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Abstract

Order selection is a fundamental and challenging problem in the application of finite

mixture models. In this paper, we develop a new penalized likelihood approach. The

new method (MSCAD) deviates from information-based methods such as AIC and

BIC by introducing two penalty functions which depend on the mixing proportions

and the component parameters. It is consistent at estimating both the order of the

mixture model and the mixing distribution. Simulations show that MSCAD has much
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better performance than a number of existing methods. Two real-data examples are

examined to illustrate the performance of MSCAD.

KEY WORDS: EM algorithm, Finite mixture model, Penalty method, SCAD.

1. INTRODUCTION

Order selection is a fundamental and challenging problem in the application of finite

mixture models. A mixture model with a large number of components provides a good fit

but may have poor interpretive value. Complex models are not favored in applications for

the sake of parsimony and the prevention of over-fitting.

Many statistical methods have been proposed in the past few decades. One off-the-

shelf method is to use information theoretic approaches such as the Akaike information

criterion (AIC, Akaike 1973) and the Bayesian information criterion (BIC, Schwarz 1978).

Leroux (1992) discussed the use of AIC and BIC for order selection in finite mixture models.

Another class of methods is based on distance measures between the fitted model and the

non-parametric estimate of the population distribution; see Chen and Kalbfleisch (1996),

James, Priebe and Marchette (2001), and Woo and Sriram (2006, 2007). One may also

consider hypothesis testing on the order of finite mixture models. The most influential

methods in this class include the C(α) test by Neyman and Scott (1966) and methods based

on likelihood ratio techniques, such as Ghosh and Sen (1985), McLachlan (1987), Dacunha-

Castelle and Gassiat (1999), Chen and Chen (2001), and Chen, Chen, and Kalbfleisch (2001,

2004). Charnigo and Sun (2004) proposed an L2-distance method for testing homogeneity

in continuous finite mixture models. Chambaz (2006) studied the asymptotic efficiency of
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two generalized likelihood ratio tests. Ishwaran, James, and Sun (2001) proposed a Bayesian

approach. Ray and Lindsay (2008) investigated model selection in multivariate mixtures.

In this paper, we develop a new order selection method combining the strength of two

existing statistical methods. The first is the Modified likelihood proposed by Chen and

Kalbfleisch (1996). The second is the variable selection method called the smoothly clipped

absolute deviation or SCAD, by Fan and Li (2001). We formulate the problem of order se-

lection as a problem of arranging subpopulations (i.e., mixture components) in a parameter

space. The penalty introduced by the modified likelihood clusters the fitted subpopulations

around the true subpopulations. A SCAD-type penalty will merge each cluster of subpop-

ulations into a single subpopulation. Hence, our procedure starts with a large number of

subpopulations and obtains a mixture model with lower order by clustering and then merg-

ing subpopulations. For this reason, the new method is called MSCAD. Compared to six

existing methods, simulations show that MSCAD consistently has the best or almost the

best performance in terms of identifying the true order of the finite mixture model. In some

cases, MSCAD is by far the best.

The rest of the paper is organized as follows. We introduce MSCAD in Section 2. Asymp-

totic properties of MSCAD are presented in Section 3. In Section 4, we present the com-

putational method. The simulation results and two real-data examples are given in Section

5. Some conclusions are given in Section 6. Some brief proofs are in the Appendix and the

detailed proofs are in a supplementary document at

www.amstat.org/publications/jasa/supplemental materials.

2. MIXTURE MODEL AND NEW ORDER SELECTION METHOD
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Let F = {f(y; θ, σ); θ ∈ Θ, σ ∈ Ω} be a family of parametric (probability) density

functions with respect to a σ-finite measure ν, Θ be a compact subset of the real line R,

and σ ∈ Ω be a structure parameter where Ω ⊂ (0,∞). For parametric families without a

structure parameter, the value of σ is regarded as known. We assume that Ω is also compact.

