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for Change Point Problems
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The U -statistic based modified information criterion (MIC) is proposed and applied
to detect the change point in a sequence of independent random variables. In this
article, we show that the method is consistent in selecting the correct model, and the
resulting test statistic has a simple limiting distribution. We investigate the method
based on both symmetric and anti-symmetric kernel functions. The simulation results
indicate that the new method has better power in detecting the changes compared
to other methods, such as the likelihood based MIC (Chen et al., 2006) and the
Bayesian information criterion of Schwarz (BIC, Schwarz, 1978).

Keywords Change point; Consistency; Limiting distribution; Model complexity;
Nonparametric model; U -statistic.

Mathematics Subject Classification 62G10; 62G20.

1. Introduction

In applications such as in quality control, we are often interested in knowing
whether a sequence of observations x1� x2� � � � � xn can be modeled as a random
sample from a single distribution f�x�, or it should be divided into two subsequences
x1� x2� � � � � xk and xk+1� � � � � xn with some k such that they can be viewed as two
random samples, one is from f1�x� and the other is from f2�x�. When the f�x�� f1�x�,
and f2�x� are chosen from a parametric family, we make parametric inference on
change point detection. The change point problem has been given considerable
attention over the years; see Page (1954, 1955), Hinkley (1971), Picard (1985), Zacks
(1983), Inclán and Tiao (1994), Kim et al. (2000) and Lee and Park (2001).

Due to their simplicity, the parametric methods are often more efficient.
In general, their effectiveness relies on correctly specifying the parametric
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2 Pan and Chen

distribution of the population. When we do not have sufficient knowledge about
the physical background of the sample, we may not be able to propose a
defensible parametric model. In addition, some parametric methods can have poor
behavior when the true distribution of the sample differs from the assumed model.
For example, if the f�x�, f1�x�, and f2�x� are assumed to be normal distributions
but the data are from some stable distribution with a small index of stability,
we may end up detecting a change point due to the random occurrence of some
unusually large observations. To avoid this problem, nonparametric methods are
often considered. Nonparametric methods can also be useful when we are only
interested in detecting changes in some aspects of the underlying distribution, for
instance, whether the sequence of the observations has gone through a location shift
or a scale change. A U -statistic can be constructed to reflect the change in these
specific aspects.

In general, a U -statistic is the average of a simple m-variate function over
every possible subset of m observations from a sample of n observations. Many
commonly used statistics such as sample mean and sample variance are U -statistics.
Two U -statistics can be defined based on two sub-samples, one consists of x1� � � � � xk
and the other xk+1� � � � � xn. Their difference after proper scaling reflects a possible
change in the designated aspect. Since a statistic is defined for each k, a stochastic
process indexed by k is the result.

Csörgö and Horváth (1988) first applied the U -statistic to change point
problems. Gombay and Horváth (1995), Gombay (2000, 2001), and others studied
the large sample behaviors of the process and the change point estimator. Under the
null model, the process converges to a Gaussian process after proper normalization.
We can hence test the existence of a change point based on the maximum of
the process with its critical value determined by the percentile of the supremum
of the limiting Gaussian process. However, the computation of the percentiles for
the supremum of the Gaussian process is usually not easy. See more details in
Csörgö and Horváth (1997). In this article, we propose and investigate the use of an
MIC principle (Chen et al., 2006) to U -statistic approach. We show that the statistic
of the new method has a simple limiting distribution so that its asymptotic critical
values can be easily computed.

The article is organized as follows. In Sec. 2, we give a brief review about
the modified information criterion in Chen et al. (2006). In Sec. 3, we introduce
U -statistics based MIC for both symmetric and anti-symmetric kernels and obtain
the null limiting distributions of the corresponding statistics when there exist no
change points in the sequence. We conduct simulation studies in Sec. 4, and the
new method is compared to several existing methods and found to have good finite
sample properties. For the convenience of presentation, the proofs of main results
are deferred to the Appendix.

2. Modified Information Criterion

When the null hypothesis of no-change is rejected, a more complex model with
two distributions f1�x� and f2�x� plus the location of change, k, is preferred than a
simple model f�x�. The change point problem may hence be regarded as a special
case of the model selection problem (Csörgö and Horváth, 1997). In the context of
model selection, Akaike information criterion and Bayesian information criterion
are routinely used; see Konishi and Kitagawa (1996), Volinsky and Raftery (2000),
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U -Statistic Change Point Problems 3

Bogdan et al. (2004), and Bengtsson and Cavanaugh (2006). Since the change point
models are nonregular, these criteria are no-longer optimal and lose some useful
properties. Chen et al. (2006) refined the notion of model complexity in change point
models, and proposed the modified information criterion. We briefly review this
concept in this section. Its application to nonparametric method will be presented
in the next section.

Suppose we have a sequence of independent observations X1� � � � � Xn. It is
suspected that Xi has density function f�x� �1� for i ≤ � and density f�x� �2� for
i > �, and f�x� �1� and f�x� �2� belong to the same parametric distribution family
�f�x� ��� � ∈ 	
 with 	 ⊂ �d. The problem is to test whether this change has indeed
occurred and if so, find the location of the change k. Hence, the null hypothesis is:

H0 � Xi ∼ f�x� ��� � = �1 = �2� for 1 ≤ i ≤ n

and the alternative is:

H1 � Xi ∼ f�x� �1� for i ≤ k and Xi ∼ f�x� �2� for i ≥ k�

�1 �= �2 and 1 ≤ k < n�

For regular parametric (not change point) models with log likelihood function
�n���, the Bayesian information criterion (Schwarz, 1978) is defined as:

BIC = −2�n��̂�+ d log�n��

where �̂ is the maximum point of �n���, and d is the dimension of parameter �.
The best model according to this criterion is the one which minimizes BIC.

