●● ●● ●● ● ●●●●●●● ●●●● ●●

µ = 9.01

2

K
/ X

I

0.0

0.1

0.2

0.3

0.4

0.5

● ●● ●● ●● ●● ●●●●● ● ●●● ●●●● ●● ●●● ● ●●● ● ●●● ●● ●●● ●● ●● ● ●● ●●●● ●●●● ●●●● ● ●●●●●● ●●●●●● ●● ● ●●●● ●●●●● ●●●● ● ●●● ●●●● ●● ●● ●●●● ●● ●●●●●●● ●●● ●●●● ●● ●●●● ●●●●● ●● ●● ●●●● ● ● ●● ●●● ● ●●● ● ●● ●●●●● ● ●●● ●●●● ●● ● ● ●●●● ●●●●●● ●● ●●●●●● ●● ●●●●● ●●● ●● ● ●● ● ●●● ●●● ●●● ●●● ●● ●●● ●● ●● ●●● ●●●●●● ● ●● ●● ● ●● ●● ●●● ●● ●●● ● ●●●● ●● ●● ●●●●● ●● ●●● ●● ● ●●● ● ●● ●●●● ●●● ●● ●●● ●●● ●● ●●● ●●

µ = 8.98

3

K
/ X

I

....

....

bootDat

n = 325 + 302 = 627 rows by B = 10,000 columns

each column is 1
bootstrap sample

We can use these bootstrap datasets to get empirical
null distributions for the other test statistics we’ve been
considering. Neat chance to check results using classical
theory against those from brute force computing.

|x − y|

D
en
si
ty

0

2

4

6

0.0 0.1 0.2 0.3 0.4

abs. diff. of means
 obs test stat = 0.26

 p−value = 0.0172

Abs. value of difference in medians

D
en

si
ty

0

1

2

3

4

5

0.0 0.1 0.2 0.3 0.4 0.5

| median(x) − median(y) |
 obs test stat = 0.32

 p−value = 0.014

Abs. value of Welch's t statistic

D
en

si
ty

0.0

0.2

0.4

0.6

0.8

0 1 2 3 4

| Welch's t stat |
 obs test stat = 2.34

 p−value = 0.017

Wilcoxon test statistic, i.e. sum of 1 group's ranks

D
en

si
ty

0.00000

0.00005

0.00010

0.00015

40000 45000 50000 55000

Wilcoxon test stat
 obs test stat = 41710

 p−value = 0.0011

Kolmogorov−Smirnov test statistic

D
en

si
ty

0

5

10

15

20

0.05 0.10 0.15

KS test stat
 obs test stat = 0.13

 p−value = 0.0051

Welch's t statistic

D
en

si
ty

0.0

0.1

0.2

0.3

0.4

−4 −2 0 2 4

Welch's t stat
 obs test stat = −2.34

 p−value = 0.017

test statistic observed
value

“classical”
p-value

bootstrap
p-value

0.26 NA 0.0172

0.322 NA 0.0140

| Welch’s t statistic | 2.344 NA 0.0170

Welch’s t
statistic -2.344 0.0194 0.0170

Kolmogorov-
Smirnov 0.134 0.0073 0.0051

Wilcoxon 41710 0.0012 0.0011

t = x − y

t = median(x)−median(y)

Why the bootstrap is important

p. 60-1 of Efron & Tibshirani

“If we choose a statistic more complicated than
<sthgSimple> or a distribution less tractable than
<sthgFriendly>, then no amount of mathematical
cleverness will yield a simple formula.

Because of such limitations, pre-computer statistical
theory focused on a small set of distributions and a
limited class of statistics.

Computer-based methods like the bootstrap free the
statistician from these constraints.”

With power comes responsibility
“This is not all pure gain.

Theoretical formulas ... can help us understand a
situation in a different way than the numerical output
of a bootstrap program.

It pays to remember that methods like the bootstrap
free the statistician to look more closely at the data,
without fear of mathematical difficulties, not less
closely.”

p. 60-1 of Efron & Tibshirani

those wise words apply to many “brute force”
methods of statistical inference and analysis

on that note, let’s return to the world of two
quantitative variables and take a tour of some
nonstandard regression approaches:
today -- robust regression (and the bootstrap,
again!)
Wednesday -- smoothing

CRAN Task View: Robust Statistical Methods

JB kindly thanks Matias Salibian-Barrera for offering advice on
this module several years ago; any mistakes, however, are
completely mine!

http://cran.r-project.org/web/views/Robust.html
http://cran.r-project.org/web/views/Robust.html

Please note that there is a package to help with
bootstrapping: boot.

It is a recommended package and, therefore, will
already be in most R installations.

Feel free to try it out.

as usual, code, figures, etc. can be found here:
robustRegression

http://www.stat.ubc.ca/~jenny/notOcto/STAT545A/examples/robustRegression/
http://www.stat.ubc.ca/~jenny/notOcto/STAT545A/examples/robustRegression/

Two quantitative variables: X and Y
• X ... ‘independent variable’, ‘covariate’, ‘predictor’,

‘explanatory variable’

• Y ... ‘dependent variable’, ‘response’, ‘outcome’

• Regression ≈ study of the conditional expectation of Y
given X=x

• Our focus: We’re willing to specify quite a bit about f --
maybe even that it’s linear! -- but we’re worried that the ε’s
are a mix of “well-behaved” errors (e.g. mean zero, finite
variance) and some really nasty stuff.

yi = f (xi) + εi

Wikipedia: “Rwandans form three groups: the Hutu, Tutsi, and Twa....
The Tutsi-led Rwandan Patriotic Front (RPF) launched a civil war in
1990, which was followed by the 1994 Genocide, in which Hutu
extremists killed an estimated 500,000 to 1 million Tutsi and
moderate Hutu. The RPF ended the genocide with a military
victory.” (Estimated 2011 population = 11.4 million)

Rwanda

http://en.wikipedia.org/wiki/Hutu
http://en.wikipedia.org/wiki/Hutu
http://en.wikipedia.org/wiki/Tutsi
http://en.wikipedia.org/wiki/Tutsi
http://en.wikipedia.org/wiki/Great_Lakes_Twa
http://en.wikipedia.org/wiki/Great_Lakes_Twa
http://en.wikipedia.org/wiki/Rwandan_Patriotic_Front
http://en.wikipedia.org/wiki/Rwandan_Patriotic_Front
http://en.wikipedia.org/wiki/Rwandan_Civil_War
http://en.wikipedia.org/wiki/Rwandan_Civil_War
http://en.wikipedia.org/wiki/Rwandan_Genocide
http://en.wikipedia.org/wiki/Rwandan_Genocide

Is life expectancy really declining in Rwanda, in a systematic
long-term way?

Or is the above simple linear regression line being dragged
down by the two “outliers” heavily affected by the civil war
and genocide?

