
STAT 545A
Class meeting #4
Monday, September 16, 2013

Dr. Jennifer (Jenny) Bryan

Department of Statistics and Michael Smith Laboratories

Monday, 16 September, 13

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/

any questions from tutorial re: R objects and indexing?

Have a look around the bullet lists for HW 1 and HW 2 and take a
hard look at your links and filenames. Do yours look funny? Don’t wait
for Song or me to alert you. Fix it.

No class this Wed.

HW #3 “Data Aggregation”. Due before class next Monday. Details
coming soon to web. Submission process likely to change

Other stuff to do before next class: learn how to get help and
participate in the discussion about datasets

A few words from Matt G re: anti-aliasing and PNGs and Windows;
see his post on the Google Group and/or his demo on Rpubs.

Monday, 16 September, 13

http://www.stat.ubc.ca/~jenny/STAT545A/block03_basicObjects.html
http://www.stat.ubc.ca/~jenny/STAT545A/block03_basicObjects.html
https://groups.google.com/forum/%23!topic/stat545a_2013/ciS31_NkSSM
https://groups.google.com/forum/%23!topic/stat545a_2013/ciS31_NkSSM
http://rpubs.com/majugi/cairo
http://rpubs.com/majugi/cairo

The R Inferno

Patrick Burns1

30th April 2011

1This document resides in the tutorial section of http://www.burns-stat.com. More
elementary material on R may also be found there. S+ is a registered trademark of
TIBCO Software Inc. The author thanks D. Alighieri for useful comments.

Circle 9

Unhelpfully Seeking Help

Here live the thieves, guarded by the centaur Cacus. The inhabitants are bitten
by lizards and snakes.

There’s a special place for those who—not being content with one of the 8
Circles we’ve already visited—feel compelled to drag the rest of us into hell.

The road to writing a mail message should include at least the following
stops:

9.1 Read the appropriate documentation.

“RTFM” in the jargon. There is a large amount of documentation about R, both
official and contributed, and in various formats. A large amount of documenta-
tion means that it is often nontrivial to find what you are looking for—especially
when frustration is setting in and blood pressure is rising.

Breathe.

There are various searches that you can do. R functions for searching include
help.search, RSiteSearch and apropos.

If you are looking for particular functionality, then check the Task Views
(found on the left-side menu of CRAN).

If you have an error, then look in rather than out—debug the problem.
One way of debugging is to set the error option, and then use the debugger
function:

options(error=dump.frames)
command that causes the error
debugger()

The debugger function then provides a menu of the stack of functions that have
been called at the point of the error. You can inspect the state of the objects
inside these functions, and hopefully understand what the problem is.

115

How to ask a
question to maximize
chance of getting an
answer.

Read about the
9th circle of R hell
in The R Inferno.

Homework reading

Monday, 16 September, 13

http://www.burns-stat.com/documents/books/the-r-inferno/
http://www.burns-stat.com/documents/books/the-r-inferno/

The R Inferno

Patrick Burns1

30th April 2011

1This document resides in the tutorial section of http://www.burns-stat.com. More
elementary material on R may also be found there. S+ is a registered trademark of
TIBCO Software Inc. The author thanks D. Alighieri for useful comments.

Circle 9

Unhelpfully Seeking Help

Here live the thieves, guarded by the centaur Cacus. The inhabitants are bitten
by lizards and snakes.

There’s a special place for those who—not being content with one of the 8
Circles we’ve already visited—feel compelled to drag the rest of us into hell.

The road to writing a mail message should include at least the following
stops:

9.1 Read the appropriate documentation.

“RTFM” in the jargon. There is a large amount of documentation about R, both
official and contributed, and in various formats. A large amount of documenta-
tion means that it is often nontrivial to find what you are looking for—especially
when frustration is setting in and blood pressure is rising.

Breathe.

There are various searches that you can do. R functions for searching include
help.search, RSiteSearch and apropos.

If you are looking for particular functionality, then check the Task Views
(found on the left-side menu of CRAN).

If you have an error, then look in rather than out—debug the problem.
One way of debugging is to set the error option, and then use the debugger
function:

options(error=dump.frames)
command that causes the error
debugger()

The debugger function then provides a menu of the stack of functions that have
been called at the point of the error. You can inspect the state of the objects
inside these functions, and hopefully understand what the problem is.