The log likelihood function for the change point problem has the form:

�n��1� �2� k� =
k∑

i=1

log f�Xi� �1�+
n∑

i=k+1

log f�Xi� �2��

The Bayesian information criterion for the change point problem becomes

BIC�k� = −2�n��̂1k� �̂2k� k�+ 
2d + 1� log�n�

where �̂1k, �̂2k maximize �n��1� �2� k� for given k.
Chen et al. (2006) suggested that the model is the least complex when the change

point � is located in the middle of the sequence because both parameters �1 and
�2 are effective in this case. The model is particularly unappealing when � is near
1 or n but does not equal one of them. When this happens, an additional set of
parameters is introduced just for a small proportion of observations. Hence, the
model complexity is increased when � moves away from the middle of the sequence.
Based on this consideration, the modified information criterion was proposed as, for
1 ≤ k < n:

MIC�k� = −2�n��̂1k� �̂2k� k�+
[
2d +

(
2k
n

− 1
)2]

log�n�� (1)

Under the null model, they defined:

MIC�n� = −2�n��̂� �̂� n�+ d log�n��
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4 Pan and Chen

where �̂ maximizes �n��� �� n� or �n���. If MIC�n� > min1≤k<n MIC�k�, the model
with a change point is selected and the change point is estimated by �̂ such that:

MIC��̂� = min
1≤k<n

MIC�k��

The penalty term in (1) can be motivated as follows. If the change point is at k,
the variance of �̂1k would be proportional to k−1 and the variance of �̂2k would be
proportional to �n− k�−1. Thus, the total variance is proportional to:

1
k
+ 1

n− k
= 4n−1

[
1−

(
2k
n

− 1
)2]−1

�

The specific form in (1) reflects this important fact. Thus, a larger elevation in
the U -statistic is needed to justify a change when k is near 1 or n. This notion is
shared by many researchers. The method in Inclán and Tiao (1994) scales down the
statistics heavier when the suspected change point is near 1 or n. The U -statistic
method in Gombay and Horváth (1995) is scaled down by multiplying the factor
k�n− k�.

Let

Sn = MIC�n�− min
1≤k<n

MIC�k�+ d log n�

then Sn → �2�d� in distribution under null hypothesis, and Sn → � in probability
under alternative when there exists one change point in the sequence; see Theorem 1
in Chen et al. (2006). The inference based on Sn will be called the likelihood based
MIC in this article.

3. U -Statistic Based MIC Method

We now introduce a U -statistic based nonparametric MIC method. Without specific
parametric models, the null hypothesis becomes

H0 � X1� � � � � Xn i.i.d. ∼ F�x�

and the alternative hypothesis is:

H1 � X1� � � � � X� i.i.d. ∼ F�x�� X�+1� � � � � Xn i.i.d. ∼ G�x�

and F�x� �= G�x� for some x�

The distribution functions F , G, and the change point � are unknown.
We assume � = 
n�� for some � with 0 < � < 1 under the alternative, where 
x� is
the largest integer no larger than x.

Let h � �2 → � be a Borel measurable function. A U -statistic with order 2
based on n independent observations X1� � � � � Xn is defined as:

Un�X� =
(
n
2

)−1 ∑
1≤i<j≤n

h�Xi� Xj��
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U -Statistic Change Point Problems 5

A U -statistic of order m replaces h by a m-variate function, and the summation is
taken over all subsets of size m.

As usual in the theory of U -statistics, we investigate the change point problems
based on both cases of symmetric kernels:

h�y� x� = h�x� y�� −� < x� y < ��

and anti-symmetric kernels

h�y� x� = −h�x� y�� −� < x� y < �

in this section.

3.1. Symmetric Kernel Case

Let h be a symmetric kernel function. Define �1 = EFh�X1� X2� and
�2 = EGh�X1� X2�, which are the expected values of h�X1� X2� under the distributions
F�x� and G�x�, respectively. When using U -statistics based on the kernel function
h, we give up the possibility of detecting all changes in from F to G, but detecting
the change in the expected value of h�X1� X2�. The expected value of h�x� y� could
be mean, variance of the distribution or whatever. Hence, we need to decide what
change we want to detect in the distribution and then select an appropriate kernel.

To apply U -statistic method to change point problems, we define:

�̂1�k� =
(
k
2

)−1 ∑
1≤i<j≤k

h�Xi� Xj� and �̂2�k� =
(
n− k
2

)−1 ∑
k<i<j≤n

h�Xi� Xj�� (2)

These estimators are unbiased estimators of �1 and �2 based on the first k and the
remaining n− k observations if the change point is located at k for k = 2� � � � � n− 2.
For convenience, we define both �̂1�k� = 0 and �̂2�k� = 0 for k = 1� n− 1 and n.

It is now very natural to examine the size of the difference between �̂1�k� and
�̂2�k�. For each k, 	�̂1�k�− �̂2�k�	 compares the means of h based on the first k
and the last n− k observations. When the difference is large for some k, there are
some evidences to reject the null model in favor of the alternative model. However,
the evidences are not of the same importance for different choices of k. Thus, it is
important to assign a proper weight for each k. One obvious choice is related to the
variance of �̂1�k�− �̂2�k�, which can be written as:

Var
�̂1�k�− �̂2�k�� =
4n�2

k�n− k�
+ O

[
1
k2

+ 1
�n− k�2

]

under H0. Thus, we define

V �1�
n �k� = (

4n�̂2
k1

)−1
k�n− k�
�̂1�k�− �̂2�k��

2� (3)

where �̂2
k1 is an estimator of �2 = Var�E
h�X1� X2�	X2�
 which is defined by:

�̂2
k1 =

1
n

{ k∑
j=1


hk1�Xj�− �̂1�k��
2 +

n∑
j=k+1


hk2�Xj�− �̂2�k��
2

}
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6 Pan and Chen

for each k, where for j = 1� � � � � k:

hk1�Xj� =




1
k− 1

∑
1≤i≤k� i �=j

h�Xj� Xi�� if k = 2� � � � � n

0� if k = 1
(4)

and for j = k+ 1� � � � � n,

hk2�Xj� =




1
n− k− 1

∑
k<i≤n� i �=j

h�Xj� Xi�� if k = 1� � � � � n− 2

0� if k = n− 1 and n

� (5)

The following proposition indicates that �̂2
k1 is a consistent estimator of �2 under

the null hypothesis H0, and still has some nice properties under the alternative
hypothesis H1. If h̃�t� = Eh�X1� t�, then �2 = Var
h̃�X1��.