Let’s try some robust approaches to regression.

yi = β0 + β1yeari + ε i

* In real life, I would address the correlation structure of the errors! Ignoring for simplicity!

year

life
Ex
p

25

30

35

40

45

50

1950 1960 1970 1980 1990 2000

●

●

●

●
● ●

●

●

●

●

●

●

> summary(lsFit)

Call:
lm(formula = lifeExp ~ I(year - yearMin), data = hDat)

Residuals:
 Min 1Q Median 3Q Max
-17.310 -1.445 2.410 3.073 6.021

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 42.74195 3.56128 12.002 2.92e-07 ***
I(year - yearMin) -0.04583 0.10969 -0.418 0.685

> summary(lsFitAlt)

Call:
lm(formula = lifeExp ~ I(year - yearMin), data = hDat,
 subset = flag == "data OK")

Residuals:
 Min 1Q Median 3Q Max
-2.2855 -0.7903 0.2190 1.0917 2.0012

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 41.99422 0.81870 51.294 2.31e-11 ***
I(year - yearMin) 0.07408 0.02725 2.718 0.0263 *

Year

Li
fe

 e
xp

ec
ta

nc
y

25

30

35

40

45

50

1950 1960 1970 1980 1990 2000

●

●

●

●
● ●

●

●
●

●

●

●

Year

Li
fe

 e
xp

ec
ta

nc
y

25

30

35

40

45

50

1950 1960 1970 1980 1990 2000

●

●

●

●
● ●

●

●
●

●

●

●

Robust or resistant regression

• Imagine a scenario where you have real concern about
the undue influence of a handful of observations

• If you think of lm as implementing least squares
regression, then ... perhaps we should consider alternative
measures of discrepancy between observed data and the
prediction or fit from a model.

• Goal: Devise a fitting criterion that is less sensitive to
individual observations.

εi (β) = yi − xiβ“residual”

β̂ = (XT X)−1XT y = min−1 (yi − xiβ∑)2
default estimator of β

default rationale:
find value of β that minimizes the sum or --
equivalently -- the mean of the squared residuals

If you’re worried about undue influence of some
outliers, you could replace the mean with a
more robust measure of location.

For example, find value of β that minimizes the
median of the squared residuals.

Or, find value of β that minimizes the trimmed
mean of the squared residuals.

We observe (yi, xi), where xi is the p-dimensional
predictor (a row vector). Considering the data fixed,
the residuals are a function of the parameter β:

εi (β) = yi − xiβ

The ‘usual’ estimator of β, i.e. that implemented by lm,
is justified either as a maximum likelihood estimator
(normally distributed errors) or simply via least squares:

β̂ = (XT X)−1XT y = min−1 (yi − xiβ∑)2

So, obviously, there is a great deal of theory and
history behind the idea of minimizing the sum or,
equivalently, the mean of the squared residuals.

Since the median is a robust alternative to the mean,
maybe we should consider an estimator that
minimizes the median of the squared residuals.

β̂LS = min
−1 1
n

(yi − xiβ∑)2 = min−1 mean(ε 2i (β))

β̂LMS == min
−1 median(ε 2i (β))

This is called the least median of squares (LMS)
estimator.

You could imagine replacing the ‘mean’ or ‘median’
above with ... a trimmed mean. That leads to the least
trimmed squares (LTS) regression.

Let’s replace the ‘mean’ with a ‘trimmed mean’ . That
leads to least trimmed squares (LTS) regression.

β̂LTS = min
−1 trmeanτ (ε

2
i (β))

where τ ∈ (0, 1) specifies the amount of trimming.

As with most tuning parameters, there is some information
on an optimal choice of τ and well-designed software should
default to that.

β̂LS = min
−1 1
n

(yi − xiβ∑)2 = min−1 mean(ε 2i (β))

β̂LMS == min
−1 median(ε 2i (β))

β̂LTS = min
−1 trmeanτ (ε

2
i (β))

β̂MM
state-of-the-art robust estimator, but not
easy to explain; gold standard

removed from comparison because other
robust options are superior

> summary(lsFit)

Call:
lm(formula = lifeExp ~ I(year - yearMin), data = hDat)

Residuals:
 Min 1Q Median 3Q Max
-17.310 -1.445 2.410 3.073 6.021

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 42.74195 3.56128 12.002 2.92e-07 ***
I(year - yearMin) -0.04583 0.10969 -0.418 0.685

> summary(lsFitAlt)

Call:
lm(formula = lifeExp ~ I(year - yearMin), data = hDat,
 subset = flag == "data OK")

Residuals:
 Min 1Q Median 3Q Max
-2.2855 -0.7903 0.2190 1.0917 2.0012

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 41.99422 0.81870 51.294 2.31e-11 ***
I(year - yearMin) 0.07408 0.02725 2.718 0.0263 *

Can the robust estimators achieve this but without the
need to explicitly, subjectively remove data?

Year

Li
fe

 e
xp

ec
ta

nc
y

25

30

35

40

45

50

1950 1960 1970 1980 1990 2000

●

●

●

●
● ●

●

●
●

●

●

●

Year

Li
fe

 e
xp

ec
ta

nc
y

25

30

35

40

45

50

1950 1960 1970 1980 1990 2000

●

●

●

●
● ●

●

●
●

●

●

●

Robust/resistant regression

• Scenario: you are concerned about the undue influence
of a handful of observations, but find it unappealing to
explicitly identify ‘good’ and ‘bad’ data.

• Consider our ‘default’ estimator of the parameter β in a
linear model as the minimizer of the mean of the squared
residuals.

• Median and trimmed mean are helpful when dealing when
dealing with ‘less than perfect’ data -- use them here to
construct more robust estimators of β.

Robust/resistant regression

• The construction of various robust estimators is beyond
the scope of this course, but we can still use one or two
robust estimators responsibly.

• Also, the sampling distribution of robust estimators will
be, in general, less well-characterized than in the plain
vanilla least squares or normal errors case. This will give
us another opportunity to use the bootstrap.

estimator notes & R code snippets

LS = least (mean)
squares

lsFit <- lm(lifeExp ~ I(year - yearMin), hDat)

lsFitAlt <- lm(lifeExp ~ I(year - yearMin), hDat,
 subset = flag == 'data OK')

LTS = least trimmed
mean squares

ltsFit <- ltsReg(lifeExp ~ I(year - yearMin), hDat)

ltsFitAlt <- ltsReg(lifeExp ~ I(year - yearMin), hDat,
 subset = flag == 'data OK')

ltsReg() is in the robustbase package.

MM = MM estimation

mmFit <- lmrob(lifeExp ~ I(year - yearMin), hDat)

mmFitAlt <- lmrob(lifeExp ~ I(year - yearMin), hDat,
 subset = flag == 'data OK')

lmrob() is in the robustbase package.

This is probably what you should actually use in practice! LTS
regression is included only because it can be explained / motivated
rather easily, unlike MM estimation.

yi = β0 + β1yeari + ε i

 meth excl est se
1 leastSq FALSE -0.04583147 0.10968601
2 leastSq TRUE 0.07408486 0.02725230
3 leastTrimSq FALSE 0.19467143 0.01835124
4 leastTrimSq TRUE 0.19467143 0.01835124
5 MM FALSE 0.06679455 0.04305619
6 MM TRUE 0.07647548 0.03494911

Various estimates of β1

yi = β0 + β1yeari + ε i

that table of numbers makes it really
easy to see what’s going on, right?

just kidding!

of course, I’ve made some pictures

Year

Li
fe

 e
xp

ec
ta

nc
y

25

30

35

40

45

50

1950 1960 1970 1980 1990 2000

●

●

●

●
●

●

●

●

●

●

●

●

leastSq
leastTrimSq
MM

Year

Li
fe

 e
xp

ec
ta

nc
y

25

30

35

40

45

50

1950 1960 1970 1980 1990 2000

●

●

●

●
●

●

●

●

●

●

●

●

leastSq
leastTrimSq
MM

meth excl slope est se
leastSq FALSE -0.046 0.1097
leastSq TRUE 0.074 0.0273
leastTrimSq FALSE 0.195 0.0184
leastTrimSq TRUE 0.195 0.0184
MM FALSE 0.067 0.0431
MM TRUE 0.076 0.0349

Fitted lines using all data
(excl == FALSE)

Fitted lines omitting 2 outliers
(excl == TRUE)

• Results for this data are encouraging

- robust estimates are close to LS estimate when
outliers are removed.