115

“If someone has the wit and knowledge to
answer your question, they probably have
other things they would like to do. Making
your message clear, concise and user-friendly
gives you the best hope of at least one of
those strangers diverting their attention away
from their life towards your problem.”

Monday, 16 September, 13

How to ask a
question to maximize
chance of getting an
answer.

“How To Ask Questions The Smart Way”
by Eric Raymond and Rick Moen

It's OK to be ignorant; it's not OK to play stupid.

So, while it isn't necessary to already be technically competent to get attention
from us, it is necessary to demonstrate the kind of attitude that leads
to competence: alert, thoughtful, observant, willing to be an
active partner in developing a solution.

The best way to get a rapid and responsive answer is to ask it like a person with
smarts, confidence, and clues who just happens to need help on one particular
problem.

Homework reading

Monday, 16 September, 13

http://www.catb.org/~esr/faqs/smart-questions.html
http://www.catb.org/~esr/faqs/smart-questions.html

R-help (you probably shouldn’t be posting here!) has a good posting guide

... Homework reading

Monday, 16 September, 13

https://stat.ethz.ch/mailman/listinfo/r-help
https://stat.ethz.ch/mailman/listinfo/r-help
http://www.R-project.org/posting-guide.html
http://www.R-project.org/posting-guide.html

The plyr package is what I advise long-term for data
aggregation.

http://plyr.had.co.nz

Monday, 16 September, 13

http://plyr.had.co.nz
http://plyr.had.co.nz

JB found it hard to get started with plyr by reading documentation
for individual functions. You need to get the big picture and then it
will all come into focus. Read this paper!

Hadley Wickham.
The split-apply-combine strategy for data analysis.
Journal of Statistical Software, vol. 40, no. 1, pp. 1–29, 2011.
http://www.jstatsoft.org/v40/i01/paper

JSS Journal of Statistical Software

April 2011, Volume 40, Issue 1. http://www.jstatsoft.org/

The Split-Apply-Combine Strategy for Data
Analysis

Hadley Wickham
Rice University

Abstract

Many data analysis problems involve the application of a split-apply-combine strategy,
where you break up a big problem into manageable pieces, operate on each piece inde-
pendently and then put all the pieces back together. This insight gives rise to a new R

package that allows you to smoothly apply this strategy, without having to worry about
the type of structure in which your data is stored.

The paper includes two case studies showing how these insights make it easier to work
with batting records for veteran baseball players and a large 3d array of spatio-temporal
ozone measurements.

Keywords: R, apply, split, data analysis.

1. Introduction

What do we do when we analyze data? What are common actions and what are common
mistakes? Given the importance of this activity in statistics, there is remarkably little research
on how data analysis happens. This paper attempts to remedy a very small part of that lack by
describing one common data analysis pattern: Split-apply-combine. You see the split-apply-
combine strategy whenever you break up a big problem into manageable pieces, operate on
each piece independently and then put all the pieces back together. This crops up in all stages
of an analysis:

During data preparation, when performing group-wise ranking, standardization, or nor-
malization, or in general when creating new variables that are most easily calculated on
a per-group basis.

When creating summaries for display or analysis, for example, when calculating marginal
means, or conditioning a table of counts by dividing out group sums.

Monday, 16 September, 13

http://www.jstatsoft.org/v40/i01/paper
http://www.jstatsoft.org/v40/i01/paper

split apply combine

Monday, 16 September, 13

Journal of Statistical Software 5

R> models <- dlply(ozonedf, .(lat, long), deseasf_df)

R> deseas <- ldply(models, resid)

dlply takes a data frame and returns a list, and ldply does the opposite: It takes a list and
returns a data frame. Compare this code to the code needed when the data was stored in an
array.

The following section describes the plyr functions in more detail. If your interest has been
whetted by this example, you might want to skip ahead to Section 5.2 to learn more about
this example and see some plots of the data before and after removing the seasonal e↵ects.