Proposition 3.1. (1) Assume that Eh2�X1� X2� < �, �2 > 0 and Eh̃4�X1� < �. Then
we have, under the null hypothesis H0, as n → �:

max
1≤k≤n

	�̂2
k1 − �2	 = op�1��

(2) Let �2
1 = Var
h̃1�X1�� and �2

2 = Var
h̃2�X�+1�� with h̃1�t� = Eh�X1� t� and
h̃2�t� = Eh�X�+1� t�. Assume that there exists a change point at � = 
n�� with 0 < � < 1.
Then, as n → �:

�̂2
k1 → ��2

1 + �1− ���2
2 =̂ �2

0

in probability uniformly for all k such that 	k− �	 ≤ n�log n�−1.

We now take the main idea for the modified information criterion in Chen et al.
(2006) into consideration, we finally define the test statistic as:

U�1�
n = max

1≤k<n

{
V �1�
n �k�−

(
2k

n− 1

)2

log n
}
�

When the alternative model is favored, the location of the change point can be
estimated as follows. Let

U�1�
n �k� = V �1�

n �k�−
(
2k
n

− 1
)2

log n

and define �̂ as the value of k such that:

U�1�
n ��̂� = max

1≤k<n
U�1�

n �k�� (6)

Compared to the parametric inference in Chen et al. (2006), the role of V �1�
n �k� is

similar to that of �n��̂1k� �̂2k� k�− �n��̂� �̂� n�, and the role of U�1�
n is similar to that

of Sn, accordingly.
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U -Statistic Change Point Problems 7

One significant advantage of using the MIC is its simpler large sample behavior
(see Chen et al., 2006). The key difference between MIC and other information
criteria such as Akaike Information Criterion (AIC; Akaike, 1973) and Bayesian
information criterion (BIC; Schwarz, 1978) is that the test statistic based on the MIC
has a simple chi-square limiting distribution. This is particularly appealing when
designing a test with correct asymptotic significance level. At the same time, the
MIC based procedures have higher or comparable powers to many other methods
(see Chen et al., 2006). The hypothetical change point is forced to the middle of the
sequence by the MIC which does not really matter when �1 is the same as �2 (under
H0). Ideally, the estimated location of the change point is close to the true value,
rather than being pushed to the middle of the sequence under the alternative model.

Theorem 3.1.

(1) Assume that the null hypothesis H0 is true, and E	h�X1� X2�	4 < � and �2 > 0 are
satisfied. Then, as n → �:

U�1�
n → �21

in distribution.
(2) Assume that the alternative hypothesis H1 is true and the change point � = 
n�� with

� ∈ �0� 1�. Then:

U�1�
n → �

in probability.

From Theorem 3.1, we conclude that the method based on test statistic U�1�
n

is consistent in the sense that we will choose the model with a change point with
probability approaching 1 when there exists indeed one change point at � such that
�/n → � ∈ �0� 1�.

The proofs of Proposition 3.1 and Theorem 3.1 will be presented in Appendix.

3.2. Anti-Symmetric Kernel Case

For any anti-symmetric kernel h, it is obvious that Eh�X1� X�+1� = 0 under the null
hypothesis. We assume that:

� = Eh�X1� X�+1� �= 0 (7)

under the alternative H1, and

Eh2�Xi� Xj� < � for all i < j (8)

and

�2 = Var�h̃�X�+1�
 > 0� (9)
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8 Pan and Chen

where h̃�t� = Eh�t� X1� is the projection. Condition (8) implies that � < �. We will
rely on the following generalized U -statistic for the kernel h�x� y� to detect the
change in the sequence X1� � � � � Xn. Let

Zk =
∑

1≤i≤k

∑
k<j≤n

h�Xi� Xj�� for 1 ≤ k ≤ n− 1�

and Zk = 0 if k= n. Since EZk = 0 under the null hypothesis H0 and EZk = k�n− k�
� �= 0 if k is the true change point, it is natural to examine the size of Zk. We will
have evidence to reject the null hypothesis H0 in favor of the alternative hypothesis
H1 if 	Zk	 is significantly large for some k. Also, we will assign a proper weight for
each k when considering the size of Zk. Obviously, it is reasonable to assume that
the weight is inversely proportional to the approximate standard deviation of Zk

under the null hypothesis H0. Notice that:

Var�Zk� = EZ2
k = nk�n− k��2 + O
k�n− k��

under H0. Similarly, we adopt the idea of MIC in Chen et al. (2006). Denote

�̂2
k2 =

1
n

{ k∑
j=1


hk1�Xj��
2 +

n∑
j=k+1


hk2�Xj��
2

}
�

where hk1�Xj� and hk2�Xj� are defined in (4) and (5), and

V �2�
n �k� = Z2

k

�̂2
k2nk�n− k�

�

U �2�
n �k� = V �2�

n �k�−
(

2k
n− 1

)2

log n�

then we define

U�2�
n = max

1≤k<n
U�2�

n �k�

as the test statistic.
As in symmetric kernel case, V �2�

n �k� plays a similar role to �n��̂1k� �̂2k� k�−
�n��̂� �̂� n�, and the role of U�2�

n is similar to Sn compared to the parametric inference
in Chen et al. (2006).