- robust estimates are essentially same with and without
outliers.

• But how are we going to do inference? It turns out that
there is now a theoretical basis for providing estimated
standard errors for the LTS and MM estimators. This was
not always the case, mind you. But let’s use the bootstrap
anyway just to double-check

Bootstrapping in a regression context

• The probability model for Y has parameter (β, Fε), where
Fε is the distribution of the error terms ε.

• We have many ways to estimate β, but the bootstrap will
require us to estimate Fε as well.

• Option #1: estimate Fε with the empirical distribution of
the residuals.

• So, what does the bootstrap procedure look like?

yi = xiβ + εi

Generate a size n bootstrap sample of residuals by
resampling with replacement from the observed
residuals.

Generate bootstrap data by adding the linear
predictor and the bootstrap residuals.

ε̂i = yi − xiβ̂

F̂ : probability 1 / n on ε̂i
F̂→ (ε1

*,ε2
*,…,εn

*)

yi
* = xiβ̂ + εi

*

β̂ * = min−1 f [(yi
* − xiβ)

2]

Generate bootstrap statistic or estimator by the
same procedure used with observed data.

β̂ * = min−1 f [(yi
* − xiβ)

2]

Generate bootstrap statistic or estimator by the
same procedure used with observed data.

The function f above is determined by the choice
of criterion, i.e. least squares vs. least median
squares, vs. least trimmed mean, etc.

The sampling distribution of the bootstrap
statistics (or estimates) can be used, for example,
to estimate the standard error of the observed
statistic or estimate.

Hypothesis testing is also possible -- but recall you
must explicitly enforce the null hypothesis!

In fact, the bootstrap can take very many forms. In
particular, different assumptions made about F, the
distribution of the errors, will produce different
bootstrap approaches.

I have briefly introduced ‘bootstrapping residuals’,
but it is also possible to ‘bootstrap pairs’ (option
#2).

Year

Li
fe

 e
xp

ec
ta

nc
y

25

30

35

40

45

1950 1960 1970 1980 1990 2000

●

●

●

●

●

●

● ●

●

●

●

●

bootDatLS[, 1]

●

●

● ●

●
●

●

●

● ●

●

●

bootDatLS[, 2]

1950 1960 1970 1980 1990 2000

●

●

● ●
●

●

●

●

●

●

●

●

bootDatLS[, 3]

● ● ●

● ●

●

●

●

●
●

●

●

bootDatLS[, 4]

1950 1960 1970 1980 1990 2000

●

●

●

●

●

●

●

●

●

● ●

●

bootDatLS[, 5]

25

30

35

40

45
●

●

●

●

●

●

●

●

●

●
●

●

bootDatLS[, 6]

The first six bootstrap datasets, with least squares fits.

B <- 1000
set.seed(17)
bootIndices <- sample(1:n, n * B, replace = TRUE)

> bootIndices[1:(3 * n)]
 [1] 2 12 6 10 5 7 3 3 10 3 6 1 11 10 12 12 8 4 8 7 11 8 9 10 11
[26] 2 7 7 12 3 6 1 10 5 7 3

resample the
observations

> matrix(resid(lsFit)[bootIndices[1:(3 * n)]], nrow = n)
 [,1] [,2] [,3]
 [1,] -1.012791 2.962625 2.962625
 [2,] 6.020782 -4.592533 -1.012791
 [3,] 3.403838 6.020782 4.850995
 [4,] -4.592533 6.020782 4.850995
 [5,] 2.774681 2.882153 6.020782
 [6,] 4.850995 2.045523 0.716366
 [7,] 0.716366 2.882153 3.403838
 [8,] 0.716366 4.850995 -2.741949
 [9,] -4.592533 2.962625 -4.592533
[10,] 0.716366 2.882153 2.774681
[11,] 3.403838 -17.309690 4.850995
[12,] -2.741949 -4.592533 0.716366

grab the associated
residuals and store as
matrix, 1 column per
bootstrap dataset

 [,1] [,2] [,3]
 [1,] 41.72916 45.70457 45.70457
 [2,] 48.53357 37.92026 41.50000
 [3,] 45.68747 48.30442 47.13463
 [4,] 37.46194 48.07526 46.90547
 [5,] 44.60000 44.70747 47.84610
 [6,] 46.44716 43.64169 42.31253
 [7,] 42.08337 44.24916 44.77084
 [8,] 41.85421 45.98884 38.39590
 [9,] 36.31616 43.87131 36.31616
[10,] 41.39590 43.56169 43.45421
[11,] 43.85421 23.14069 45.30137
[12,] 37.47927 35.62869 40.93758

 [,1] [,2] [,3]
 [1,] -1.012791 2.962625 2.962625
 [2,] 6.020782 -4.592533 -1.012791
 [3,] 3.403838 6.020782 4.850995
 [4,] -4.592533 6.020782 4.850995
 [5,] 2.774681 2.882153 6.020782
 [6,] 4.850995 2.045523 0.716366
 [7,] 0.716366 2.882153 3.403838
 [8,] 0.716366 4.850995 -2.741949
 [9,] -4.592533 2.962625 -4.592533
[10,] 0.716366 2.882153 2.774681
[11,] 3.403838 -17.309690 4.850995
[12,] -2.741949 -4.592533 0.716366

sweep(matrix(resid(lsFit)[bootIndices[1:(3 * n)]], nrow = n), 1,
 fitted(lsFit), "+")

 [,1]
1285 42.74195
1286 42.51279
1287 42.28363
1288 42.05448
1289 41.82532
1290 41.59616
1291 41.36700
1292 41.13785
1293 40.90869
1294 40.67953
1295 40.45038
1296 40.22122

+ =

add the residuals to
the fit to obtain
bootstrap data

 [,1] [,2] [,3]
 [1,] 41.72916 45.70457 45.70457
 [2,] 48.53357 37.92026 41.50000
 [3,] 45.68747 48.30442 47.13463
 [4,] 37.46194 48.07526 46.90547
 [5,] 44.60000 44.70747 47.84610
 [6,] 46.44716 43.64169 42.31253
 [7,] 42.08337 44.24916 44.77084
 [8,] 41.85421 45.98884 38.39590
 [9,] 36.31616 43.87131 36.31616
[10,] 41.39590 43.56169 43.45421
[11,] 43.85421 23.14069 45.30137
[12,] 37.47927 35.62869 40.93758