3. Usage

Table 2 lists the basic set of plyr functions. Each function is named according to the type of
input it accepts and the type of output it produces: a = array, d = data frame, l = list, and
_ means the output is discarded. The input type determines how the big data structure is
broken apart into small pieces, described in Section 3.1; and the output type determines how
the pieces are joined back together again, described in Section 3.2.

The e↵ects of the input and outputs types are orthogonal, so instead of having to learn all
12 functions individually, it is su�cient to learn the three types of input and the four types
of output. For this reason, we use the notation d*ply for functions with common input, a
complete row of Table 2, and *dply for functions with common output, a column of Table 2.

The functions have either two or three main arguments, depending on the type of input:

a*ply(.data, .margins, .fun, ..., .progress = "none")

d*ply(.data, .variables, .fun, ..., .progress = "none")

l*ply(.data, .fun, ..., .progress = "none")

The first argument is the .data which will be split up, processed and recombined. The second
argument, .variables or .margins, describes how to split up the input into pieces. The third
argument, .fun, is the processing function, and is applied to each piece in turn. All further
arguments are passed on to the processing function. If you omit .fun the individual pieces
will not be modified, but the entire data structure will be converted from one type to another.
The .progress argument controls display of a progress bar, and is described at the end of
Section 4.

Note that all arguments start with “.”. This prevents name clashes with the arguments of
the processing function, and helps to visually delineate arguments that control the repetition

XXXXXXXXXXXInput
Output

Array Data frame List Discarded

Array aaply adply alply a_ply

Data frame daply ddply dlply d_ply

List laply ldply llply l_ply

Table 2: The 12 key functions of plyr. Arrays include matrices and vectors as special cases.

Journal of Statistical Software 5

R> models <- dlply(ozonedf, .(lat, long), deseasf_df)

R> deseas <- ldply(models, resid)

dlply takes a data frame and returns a list, and ldply does the opposite: It takes a list and
returns a data frame. Compare this code to the code needed when the data was stored in an
array.

The following section describes the plyr functions in more detail. If your interest has been
whetted by this example, you might want to skip ahead to Section 5.2 to learn more about
this example and see some plots of the data before and after removing the seasonal e↵ects.

3. Usage

Table 2 lists the basic set of plyr functions. Each function is named according to the type of
input it accepts and the type of output it produces: a = array, d = data frame, l = list, and
_ means the output is discarded. The input type determines how the big data structure is
broken apart into small pieces, described in Section 3.1; and the output type determines how
the pieces are joined back together again, described in Section 3.2.

The e↵ects of the input and outputs types are orthogonal, so instead of having to learn all
12 functions individually, it is su�cient to learn the three types of input and the four types
of output. For this reason, we use the notation d*ply for functions with common input, a
complete row of Table 2, and *dply for functions with common output, a column of Table 2.

The functions have either two or three main arguments, depending on the type of input:

a*ply(.data, .margins, .fun, ..., .progress = "none")

d*ply(.data, .variables, .fun, ..., .progress = "none")

l*ply(.data, .fun, ..., .progress = "none")

The first argument is the .data which will be split up, processed and recombined. The second
argument, .variables or .margins, describes how to split up the input into pieces. The third
argument, .fun, is the processing function, and is applied to each piece in turn. All further
arguments are passed on to the processing function. If you omit .fun the individual pieces
will not be modified, but the entire data structure will be converted from one type to another.
The .progress argument controls display of a progress bar, and is described at the end of
Section 4.

Note that all arguments start with “.”. This prevents name clashes with the arguments of
the processing function, and helps to visually delineate arguments that control the repetition

XXXXXXXXXXXInput
Output

Array Data frame List Discarded

Array aaply adply alply a_ply

Data frame daply ddply dlply d_ply

List laply ldply llply l_ply

Table 2: The 12 key functions of plyr. Arrays include matrices and vectors as special cases.

Monday, 16 September, 13

we spent the rest of class time going through
this tutorial:

http://www.stat.ubc.ca/~jenny/STAT545A/block04_dataAggregation.html

Monday, 16 September, 13

http://www.stat.ubc.ca/~jenny/STAT545A/block04_dataAggregation.html
http://www.stat.ubc.ca/~jenny/STAT545A/block04_dataAggregation.html