Proposition 3.2. (1) Assume that (7)–(9) hold and Eh̃4�X1� < �, then we have under
the null hypothesis H0, as n → �,

max
1≤k≤n

∣∣�̂2
k2 − �2

∣∣ = op�1��

(2) Let �2
1 = Var
h̃1�X1�� and �2

2 = Var
h̃2�X�+1�� with h̃1�t� = Eh�X1� t� and
h̃2�t� = Eh�X�+1� t�. Under the alternative H1 there exists a change point at � = 
n��
with 0 < � < 1, then we have as n → �:

�̂2
k2 → ��2

1 + �1− ���2
2 =̂ �2

0

in probability uniformly for all k such that 	k− �	 ≤ n�log n�−1.
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U -Statistic Change Point Problems 9

If the null hypothesis H0 is rejected, we define �̂, the estimator of change point
�, as the value of k such that:

U�2�
n ��̂� = max

1≤k<n
U�2�

n �k�� (10)

Theorem 3.2.

(1) Assume that (7)–(9) hold, and:

E	h�X1� X2�	4 < �

and

E
{
h̃2�X1� log log
	h̃�X1�	 + 1�

}
< ��

Then, we have, as n → �:

U�2�
n → �21

in distribution under the null hypothesis H0.
(2) If there is a change at � such that �

n
→ � ∈ �0� 1�, as n → �, then

U�2�
n → �

in probability.

Theorem 3.2 implies that the test based on statistic U�2�
n is consistent. We will

also prove Proposition 3.2 and Theorem 3.2 in Appendix.

3.3. Examples of Kernel Functions

It is certain that the choice of the kernels in the proposed method plays a crucial
role. We now take a moment to examine possibilities to detect changes in some
aspects of underlying distribution by choosing a specific kernel h�x� y�.

• Symmetric Kernels:

1. Let h�x� y� = x + y. It follows that � = 2EX and �2 = Var�X�. This kernel
can be used to detect the change in the mean.

2. To detect a change in variance, we could choose h�x� y� = �x − y�2.
It follows that � = 2Var�X� and �2 = E�X − EX�4 − �Var�X��2. The
statistic V �1�

n �k� is essentially the difference between two sample variances.
3. Gini’s mean difference: Let h�x� y� = 	x − y	, then � = E	X1 − X2	 and

�2 = Eh̃2�X1�− �2 with h̃�t� = E	X1 − t	. This kernel can be used to detect
the change in the average difference. It might be a more robust procedure
in determining the change in scale than using the kernel �x − y�2.

• Anti-symmetric Kernels:

1. To detect a change in mean, define h�x� y� = x − y. It follows that
� = EX1 − EX�+1 and �2 = Var�X1�. The V �2�

n �k� is essentially constructed
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by the difference between two sample means based on the first k
observations and the last n− k observations.

2. Let h�x� y� = sgn�x − y�. It follows that � = P�X1 > X�+1�− P�X1 < X�+1�
and �2 = 4Var�F�X1�� = 1

3 . Hence, it can used to detect the change in the
probability whether the random variables have the tendency to increase or
decrease.

3. Let h�x� y� = xm − ym, where m is any an integer. It follows that
� = EXm

1 − EXm
�+1 and �2 = Var�Xm

1 �. We can use this kernel to detect the
change in the mth moment.

We do not have a single rule that fits all situations in general to select a
kernel function in applications. The problem of choosing an appropriate kernel for
detecting changes in moment is simple. If the robustness is of concern, h�x� y� =
sgn�x − y� can be a good choice for location change. We may let h�x� y� = sgn�x −
y�min�	x − y	�M
 with a large constant M to better compromise between the
efficiency and robustness. In general, the applicant must choose a kernel function in
conjunction with his or her scientific objection.

In the following simulation study, we choose h�x� y� = x − y and x2 − y2 to
detect the change in the mean or change in the second moment, respectively.

4. Simulation Study

In this section, we use simulation to investigate finite sample properties and assess
the performance of the U -statistic based MIC method. Firstly, we conduct a
simulation to compare the estimators of change point and then the powers of this
method to others, such as the likelihood based MIC, BIC, and the (unmodified)
U -statistic methods.

Both simulation experiments were done by generating data from following five
models:

• Model 1: Normal model with a change 0�5 in the mean;
• Model 2: Normal model with a change of factor 2 in the variance;
• Model 3: Exponential model with a change of factor

√
2 in the mean;

• Model 4: Normal model with a change 0�5 in the mean, and a change of
factor 2 in the variance;

• Model 5: Gamma model with a change
√
2− 1 in the mean, and a change of

factor 2 in the variance.

These models are denoted as M1–M5 in Tables 1–4. The sample sizes are T1–

T4chosen to be n = 60, n = 100, and n = 200. Under the alternative hypothesis, the
change points are placed at 10%n, 15%n, 20%n, 25%n, and 50%n in the sequence,
respectively. As discussed in Sec. 3.3, we choose the kernel function h�x� y� = x − y
for the first, third, and fifth models, and h�x� y� = x2 − y2 for the second and fourth
models. Both h�x� y� = x − y and h�x� y� = x2 − y2 seem appropriate for Model 5
if the shape parameter of the model is fixed. Because

∑
Xi is a complete sufficient

statistic in this case, the choice of h�x� y� = x − y is most efficient. This is confirmed
by our unreported simulation that the choice of h�x� y� = x2 − y2 is less efficient.