 [,1] [,2] [,3]
 [1,] -1.012791 2.962625 2.962625
 [2,] 6.020782 -4.592533 -1.012791
 [3,] 3.403838 6.020782 4.850995
 [4,] -4.592533 6.020782 4.850995
 [5,] 2.774681 2.882153 6.020782
 [6,] 4.850995 2.045523 0.716366
 [7,] 0.716366 2.882153 3.403838
 [8,] 0.716366 4.850995 -2.741949
 [9,] -4.592533 2.962625 -4.592533
[10,] 0.716366 2.882153 2.774681
[11,] 3.403838 -17.309690 4.850995
[12,] -2.741949 -4.592533 0.716366

sweep(matrix(resid(lsFit)[bootIndices[1:(3 * n)]], nrow = n), 1,
 fitted(lsFit), "+")

 [,1]
1285 42.74195
1286 42.51279
1287 42.28363
1288 42.05448
1289 41.82532
1290 41.59616
1291 41.36700
1292 41.13785
1293 40.90869
1294 40.67953
1295 40.45038
1296 40.22122

+ =

Year

Li
fe

 e
xp

ec
ta

nc
y

25

30

35

40

45

1950 1960 1970 1980 1990 2000

●

●

●

●

●

●

● ●

●

●

●

●

bootDatLS[, 1]

●

●

● ●

●
●

●

●

● ●

●

●

bootDatLS[, 2]

1950 1960 1970 1980 1990 2000

●

●

● ●
●

●

●

●

●

●

●

●

bootDatLS[, 3]

● ● ●

● ●

●

●

●

●
●

●

●

bootDatLS[, 4]

1950 1960 1970 1980 1990 2000

●

●

●

●

●

●

●

●

●

● ●

●

bootDatLS[, 5]

25

30

35

40

45
●

●

●

●

●

●

●

●

●

●
●

●

bootDatLS[, 6]

> B <- 1000
> bootIndices <- sample(1:n, n * B, replace = TRUE)

> bootDatLS <-
+ sweep(matrix(resid(lsFit)[bootIndices], nrow = n), 1,
+ fitted(lsFit), "+")

Perform all “sampling with
replacement” at once.

Generate bootstrap
residuals: index resids
by random indices.

Give bootstrap residuals
correct shape = n by B matrix.

Generate bootstrap data with the sweep() call: Adds the vector
of fitted values to each column of bootDat, i.e. to each vector-
valued bootstrap residual. Read up on sweep() -- very handy.

bootIndices <- sample(1:n, n * B, replace = TRUE)
resid(lsFit)[bootIndices]

bootDatLS <-
 sweep(matrix(resid(lsFit)[bootIndices], nrow = n), 1,
 fitted(lsFit), "+")

ε̂ i = yi − xiβ̂

F̂ :probability 1 / n on ε̂ i
F̂→ (ε1

*,ε2
*,…,εn

*)

yi
* = xiβ̂ + ε i

*

Concept:

Implementation:

Concept:
Implementation:

bootCoefLS <-
 apply(bootDatLS, 2, function(lifeExp) {
 coef(lm(lifeExp ~ I(jYear - yearMin)))["I(jYear - yearMin)"]
 })

> str(bootCoefLS)
 num [1:1000] -0.096 -0.2053 -0.0859 0.3885 -0.151 ...

Use apply() to visit each bootstrap dataset
(i.e. column) and retain estimated slope.

Concept:

Implementation:

β̂LS
* = min−1meanτ [(ε i

*)2]

bootCoefLS <-
 apply(bootDatLS, 2, function(lifeExp) {
 coef(lm(lifeExp ~ I(jYear - yearMin)))["I(jYear - yearMin)"]
 })

Now, let’s look at the bootstrap distribution of the
least squares, least trimmed squares, and MM slope
estimates.

Bootstrap coefficients

D
en

si
ty

0

5

10

15

20

25

−0.5 0.0 0.5

●● ● ●● ●● ● ●●
●●

●
● ●●●●

● ●●
●● ●
●●● ●● ●

●
●

●●● ●●● ● ● ● ●
●●●

●●
● ●●

●● ●●
●

●●● ●● ●●●●●● ● ●● ●
●● ●● ●● ●● ●●●● ● ●

●●●●● ●● ●●● ●● ●●●● ● ●●● ● ●●●●● ●
● ●● ● ●●●●● ●●●● ● ●● ●●●

●
●● ●

●
●● ●●● ● ●● ●●● ●●●● ●●● ●

● ● ●● ● ● ●
●● ● ●● ●●

●●●● ● ●●●● ●●
● ●●●●●● ●● ●● ● ●●●

● ●●● ●●●●●●
●

●
●

●● ●●
●● ●● ●● ●● ●●●

● ●●●● ●●
●● ●

●●● ●●●
●● ●●●● ●● ●●● ●● ●

●
●●

● ●
● ●●● ●●

● ●● ●●● ●●● ●●● ●● ●
●

●●● ●● ●●●
● ●●

● ●●●●
●●

●● ●●● ●● ●● ●●●●●●●●
● ● ●●● ● ●●● ●● ●●●●● ●●● ●● ●● ●● ●●●● ●● ●● ●●●
●

●
●●

●●●●● ●●● ● ●●
●● ●●● ●●

●● ●● ● ●● ●● ●●● ●● ●●●● ●●● ●●●●●● ●● ● ●● ●● ●● ●●●●● ●● ●●● ●
●● ●● ●● ●●● ●●●● ●● ●●● ●●●●● ●●● ●●●● ●●● ●
●●●●
●● ●●
●●●● ●

● ●●● ●●
●●

●● ●●● ●● ●●● ●● ●●●●●
●● ●●●

●●● ●● ●● ●● ● ● ●●●●
●

●●●
● ●●●●● ●●

●●●● ●●●●●● ●●●● ●●
●● ●

●● ●
●● ●

● ●●●●● ●●● ●●●● ●●●●●● ●●● ●●● ●● ●●
●●●

●
● ●● ●●●● ●●

●●● ●
●

●● ●●● ● ●● ●
●● ● ● ●●● ●● ●●●●●

●● ● ●●●●●● ●●● ●●●
●● ●● ●● ●●● ●
●● ● ●● ●● ●● ●●
● ●● ●

● ●
●●●●●● ●●● ●●● ● ●●● ●● ●● ● ●● ●

●
●●●● ●● ●● ●● ●

● ●●●● ●●● ●● ●●●●● ●●●●● ●● ●● ●● ●
● ●● ●●●●● ●●● ●●● ● ●●●● ●● ●

●
●●●●●●● ●● ●● ● ●● ●●● ●●● ●● ●●

●
● ●
●● ● ●●●● ●● ●● ●● ●●●

●
●

●● ●● ●● ●● ●● ● ●● ●● ●●● ● ●●
●●●● ● ●

● ●
●

●
●● ●●● ●●

●●●
● ● ●● ●● ●● ●●

● ●●●
●

●
●●●● ●● ●● ●● ●● ●

●
● ● ● ●● ●● ●● ●●● ●● ●●● ●●●●

●● ● ●●●
●● ● ●● ●● ● ●●●● ●● ●●● ● ●●●● ●●●● ●●

● ●● ●●●●● ●●●● ●●●●●●
●●

●● ●●●●● ●●●
● ● ●●●

●● ●● ●● ●● ●●●●● ●
● ●●●● ●●● ●●● ●●●

● ●●● ●●●● ●●● ●●● ●● ●●●●

leastSq

−0.5 0.0 0.5

●
●● ●●●●●

●
●●●●● ●●
●● ●●●● ●●●●● ●●●●
●●● ●●●● ●●●●●

●● ●●●●●● ●●●●● ●●●● ●● ●
●●●●
●
●●●
● ●●●
●●● ●●●●●
● ●●●●●●●

●●●●●
●●●●●●●●
●●●●●● ●●● ●●●●●●●●●

●● ●●
● ●●
●●● ●●●●

●●●●●●●●
●● ●●● ●

●● ●●
●
●●●●
●
●●

● ●●●●●●●●●●●
● ●●● ●●●

●
●●●●
● ●●●●●●● ●

●●● ● ●● ●●●●●●●●●●
●●●●

● ●
●● ●●●●●●
●●● ●
●● ●●●● ●●●●●● ●
●●● ●●●●●● ●●

●
●● ●●● ●●●●● ●●●●●

●●
●●

●● ● ●
●
●●●● ●●●●
●●●●●●● ●●●●●●●●●●●●●
●●

●
●

●
●● ●●

●
●●
●● ●●●●●●● ●●●
●●● ●●●● ●●●
●●
●●●●●●●● ●●●
●●●●●●●● ●●●●●●●
●
●●
●
● ●●●
● ●●●●●●●
●● ●●

●
●●●●●●●●● ●●●● ●●●● ●●

●● ●●●●
●●●● ●●
●●●●
●● ●
●●●●
●● ●●●●●

●●●●
●
●●●●●●● ●●●●● ●● ●●●

●●● ●●
●● ●●● ●● ●●●●●● ●

●●
●●●

●● ● ●●●●●●●●● ●●●●● ●●●
●●●●●
●
●●●●●●●●● ●●●●●
●● ●●●●●●

●
● ●●

●
●●●●● ●●●●●●●●●

● ●● ●●●
●●●●● ●
●●●●●
●
●●●●●●●●●● ●● ●●● ●● ●●● ●●●●
●●●●●●●●●●●●●●●●●
●●● ●●● ●● ●●● ●●
●● ●

●
●
●●●●●●●●
●●
●● ●●●●●●● ●● ● ●●●●●●●●● ●
●●●

●●●● ●●●● ●●●
●

●●●●● ●●● ● ●
●● ●●●
●●● ●●

● ● ●●●●
●●●●●●●●
●●● ●●
●●

●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●
● ●● ● ●●●●●●●●●

● ●●●
● ●● ●●●●●

●●●●
●●●●●●●●● ●● ●●●●●●●

●●●●●●●
●

●●
●

● ●●●●
●●●●●

● ●
● ●
●●●
●●

●● ●●● ●●
●●●●●●● ●●●●●● ●● ●●●●●●●● ●●●● ●●●● ●
● ● ●●●●●●●●● ● ●●●●●●●●●●●●
●● ●● ● ●●●●●● ●●●
● ●●●●●●●●●●●●●●●●●●●● ● ●●
●●
●●

●●●●
●●
●● ●●●●●
●
●●●●●●●●●●●●●
●●●●●● ●●●●
●●●●●
●
●●●●●●●●● ●●
●
●

●●
●● ●
●●● ●

●●●●●● ●●

leastTrimSq

−0.5 0.0 0.5

●●● ●●
●

●●●●●● ●
● ●●●● ●●●
● ●●●●● ●●
●
●●●●●●●●●● ●●●●● ●●●●●● ●●●●
●
●
●●● ●● ●●●●● ●

●
●●●

●●●●● ●●
●● ●●
● ●●●●
●●● ●●●●● ●●●● ●
●●●● ●
●●●

●●●● ●● ●●●● ●●●
●● ●●●●●●●●●●●

● ●●●
●
●

● ●
●●● ●●●● ●

●●
●●●●●

●
●●●●●●

●●●●●●●●● ● ●●● ●●●●●●●●●●●●● ●●● ●●●●●
●● ●●●● ●●●● ●●●●●●●
●●● ●●●●● ●●●

● ●●●●●
●

● ●●● ●●●●
●●●●●
●●
●● ●
●
●
●● ●●

●●●
●
●
●
●● ●●●●●●●●●●● ●●●●● ●●●●

●●
●●●●● ●●●●
●

●●
●●●● ●●●●●

● ●●●●●●●●●●●●●●● ●●●●●●●● ●● ●●
● ●● ●●●
●●●

●●●● ● ●●●● ●●●
●●● ●●●●●●●●● ●●●●
●●●●

●●●●●●●●
●●●●●●

●● ●● ●●●●●●●●●●
●● ●● ●●●●●●●●●●●●● ●●● ●●●●●●●
●

●●● ●
●●●● ●●● ●●●

●
●
●● ●●● ●● ●●●●●●

●● ●●●● ●●●●●
●●●● ●●● ●● ●
●●●●●●●●
●●
●●
●●

●
●●●●● ●●●●●
●

●●●●
●●●

● ●●●●●
●●●
●●●

● ●●●●●●● ●
●
●●● ●●●●●●● ●●●●●

●●● ●●●●
●●

●●●
● ●●●●●● ●● ●●●
● ●

●●
●● ●●●● ●
●●
●●● ●●●●● ● ●●●●●
●●● ●
●●●●

●●● ● ●●● ●●●●● ●●● ●●● ●
●●●●●●● ●●●●●●
●
●● ●●● ●●● ●●● ●● ●●●

●●●●● ●● ●
●● ●●●●●● ●●●●● ● ●●● ●●●● ●

●
●

● ●●●● ●●●●●●● ●●●● ●●●●●●
●●●

●
●
● ●●●●
●●●
●

●●●●●●●● ●●●●●●●
● ●●
●

●●● ● ●
● ●●●●●

●●● ●●
●● ●●●●●●●●●●●●●●

●● ●●●
●●
●● ●●●● ●●
●●●● ●● ●
●●●●●● ●●●●●●● ●●●●●● ●●
●●● ●●●●●●●●●●●●
●
●●●● ●

●
●●●●● ●●●●●

●●●
●●●

● ●●● ●●●●●●●●●
●●● ●●●●●●● ● ●●
●●●●●●●●●●●●●

●
●

● ●●●●●●● ●
●●● ●●●●●● ●●●●●
●●●●●●●●●● ●●●●●● ●● ●●●

●
●
●● ●●●

●●●●
●● ●●●●●● ●●●● ●●●●●

● ●●● ●●●●●●●●●● ●
● ●

●
● ●●●●●
●

MM

meth est se
leastSq -0.046 0.1097
leastTrimSq 0.195 0.0184
MM 0.067 0.0431

Year

Li
fe

 e
xp

ec
ta

nc
y

25

30

35

40

45

50

1950 1960 1970 1980 1990 2000

●

●

●

●
●

●

●

●

●

●

●

●

leastSq
leastTrimSq
MM

Speculate on what you will see
here ...