The nominal levels � are chosen to be 0�05 and 0�10. The simulation is repeated
5,000 times for each combination of the sample size, location of change, nominal
level, and model.
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14.5

22.3
29.9

35.9
53.0

28.6
45.5

58.0
69.4

85.3
B
IC

12.2
17.6

21.2
24.3

31.7
17.3

24.5
31.5

36.5
46.3

33.6
46.5

56.8
65.9

79.0
U

M
IC

16.8
21.4

25.8
26.7

31.8
22.5

28.7
35.3

39.5
47.7

38.3
53.1

62.1
70.7

84.1
U

18.6
22.9

26.7
25.9

25.9
25.4

31.1
35.6

37.3
38.9

41.2
53.4

59.8
66.4

73.1
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The corresponding results for the U -statistic based MIC, U -statistic, likelihood-
based MIC and BIC methods in percentages are placed in the columns of UMIC , U,
MIC, and BIC in Tables 1–4.

4.1. Comparison of Estimator of Change Point

The modified information criterion is expected to have better efficiency at estimating
the change point � than other methods if it is close to the middle of the sequence.
It is important to investigation its efficiency when � is at the beginning or end of the
sequence.

We calculated the corresponding proportions of 	�̂− �	 ≤ n� in 5,000 repetitions
for a number of choices of �, denoted as P̂�	�̂− �	 < n��. We present the results for
� = 50%� 25%, and 15% in Tables 1–3. We use �̂UM

� �̂MIC� �̂BIC , and �̂U for estimators
based on modified U, MIC, BIC, and unmodified U methods, respectively. From
these results, we conclude that:

1. The probability P�	�̂− �	 ≤ n�
 increases as n increases in all cases;
2. when � = 50%n, we have in all models

P̂�	�̂UM
− �	 ≤ n�
 and P̂�	�̂MIC − �	 ≤ n�


≥ P̂�	�̂BIC − �	 ≤ n�
 and P̂�	�̂U − �	 ≤ n�
� (11)

That is, the modified U and the MIC are more efficient estimators compared to
the unmodified U and the BIC in almost all cases.

3. When � = 25%n, Eq. (11) is true, or there is no difference among the four
methods in model 1. That is, the modified U and the MIC are more efficient or
comparable estimators to other two methods in Model 1. However, in Models
2–5, we find:

P̂�	�̂UM
− �	 ≤ n�
 ≈ P̂�	�̂U − �	 ≤ n�


≥ P̂�	�̂MIC − �	 ≤ n�
 ≈ P̂�	�̂BIC − �	 ≤ n�
� (12)

That is, the modified and unmodified U estimators are more efficient.
4. When � = 15%n, the outcomes are mixed. The unmodified U seems to out

perform, and the modified U is comparable to other methods in Models 2–5.

4.2. Power Comparison

Under the same simulation setup described above, the powers are calculated for
each method. However, we only present the results for nominal level 0�05 in Table 4.

The results in Table 4 provide some additional information on the methods
considered. First, all methods seem to be consistent, and their powers increase
significantly as the sample size increases. Second, all methods have better powers
in detecting the change when the change point is located around the middle of
the sequence. Third, the performance comparison between the U -statistic based
MIC and the likelihood based MIC is not always in favor of the likelihood based
MIC (see Models 4 and 5 in Table 1) even though it is often so as expected. In
detail, the U -statistic based MIC has better powers compared to the likelihood
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based MIC when the change appears early or late in the sequence. When the
change is located in the middle of the sequence, the likelihood based MIC has
marginally better or comparable powers. Finally, the U -statistic based MIC has
comparable powers for change appearing early or late, and has significant better
powers for change appearing around the middle compared to U -statistic. It is
similar when comparing the likelihood-based MIC to BIC method. This is expected
because the main difference between the MIC and other traditional information
criteria is the preference of the MIC for the model with change located in the
middle of the sequence. We also notice that the U -statistics based MIC method has
consistently better powers compared to BIC method in all cases in Models 3, 4, and
5 and most of the cases in Models 1 and 2.

We conclude that the U -statistic based MIC method is comparable to or
sometimes better than the likelihood-based MIC and U -statistic methods when some
suitable kernels are identified, and better than the BIC method in most of the cases.
Hence, we suggest using the U -statistic based MIC rather than the likelihood-based
MIC, the BIC, and the (unmodified) U -statistic methods when we do not have
sufficient knowledge about the physical background of the sample.

Appendix: Proofs of the Main Results

A.1 Existing Results

One commonly used approach in large sample theory is to link the statistic under
investigation to a summation of independent random variables. In the literature of
U -statistics, it is known as the projection method.

Let h be a symmetric kernel function of order 2 (the general result is
also true) and X1� � � � � Xn be an iid sample. Assume that E
h�X1� X2��

2 < � and
Eh�X1� X2�= 0. Define

Tn =
∑

1≤i<j≤n

h�Xi� Xj�

and the projection of h�X1� X2� in the �-algebra of X1 as:

h̃�X1� = E
h�X1� X2� 	X1��

Let

Pn =
∑

1≤i<j≤n


h̃�Xi�+ h̃�Xj�� = �n− 1�
n∑

i=1

h̃�Xi��

Note that Pn is a summation of independent random variables, which is regarded as
a projection of Tn.

It turns out that the difference between Pn and Tn is not large compared to
the values of Pn or Tn as n → �. More precisely, we have the following theorem
by Hall (1979).

Lemma A.1. With the notation and assumptions stated in the Appendix, we have:

max
1<k≤n

	Tk − Pk	 = Op�n��
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Based on this result, it becomes possible for us to study the property of
the U -statistics through that of sum of independent random variables. The next
result from Gombay and Horváth (1995) further approximates a U -statistic based
stochastic process with a well-known Brownian bridge.

For each given k, let �̂1�k� and �̂2�k� be defined as in (2). Define, as in Gombay
and Horváth (1995), for 2

n+1 ≤ t ≤ n−2
n+1 :

Qn�t� =
n1/2

2�
t�1− t�

{
�̂1�
�n+ 1�t��− �̂2�
�n+ 1�t��

}
� (13)

and Qn�t� = 0, otherwise. We have the following result from Gombay and Horváth
(1995).

Lemma A.2. Assume that E	h�X1� X2�	� < � for some � > 2 and �2 = Var
h̃�X�� > 0.
Then there exists a sequence of Brownian bridges �Bn�t�� 0 ≤ t ≤ 1
 such that:

sup
1

n+1≤t≤ n
n+1

	Qn�t�− Bn�t�	

t�1− t��1/2−�

= Op�n
−��

for all 0 ≤ � < 1
2 − 1

�
.

Obviously, we have

sup
c1≤t≤c2

	Qn�t�− Bn�t�	 = Op�n
−�� (14)

and

sup
1
n≤t≤ n−1

n

	Qn�t�− Bn�t�	

t�1− t��1/2

= Op�1�� (15)

where 0 < c1 ≤ c2 < 1 are two constants. The results enable us to assess the order
of V �1�

n �k� defined in (3) conveniently with the help of the next result which is from
Csörgö and Révész (1981).

Lemma A.3. Let �n be a decreasing sequence of numbers such that �n → 0. Then, for
all real y:

lim
n→�P

{
sup

�n<t<1−�n

B�t�√
t�1− t�

≤ a

(
y� 2 log

1− �n
�n

)}
= exp�−e−y��

lim
n→�P

{
sup

�n<t<1−�n

	B�t�	√
t�1− t�

≤ a

(
y� 2 log

1− �n
�n

)}
= exp�−2e−y��

where �B�t�� 0 ≤ t ≤ 1
 is a sequence of Brownian bridges, and

a�y� T� =
(
y + 2 log T + 1

2
log log T − 1

2
log �

)
�2 log T�−1/2�
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By taking �n = 1
n+1 , we will be able to show that:

sup
1
n≤t≤ n−1

n

	B�t�	√
t�1− t�

= Op
�log log n�
1/2�� (16)

This with the following classical result from Darling and Erdös (1956) are very
handy in our future proof.

Lemma A.4. Let X1� � � � � Xn be independent random variables with mean 0 and
variance 1, and a uniformly bounded third absolute moment. Put Rn =

∑n
i=1 Xi and let

Un = max
1≤k≤n

Rk√
k
�

Then:

lim
n→�P�Un < b�y� log n�
 = exp�−e−y/2�1/2��

for any −� < y < �, where

b�y� T� = �2 log T�1/2 + log log T
2�2 log T�1/2

+ y

�2 log T�1/2
�

By taking y = log log n, we have:

max
1≤k≤n

Rk√
k
= Op
�log log n�

1/2� (17)

which will be used to prove the consistency of �̂2
k1.

In the following lemmas, we assume that h is an anti-symmetric kernel.
Theorem 3.2 can be proved with the help of the following Lemmas A.5–A.7 from
Csörgö and Horváth (1997). Lemma A.5 implies that the penalty is a prominent term
in U�2�

n if the null model is true, which is the key to prove the limiting distribution
of test statistic.

Lemma A.5. Under the null hypothesis H0, assume that (8) and (9) hold, and

E
{
h̃2�X1� log log
	h̃�X1� 	 + 1�

}
< ��

then we have:

lim
n→�P

{
A�log n� max

1≤k<n

Zk

�
√
nk�n− k+ 1�

≤ y +D�log n�
}
= exp�−e−y�

and

lim
n→�P

{
A�log n� max

1≤k<n

	Zk	
�
√
nk�n− k+ 1�

≤ y +D�log n�
}
= exp�−2e−y�
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for all real y, where

A�x� = √
2 log x

and

D�x� = 2 log x + 1
2
log log x − 1

2
log ��

By taking y = log log log n, Lemma A.5 implies that:

max
1≤k≤n−1

	Zk	√
nk�n− k�

= Op
�log log n�
1/2�� (18)

Lemma A.6. Under the conditions of Lemma A.5, there exists a sequence of Brownian
bridges �Bn�t�� 0 ≤ t ≤ 1
 such that:

sup
0<t<1

∣∣∣∣Z
�n+1�t�

�n3/2
− Bn�t�

∣∣∣∣ = op�1��

Lemma A.7. Assume that (7)–(8) hold, then we have under the alternative hypothesis
H1 there exists one change point at � = 
n��,

1
n2

Z� → ��1− ���

in probability.

A.2 The Consistency of �̂2
k1 and �̂2

k2

In this subsection, we present the proofs for the consistency of �̂2
k1 and �̂2

k2

(Propositions 3.1 and 3.2) with the help of Lemmas in Sec. A.1.

The Proof of Proposition 3�1.

Part 1. To show that

max
1≤k≤n

	�̂2
k1 − �2	 = op�1� (19)

under the null hypothesis H0. Let

I1�k� =
k∑

j=1


hk1�Xj�− �̂1�k��
2� I2�k� =

n∑
j=k+1


hk2�Xj�− �̂2�k��
2�

then, �̂2
k1 = 1

n

I1�k�+ I2�k���

It is obvious that

max
2≤k≤n−2

	�̂2
k1 − �2	 = op�1� (20)
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implies (19). We now prove (20) by considering k ≤ √
n�log n�−1 and

k >
√
n�log n�−1, separately. Note that:

I1�k� =
k∑

j=1

{
1

k− 1

∑
1≤i≤k�i �=j


h�Xi� Xj�− �1�

}2

− k
�̂1�k�− �1�
2�

By Kolmogorov Maximal Inequality, we have:

max
k≤√

n�log n�−1

∣∣∣∣ k∑
i=1


h̃�Xi�− �1�

∣∣∣∣ = Op
n
1/4�log n�−1/2�� (21)