Bootstrap coefficients

D
en

si
ty

0

5

10

15

20

25

−0.5 0.0 0.5

●● ● ●● ●● ● ●●
●●

●
● ●●●●

● ●●
●● ●
●●● ●● ●

●
●

●●● ●●● ● ● ● ●
●●●

●●
● ●●

●● ●●
●

●●● ●● ●●●●●● ● ●● ●
●● ●● ●● ●● ●●●● ● ●

●●●●● ●● ●●● ●● ●●●● ● ●●● ● ●●●●● ●
● ●● ● ●●●●● ●●●● ● ●● ●●●

●
●● ●

●
●● ●●● ● ●● ●●● ●●●● ●●● ●

● ● ●● ● ● ●
●● ● ●● ●●

●●●● ● ●●●● ●●
● ●●●●●● ●● ●● ● ●●●

● ●●● ●●●●●●
●

●
●

●● ●●
●● ●● ●● ●● ●●●

● ●●●● ●●
●● ●

●●● ●●●
●● ●●●● ●● ●●● ●● ●

●
●●

● ●
● ●●● ●●

● ●● ●●● ●●● ●●● ●● ●
●

●●● ●● ●●●
● ●●

● ●●●●
●●

●● ●●● ●● ●● ●●●●●●●●
● ● ●●● ● ●●● ●● ●●●●● ●●● ●● ●● ●● ●●●● ●● ●● ●●●
●

●
●●

●●●●● ●●● ● ●●
●● ●●● ●●

●● ●● ● ●● ●● ●●● ●● ●●●● ●●● ●●●●●● ●● ● ●● ●● ●● ●●●●● ●● ●●● ●
●● ●● ●● ●●● ●●●● ●● ●●● ●●●●● ●●● ●●●● ●●● ●
●●●●
●● ●●
●●●● ●

● ●●● ●●
●●

●● ●●● ●● ●●● ●● ●●●●●
●● ●●●

●●● ●● ●● ●● ● ● ●●●●
●

●●●
● ●●●●● ●●

●●●● ●●●●●● ●●●● ●●
●● ●

●● ●
●● ●

● ●●●●● ●●● ●●●● ●●●●●● ●●● ●●● ●● ●●
●●●

●
● ●● ●●●● ●●

●●● ●
●

●● ●●● ● ●● ●
●● ● ● ●●● ●● ●●●●●

●● ● ●●●●●● ●●● ●●●
●● ●● ●● ●●● ●
●● ● ●● ●● ●● ●●
● ●● ●

● ●
●●●●●● ●●● ●●● ● ●●● ●● ●● ● ●● ●

●
●●●● ●● ●● ●● ●

● ●●●● ●●● ●● ●●●●● ●●●●● ●● ●● ●● ●
● ●● ●●●●● ●●● ●●● ● ●●●● ●● ●

●
●●●●●●● ●● ●● ● ●● ●●● ●●● ●● ●●

●
● ●
●● ● ●●●● ●● ●● ●● ●●●

●
●

●● ●● ●● ●● ●● ● ●● ●● ●●● ● ●●
●●●● ● ●

● ●
●

●
●● ●●● ●●

●●●
● ● ●● ●● ●● ●●

● ●●●
●

●
●●●● ●● ●● ●● ●● ●

●
● ● ● ●● ●● ●● ●●● ●● ●●● ●●●●

●● ● ●●●
●● ● ●● ●● ● ●●●● ●● ●●● ● ●●●● ●●●● ●●

● ●● ●●●●● ●●●● ●●●●●●
●●

●● ●●●●● ●●●
● ● ●●●

●● ●● ●● ●● ●●●●● ●
● ●●●● ●●● ●●● ●●●

● ●●● ●●●● ●●● ●●● ●● ●●●●

leastSq

−0.5 0.0 0.5

●
●● ●●●●●

●
●●●●● ●●
●● ●●●● ●●●●● ●●●●
●●● ●●●● ●●●●●

●● ●●●●●● ●●●●● ●●●● ●● ●
●●●●
●
●●●
● ●●●
●●● ●●●●●
● ●●●●●●●

●●●●●
●●●●●●●●
●●●●●● ●●● ●●●●●●●●●

●● ●●
● ●●
●●● ●●●●

●●●●●●●●
●● ●●● ●

●● ●●
●
●●●●
●
●●

● ●●●●●●●●●●●
● ●●● ●●●

●
●●●●
● ●●●●●●● ●

●●● ● ●● ●●●●●●●●●●
●●●●

● ●
●● ●●●●●●
●●● ●
●● ●●●● ●●●●●● ●
●●● ●●●●●● ●●

●
●● ●●● ●●●●● ●●●●●

●●
●●

●● ● ●
●
●●●● ●●●●
●●●●●●● ●●●●●●●●●●●●●
●●

●
●

●
●● ●●

●
●●
●● ●●●●●●● ●●●
●●● ●●●● ●●●
●●
●●●●●●●● ●●●
●●●●●●●● ●●●●●●●
●
●●
●
● ●●●
● ●●●●●●●
●● ●●

●
●●●●●●●●● ●●●● ●●●● ●●

●● ●●●●
●●●● ●●
●●●●
●● ●
●●●●
●● ●●●●●

●●●●
●
●●●●●●● ●●●●● ●● ●●●

●●● ●●
●● ●●● ●● ●●●●●● ●

●●
●●●

●● ● ●●●●●●●●● ●●●●● ●●●
●●●●●
●
●●●●●●●●● ●●●●●
●● ●●●●●●

●
● ●●

●
●●●●● ●●●●●●●●●

● ●● ●●●
●●●●● ●
●●●●●
●
●●●●●●●●●● ●● ●●● ●● ●●● ●●●●
●●●●●●●●●●●●●●●●●
●●● ●●● ●● ●●● ●●
●● ●

●
●
●●●●●●●●
●●
●● ●●●●●●● ●● ● ●●●●●●●●● ●
●●●

●●●● ●●●● ●●●
●

●●●●● ●●● ● ●
●● ●●●
●●● ●●

● ● ●●●●
●●●●●●●●
●●● ●●
●●

●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●
● ●● ● ●●●●●●●●●

● ●●●
● ●● ●●●●●

●●●●
●●●●●●●●● ●● ●●●●●●●

●●●●●●●
●

●●
●

● ●●●●
●●●●●

● ●
● ●
●●●
●●

●● ●●● ●●
●●●●●●● ●●●●●● ●● ●●●●●●●● ●●●● ●●●● ●
● ● ●●●●●●●●● ● ●●●●●●●●●●●●
●● ●● ● ●●●●●● ●●●
● ●●●●●●●●●●●●●●●●●●●● ● ●●
●●
●●