Also, it is obvious that k
�̂1�k�− �1�
2 is Op�1� if k is finite. Hence, we assume that k

is large enough, then we have by Lemma A.1 and Eq. (21):

max
k≤√

n�log n�−1
�k
�̂1�k�− �1�

2


≤ max
k≤√

n�log n�−1

C

�k− 1�3

{ ∑
1≤i<j≤k


h�Xi� Xj�− �1�

}2

≤ max
k≤√

n�log n�−1

C

�k− 1�3

{
�k− 1�

k∑
i=1


h̃�Xi�− �1�+ Op

√
n�log n�−1�

}2

≤ 2C max
k≤√

n�log n�−1

{ k∑
i=1


h̃�Xi�− �1�

}2

+ Op
n�log n�
−2�

= Op
n�log n�
−2�� (22)

For j = 1� � � � � k, denote that

Wjk =
1

k− 1

∑
1≤i≤k�i �=j

�
h�Xi� Xj�− �1�− 
h̃�Xj�− �1�
�

Then from (22), we have uniformly for k ≤ √
n�log n�−1:

	I1�k�− k�2	 ≤
∣∣∣∣ k∑
j=1

{
Wjk + 
h̃�Xj�− �1�

}2

− k�2

∣∣∣∣+ Op
n�log n�
−2�

≤
∣∣∣∣ k∑
j=1

�
h̃�Xj�− �1�
2 − �2


∣∣∣∣+ k∑
j=1

W 2
jk

+ 2

∣∣∣∣ k∑
j=1

Wjk
h̃�Xj�− �1�

∣∣∣∣+ Op
n�log n�
−2�

≤ 2
k∑

j=1

W 2
jk + Op
n�log n�

−2�� (23)
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the last equality is due to, for k ≤ √
n�log n�−1,

2

∣∣∣∣ k∑
j=1

Wjk
h̃�Xj�− �1�

∣∣∣∣ ≤ k∑
j=1

W 2
jk +

k∑
j=1


h̃�Xj�− �1�
2

=
k∑

j=1

W 2
jk + Op


√
n�log n�−1��

We now claim that:

max
k≤√

n�log n�−1

k∑
j=1

W 2
jk = Op
n�log n�

−1�� (24)

Since �h�Xi� Xj�� i = 1� � � � � k� i �= j
 are conditionally independent given Xj and
EW 4

jk < �, we have by Kolmogorov inequality:

P

{
max

k≤√
n�log n�−1

k∑
j=1

W 2
jk > n�log n�−1

}
≤

√
n�log n�−1∑
k=1

k∑
j=1

P
{
W 2

jk > n�k log n�−1
}

≤ C�log n�2/n2

√
n�log n�−1∑
k=1

k3 = C�log n�−2 → 0�

Hence, (24) follows. Equations (23) and (24) imply that:

max
k≤√

n�log n�−1
	I1�k�− k�2	 = Op
n�log n�

−1�� (25)

For k >
√
n�log n�−1, we have by the Extension of the Kolmogorov Maximal

Inequality for the reverse martingale (see Sen and Singer, 1993),

max
k>

√
n�log n�−1

	Wjk	 = Op
n
−1/4 log n�� (26)

uniformly for j, and by (17) in Lemma A.4:

max
k>

√
n�log n�−1

1√
k

∣∣∣∣ k∑
i=1


h̃�Xi�− �1�

∣∣∣∣ = Op
�log log n�
1/2�� (27)

Hence, by Lemma A.1 and (27):

max
k>

√
n�log n�−1

{
k
�̂1�k�− �1�

2
} ≤ max

k>
√
n�log n�−1

C

k3

{
k

k∑
i=1


h̃�Xi�− �1�+ Op�n�

}2

≤ C max
k>

√
n�log n�−1

{
1√
k

k∑
i=1


h̃�Xi�− �1�

}2

+ Op�n
2�


√
n�log n�−1�−3

= Op
n
1/2�log n�3�� (28)
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Similar to the discussion in (23), by using (28), we have for k >
√
n�log n�−1:

	I1�k�− k�2	 ≤
∣∣∣∣ k∑
j=1

{
Wjk + 
h̃�Xj�− �1�

}2 − k�2

∣∣∣∣+ Op
n
1/2�log n�3�

≤
∣∣∣∣ k∑
j=1

�
h̃�Xj�− �1�
2 − �2


∣∣∣∣+ k∑
j=1

W 2
jk

+ 2

√√√√ k∑
j=1

W 2
jk ·

k∑
j=1


h̃�Xj�− �1�
2 + Op
n

1/2�log n�3�� (29)

(26) implies that

max
k>

√
n�log n�−1

k∑
j=1

W 2
jk = Op
n

1/2�log n�2�� (30)

It is obvious that

max
k>

√
n�log n�−1

k∑
j=1


h̃�Xj�− �1�
2 = Op�n�� (31)

Thus, (29)–(31) and Kolmogorov Maximal Inequality indicate that:

max
k>

√
n�log n�−1

	I1�k�− k�2	 = Op
n
3/4�log n��� (32)

Hence, we have from (25) and (32):

max
2≤k≤n−2

	I1�k�− k�2	 = Op
n�log n�
−1��

Similarly,

max
2≤k≤n−2

	I2�k�− �n− k��2	 = Op
n�log n�
−1��

Thus, we complete the proof of Part 1 because

max
2≤k≤n−2

	�̂2
k1 − �2	 ≤ 1

n
max

2≤k≤n−2
	I1�k�− k�2	 + 1

n
max

2≤k≤n−2
	I2�k�− �n− k��2	 = op�1��

Part 2. The proof,

�̂2
k1 → ��2

1 + �1− ���2
2 =̂ �2

0�

uniformly for all k such that 	k− �	 ≤ n�log n�−1, is similar to the proof in the first
part. We only need note that in the current case:

1
n
I1�k� = ��2

1 + op�1� and
1
n
I2�k� = �1− ���2

2 + op�1�

uniformly for k such that 	k− �	 ≤ n�log n�−1.
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The proof of Proposition 3.2 is almost the same, hence we will not repeat the
proof here.

A.3 The Null Limiting Distributions of Test Statistics

Now we are ready to prove Theorems 3.1 and 3.2.