●●●●
●●
●● ●●●●●
●
●●●●●●●●●●●●●
●●●●●● ●●●●
●●●●●
●
●●●●●●●●● ●●
●
●

●●
●● ●
●●● ●

●●●●●● ●●

leastTrimSq

−0.5 0.0 0.5

●●● ●●
●

●●●●●● ●
● ●●●● ●●●
● ●●●●● ●●
●
●●●●●●●●●● ●●●●● ●●●●●● ●●●●
●
●
●●● ●● ●●●●● ●

●
●●●

●●●●● ●●
●● ●●
● ●●●●
●●● ●●●●● ●●●● ●
●●●● ●
●●●

●●●● ●● ●●●● ●●●
●● ●●●●●●●●●●●

● ●●●
●
●

● ●
●●● ●●●● ●

●●
●●●●●

●
●●●●●●

●●●●●●●●● ● ●●● ●●●●●●●●●●●●● ●●● ●●●●●
●● ●●●● ●●●● ●●●●●●●
●●● ●●●●● ●●●

● ●●●●●
●

● ●●● ●●●●
●●●●●
●●
●● ●
●
●
●● ●●

●●●
●
●
●
●● ●●●●●●●●●●● ●●●●● ●●●●

●●
●●●●● ●●●●
●

●●
●●●● ●●●●●

● ●●●●●●●●●●●●●●● ●●●●●●●● ●● ●●
● ●● ●●●
●●●

●●●● ● ●●●● ●●●
●●● ●●●●●●●●● ●●●●
●●●●

●●●●●●●●
●●●●●●

●● ●● ●●●●●●●●●●
●● ●● ●●●●●●●●●●●●● ●●● ●●●●●●●
●

●●● ●
●●●● ●●● ●●●

●
●
●● ●●● ●● ●●●●●●

●● ●●●● ●●●●●
●●●● ●●● ●● ●
●●●●●●●●
●●
●●
●●

●
●●●●● ●●●●●
●

●●●●
●●●

● ●●●●●
●●●
●●●

● ●●●●●●● ●
●
●●● ●●●●●●● ●●●●●

●●● ●●●●
●●

●●●
● ●●●●●● ●● ●●●
● ●

●●
●● ●●●● ●
●●
●●● ●●●●● ● ●●●●●
●●● ●
●●●●

●●● ● ●●● ●●●●● ●●● ●●● ●
●●●●●●● ●●●●●●
●
●● ●●● ●●● ●●● ●● ●●●

●●●●● ●● ●
●● ●●●●●● ●●●●● ● ●●● ●●●● ●

●
●

● ●●●● ●●●●●●● ●●●● ●●●●●●
●●●

●
●
● ●●●●
●●●
●

●●●●●●●● ●●●●●●●
● ●●
●

●●● ● ●
● ●●●●●

●●● ●●
●● ●●●●●●●●●●●●●●

●● ●●●
●●
●● ●●●● ●●
●●●● ●● ●
●●●●●● ●●●●●●● ●●●●●● ●●
●●● ●●●●●●●●●●●●
●
●●●● ●

●
●●●●● ●●●●●

●●●
●●●

● ●●● ●●●●●●●●●
●●● ●●●●●●● ● ●●
●●●●●●●●●●●●●

●
●

● ●●●●●●● ●
●●● ●●●●●● ●●●●●
●●●●●●●●●● ●●●●●● ●● ●●●

●
●
●● ●●●

●●●●
●● ●●●●●● ●●●● ●●●●●

● ●●● ●●●●●●●●●● ●
● ●

●
● ●●●●●
●

MM

meth est se
leastSq -0.046 0.1097
leastTrimSq 0.195 0.0184
MM 0.067 0.0431

Year

Li
fe

 e
xp

ec
ta

nc
y

25

30

35

40

45

50

1950 1960 1970 1980 1990 2000

●

●

●

●
●

●

●

●

●

●

●

●

leastSq
leastTrimSq
MM

Bootstrap coefficients

D
en

si
ty

0

5

10

−0.4 −0.2 0.0 0.2 0.4

leastSq

−0.4 −0.2 0.0 0.2 0.4

MM

Both the LS and MM estimators are asymptotically
normal. This asymptotic distribution is superposed
in grey.

Bootstrap coefficients

D
en

si
ty

0

5

10

15

20

25

−0.5 0.0 0.5

leastSq

−0.5 0.0 0.5

leastTrimSq

−0.5 0.0 0.5

MM

meth est avgBoot se seBoot

leastSq -0.046 -0.045 0.1097 0.101

leastTrimSq 0.195 0.194 0.0184 0.0659

MM 0.067 0.066 0.0431 0.0494

What have we learned from this example?
• In this case, the robust method (MM) seems to produce

more “correct” result, i.e. that life expectancy in Rwanda
is flat or gradually increasing, modulo the early/mid
1990s.

- I believe we are “at real risk of deceiving ourselves” if
we use LS estimation.

• Bootstrap gives us a way to conduct inference with non-
standard estimators and to check the relevance of
asymptotic results when available.

• Good to try different methods -- “all models are wrong”.

• Bootstrapping can (and should) be carried out with no
explicit looping.

JB briefly discussed a “mechanics” issue
most of you will encounter in your
projects: data reshaping.

In case you were wondering: no, you are
not crazy or doing something wrong. The
need to reshape data actually arises quite
often.

Usually the need to fit a model or make a
figure is what triggers this.

Slides are crude but here just to record
the conversation.

> str(cDat)
'data.frame':! 17 obs. of 6 variables:
 $ Year : int 1990 1991 1992 1993 1994 1995 1996 ...
 $ Vcrime : num 4.15 4.17 4.28 4.24 3.97 ...
 $ Pcrime : num 24.6 26.7 25.6 23.9 22.8 ...
 $ UnempRate : num 0.0544 0.072 0.0709 0.0695 0.066 0.0595 0.0582 ...
 $ PercentLowInc: num 0.125 0.127 0.142 0.142 0.15 0.149 0.167 ...
 $ PercentGrad : num 0.685 0.697 0.703 0.715 0.718 ...
> cDat
 Year Vcrime Pcrime UnempRate PercentLowInc PercentGrad
1 1990 4.148524 24.57420 0.0544 0.125 0.6847
2 1991 4.167157 26.69928 0.0720 0.127 0.6974
3 1992 4.282401 25.57468 0.0709 0.142 0.7032
4 1993 4.241863 23.88863 0.0695 0.142 0.7152
5 1994 3.974130 22.76257 0.0660 0.150 0.7180
6 1995 3.735833 22.69167 0.0595 0.149 0.7212
7 1996 3.650269 22.44285 0.0582 0.167 0.7314
8 1997 3.546817 19.72201 0.0538 0.165 0.7305
9 1998 3.397468 18.14151 0.0631 0.146 0.7363
10 1999 3.209997 16.93544 0.0566 0.164 0.7378
11 2000 3.116337 15.86382 0.0480 0.151 0.7505
12 2001 3.000394 15.90761 0.0540 0.141 0.7585
13 2002 2.951312 15.94828 0.0580 0.160 0.7652
14 2003 2.942124 16.87751 0.0535 0.154 0.7781
15 2004 2.885056 16.22376 0.0483 0.141 0.7869
16 2005 2.894142 14.82477 0.0380 0.130 0.7923
17 2006 2.870854 13.39746 0.0308 0.130 0.7935

y ~ x

Demo of why/how to reshape data (crime data
riddell & ushey used for an assignment in 2009)

Vcrime and Pcrime report
crime rates for violent and
property crime respectively.

What if you want to plot both
against year in the same panel?

First the quick-and-dirty
solution is to be lazy and avoid
reshaping the data. Rely on
lattice’s “extended formula
interface”.

Year

C
rim

es
 p

er
 1

00
00

 p
eo

pl
e

5

10

15

20

25

1990 1995 2000 2005

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

● ● ●

●

●

●

● ● ●

●
●

●

●

Vcrime
Pcrime

●

●

using 'extended formula interface' in lattice
xyplot(Vcrime + Pcrime ~ Year, cDat,
 type = c('p','smooth','g'), auto.key = TRUE,
 ylab = paste("Crimes per", rateCons, "people"))
default for y1 + y2 ~ x is to superpose y1 and y2 on same
scatterplot
looks like (and is handled internally) like the result of using the
'groups' argument

‘extended formula interface’ in lattice;
superposes by default

y1 and y2 ~ x

Now ...
what if you want to plot each
crime rate in its own panel?

First the quick-and-dirty
solution is to be lazy and avoid
reshaping the data. Rely on
lattice’s “extended formula
interface”.

To get “conditioning” in panels
instead of superposition a la
groups, use the argument
“outer = TRUE”.

Year

C
rim

es
 p

er
 1

00
00

 p
eo

pl
e

3.
0

3.
5

4.
0

1990 1995 2000 2005

● ●

● ●

●

●
●

●

●

●
●

●
● ●

● ● ●

Vcrime

15
20

25 ●

●

●

●

● ● ●

●

●

●

● ● ●
●

●

●

●

Pcrime

Year

C
rim

es
 p

er
 1

00
00

 p
eo

pl
e

15
20

25

1990 1995 2000 2005

●

●

●

●

● ● ●

●

●

●

● ● ●
●

●

●

●

property

3.
0

3.
5

4.
0

● ●

● ●

●

●
●

●

●

●
●

●
● ●

● ● ●

violent

using 'extended formula interface' in lattice
AND asking for separate panels
also requesting different y axis limits
xyplot(Vcrime + Pcrime ~ Year, cDat,
 type = c('p','smooth','g'),
 outer = TRUE, layout = c(1, 2),
 ylab = paste("Crimes per", rateCons, "people"),
 scales = list(y = list(relation = 'free')))

xyplot(crimeRate ~ Year | crimeType, dDat,
 type = c('p','smooth','g'),
 layout = c(1, 2),
 ylab = paste("Crimes per", rateCons, "people"),
 scales = list(y = list(relation = 'free')))

‘extended formula interface’
in lattice; can simulate a
conditioning plot

‘proper’ conditioning plot,
after reshaping data

y1 and y2 ~ x

C
rim

es
 p

er
 1

00
00

 p
eo

pl
e

3.0

3.5

4.0

1990 1995 2000 2005

● ●

●
●

●

●

●

●

●

●

●

●
● ●

● ● ●

Year

0.03 0.04 0.05 0.06 0.07

● ●

●
●

●

●

●

●

●

●

●

●
●●

●●●

UnempRate

0.13 0.14 0.15 0.16

● ●

●
●

●

●

●

●

●

●

●

●
●●

●●●

PercentLowInc

0.68 0.70 0.72 0.74 0.76 0.78

● ●

●
●

●

●

●

●

●

●

●

●
● ●

● ●●

PercentGrad

y1 ~ x1 and x2 and x3 and x4

look at relationship of crime to socioeconomic predictors
using 'extended formula interface' in lattice again
AND asking for separate panels
xyplot(Vcrime ~ Year + UnempRate + PercentLowInc + PercentGrad, cDat,
 type = c('p','smooth','g'),
 outer = TRUE, layout = c(4, 1), xlab = "",
 ylab = paste("Crimes per", rateCons, "people"),
 scales = list(x = list(relation = 'free')))

‘extended formula interface’ in lattice; it even works for
x too!

Bottom line:
Extended formula interface works and can be handy

Actual output with proper conditioning plots, based
on reshaped data, can be a little bit better (options for
‘relation’ of axis ‘scales’ still not perfect either way)

Code for proper conditioning plots, based on
reshaped data, is more reusable -- don’t have to hard-
wire y1, y2, x1, x2, etc. and can query the number of
factor levels to fix the layout

Lattice likes ‘tall and skinny’ datasets better than ‘short
and fat’ ones. Sad fact of life.

two common scenarios when reshaping is
necessary:

“raw” data has 1 row per experimental unit and
repeated observations of some response, e.g. over
time, is found in several columns

some apply-type function has returned something
matrix-like and you really wanted the rows or
columns stacked on top of each other

The Common Need: you’ve got something that’s
short and fat but you wish it were tall and skinny.

how to actually reshape data

 Year Vcrime Pcrime UnempRate PercentLowInc PercentGrad
1 1990 4.148524 24.57420 0.0544 0.125 0.6847
2 1991 4.167157 26.69928 0.0720 0.127 0.6974
3 1992 4.282401 25.57468 0.0709 0.142 0.7032
...
15 2004 2.885056 16.22376 0.0483 0.141 0.7869
16 2005 2.894142 14.82477 0.0380 0.130 0.7923
17 2006 2.870854 13.39746 0.0308 0.130 0.7935

original

 Year Popn crimeRate crimeType UnempRate PercentLowInc PercentGrad
1 1990 3292111 4.148524 violent 0.0544 0.125 0.6847
2 1991 3373787 4.167157 violent 0.0720 0.127 0.6974
3 1992 3468802 4.282401 violent 0.0709 0.142 0.7032
...
15 2004 4155170 2.885056 violent 0.0483 0.141 0.7869
16 2005 4196788 2.894142 violent 0.0380 0.130 0.7923
17 2006 4243580 2.870854 violent 0.0308 0.130 0.7935
18 1990 3292111 24.574202 property 0.0544 0.125 0.6847
19 1991 3373787 26.699285 property 0.0720 0.127 0.6974
20 1992 3468802 25.574680 property 0.0709 0.142 0.7032
...
32 2004 4155170 16.223765 property 0.0483 0.141 0.7869
33 2005 4196788 14.824766 property 0.0380 0.130 0.7923
34 2006 4243580 13.397462 property 0.0308 0.130 0.7935

after ‘crime’ reshaping “by hand”

dDat <-
 with(cDat,
 data.frame(Year = Year,
 Popn = Popn,
 crimeRate = c(Vcrime, Pcrime),
 crimeType = rep(c('violent','property'),
 each = nrow(cDat)),
 UnempRate = UnempRate,
 PercentLowInc = PercentLowInc,
 PercentGrad = PercentGrad))

Lowest-tech: Reshape “by hand” as on previous page. R tip:
‘recycling’ rules help you when reshaping data.frames.

Built-in functions stack() and reshape() also do this, but I
find more trouble than they’re worth. JB advises do it “by
hand” or move up to the next level of sophistication

Packages reshape and plyr by Hadley Wickham. A total
solution for reshaping and data aggregation.

See also Chapter
9 of Spector
(2008)!!!!

http://had.co.nz/reshape/
http://had.co.nz/reshape/
http://plyr.had.co.nz/
http://plyr.had.co.nz/
http://www.springerlink.com/content/t19776/?p=ad6463d79e364494b8248078d4fcc8c4&pi=1
http://www.springerlink.com/content/t19776/?p=ad6463d79e364494b8248078d4fcc8c4&pi=1
http://www.springerlink.com/content/t19776/?p=ad6463d79e364494b8248078d4fcc8c4&pi=1
http://www.springerlink.com/content/t19776/?p=ad6463d79e364494b8248078d4fcc8c4&pi=1