The Proof of Theorem 3�1. The proof is divided into several small steps. We proceed
as follows.

Part 1. To show that U�1�
n → �21 in distribution under the null hypothesis H0.

Step 1. First we show that

max
1≤k≤n−1

V �1�
n �k� = Op�log log n�

where V �1�
n �k� is defined by (3).

By the definition of Qn�t� in (13) and Proposition 3.1, for some constant C:

max
1≤k≤n−1

V �1�
n �k� = max

1≤k≤n−1

{
n

4�2

k

n

(
1− k

n

)

�̂1�k�− �̂2�k��

2

}

1+ op�1��

≤ C sup
1
n≤t≤1− 1

n


Qn�t��
2

t�1− t�

≤ C sup
1
n≤t≤1− 1

n

[
Qn�t�− Bn�t�√

t�1− t�

]2

+ C sup
1
n≤t≤1− 1

n

[
Bn�t�√
t�1− t�

]2

= Op�log log n��

where we have utilized the results (15) and (16) in Lemmas A.2 and A.3.

Step 2. To show that �̂/n → 1
2 in probability, where �̂ is defined by (6). For

any � > 0, define

� = �k � 	2k− n	 < n�
� (33)

It is seen that:

P��̂ ∈ �
 ≥ P
{
U�1�

n �n/2� ≥ max
k��

U�1�
n �k�

}
≥ P

{
4�2 log n ≥ max

k��
V �1�
n �k�− V �1�

n �n/2�
}
→ 1

since maxk�� V �1�
n �k�− V �1�

n �n/2� = Op�log log n�.

Step 3. To derive an upper bound on the size of U�1�
n . Since �̂/n → 1

2 , we have
by noting the relationship of Qn�t� and V �1�

n �k�:

U�1�
n ≤ max

k∈�
V �1�
n �k�+ op�1�

≤ sup
	t− 1

2 	≤�


Qn�t��
2

t�1− t�
+ op�1�
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≤ 4
1− 4�2

sup
	t− 1

2 	≤�


Qn�t��
2 + op�1�

= 4
1− 4�2

sup
	t−1/2	≤�


Bn�t��
2 + op�1��

where the last equality comes from (14) in Lemma A.2.
Since the sample path function of Brownian bridges �Bn�t�� 0 ≤ t ≤ 1
 is

continuous in t with probability 1 and 2Bn�1/2� ∼ N�0� 1�, we have shown that U�1�
n

is bounded by a random quantity whose limiting distribution is chi-square with 1
degree of freedom because � can be taken arbitrarily small.

It is obvious that this upper bound is also a lower bound, since

U�1�
n ≥ V �1�

n �n/2� = 4
Qn�1/2��
2 + op�1�

= 4
Bn�1/2��
2 + op�1� → �21�

Hence, the result under the null model is proved.

Part 2: To show that U�1�
n → � in probability under H1.

When the alternative model is true such that �1 �= �2 and � = 
n�� with
� ∈ �0� 1�, we have:

U�1�
n ≥ V �1�

n ���− �2�− 1�2 log n

= n��1− ��

4�2
0


�̂1���− �̂2����
2
1+ op�1��− �2�− 1�2 log n�

By Lemma A.1, we have:

�̂1���− �1 =
2
�

�∑
i=1


h̃1�Xi�− �1�+ Op�n
−1� = op�1�

and

�̂2���− �2 =
2

n− �

n∑
i=�+1


h̃2�Xi�− �2�+ Op�n
−1� = op�1��

Hence,

�̂1���− �̂2��� = �1 − �2 + op�1��

Consequently,

U�1�
n ≥ n��1− ��

4�2
0

��1 − �2�
2 + op�n� → ��

Thus we complete the proof.

The Proof of Theorem 3�2. (1) To show that �̂
n
→ 1

2 in probability, where �̂ is
defined by (10).
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For any � > 0:

P��̂ ∈ �
 ≥ P

{
U�2�

n

(
n

2

)
≥ max

k��
U�2�

n �k�

}

≥ P

{
max
k��

Z2
k

nk�n− k�
−

4Z2
n
2

n3
≤ �2�2 log n

}
�

where � is defined in (33). Due to

max
k��

Z2
k

nk�n− k�
−

4Z2
n
2

n3
= Op�log log n�

from (18), we have P��̂ ∈ �
 → 1 as n → �.
(2) By Lemma A.6 and Proposition 3.2, we have, for any � > 0:

U�2�
n ≤ max

k∈�

{
Z2

k

�2nk�n− k�

}

1+ op�1��

≤ max
k∈�

{
Z2

k

�2n3

[
k

n

(
1− k

n

)]−1}

1+ op�1��

≤ 4 sup
	t− 1

2 	<�

Z2

�n+1�t�

�2n3

1+ op�1��

= 4 sup
	t− 1

2 	<�

B2
n�t�
1+ op�1���

where �Bn�t�� 0 ≤ t ≤ 1
 is a sequence of Brownian Bridges, which have continuous
sample path functions in t with probability one. Note that:

2Bn

(
1
2

)
∼ N�0� 1��

Hence, as n → �:

U�2�
n ≤ 4B2

n

(
1
2

)
+ op�1� → �21�

since � can be made arbitrarily small. On the other side, we have:

U�2�
n ≥ V �2�

n

(
n

2

)
=

4Z2
n
2

�2n3
+ op�1� = 4B2

(
1
2

)
+ op�1� → �21�

Hence, U�2�
n →� �21 as n → �.

(3) When �
n
→ � ∈ �0� 1�, we have by Lemma A.7:

U�2�
n ≥ Z2

�

n��n− ���2
0


1+ op�1��− �2�− 1�2 log n

= ��1− ���2

�2
0

n+ op�n� → �

in probability. Thus, we complete the proof of the theorem.
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