The compact assumption on Ω can often be relaxed. For example, Chen and Chen (2003)

showed that the structure parameter under a normal mixture model is consistently estimated

by the maximum likelihood estimator even when the order of the mixture is unknown. Under

the model where σ is also a mixing parameter, placing a small positive lower bound on

the ratio of two component parameters σk1
/σk2

restores the consistency of the maximum

likelihood estimator without any compactness condition (Hathaway, 1985). To avoid being

overwhelmed by technicality, we choose to retain the compactness assumption.

The density function of a finite mixture model based on the family F is given by

f(y; G, σ) =

∫
Θ

f(y; θ, σ) dG(θ) (1)

where G(·) is called the mixing distribution and is given by

G(θ) =
K∑

k=1

πkI(θk ≤ θ). (2)

The I(·) is an indicator function, and θk ∈ Θ are atoms of G(·), 0 ≤ πk ≤ 1 for k =

1, 2, . . . , K.

Let K0 be the smallest number of atoms θk of G(·) such that all the component densities

f(y; θk, σ) are different and the mixing proportions πk are non-zero. We denote the true

mixing distribution G0 as

G0(θ) =

K0∑
k=1

π0kI(θ0k ≤ θ) (3)
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where θ01, θ02, . . . , θ0K0
are K0 distinct interior points of Θ, and 0 < π0k ≤ 1, for k =

1, 2, . . . , K0.

Even though the true order of the finite mixture model, i.e. K0, is not known, we assume

that some information is available to provide an upper bound K for K0. Often scientists have

a candidate order in mind. For example, geneticists may suspect that there are a few major

genes behind a quantitative trait. If there is only one gene, then the order of the mixture

model will be two or three; if there are two, the order can be at most six. In general, they

will not consider models of a higher order. In such applications, an upper bound of K = 12

will be sufficient. In addition, due to the nature of the new method, a large upper bound can

always be used. Nevertheless, if the method selects an order that is close to the upper bound,

we can re-analyze the data with an increased upper bound. Finally, if a finite mixture model

with a very high order is needed in an application, knowing the exact order of the model is

likely less crucial.

Let y1, y2, . . . , yn be a random sample from (1). The log-likelihood function of the mixing

distribution with order K, and σ is given by

ln(G, σ) =

n∑
i=1

log f(yi; G, σ).

By maximizing ln(G, σ), the resulting fitted model may over-fit the data with some small

values of the mixing proportions (over-fitting of type I), and/or with some component den-

sities close to each other (over-fitting of type II). These are the main causes of difficulty in

the order selection problem. Our new approach works by applying two penalty functions to

prevent these two types of overfitting.
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Assume that θ1 ≤ θ2 ≤ · · · ≤ θK , and denote ηk = θk+1 − θk, for k = 1, 2, . . . , K − 1, and

η0k = θ0,k+1−θ0k, for k = 1, 2, . . . , K0−1, where K0 ≥ 2. Define the penalized log-likelihood

function as

l̃n(G, σ) = ln(G, σ) + CK

K∑
k=1

log πk −
K−1∑
k=1

pn(ηk) (4)

for some CK > 0 and a non-negative function pn(·). The first penalty function is from the

modified likelihood of Chen and Kalbfleisch (1996) which forces the estimated values of πk

away from 0 to prevent type I over-fitting. Consequently, the atoms of any fitted G of order

K will form K0 clusters tightly around the true atoms θ0k.

We choose the additional penalty function pn(η) such that it has a spike at η = 0. It

is well known that such a penalty shrinks near-zero η values to exactly zero with positive

probability. We focus on the SCAD penalty proposed by Fan and Li (2001) which is most

conveniently characterized through its derivative:

p′n(η) = γn

√
n I{

√
n|η| ≤ γn} +

√
n(aγn −√

n|η|)+

(a − 1)
I{

√
n|η| > γn}

for some a > 2, where (·)+ is the positive part of a quantity. The method is not sensitive

with respect to a wide range of the choice of a or the CK . The choice of γn is important.

More discussion is in Section 4.

Let (Ĝn, σ̂) be the maximizer of l̃n(G, σ) (or σ assumes a known value). When some

η̂k = 0, the actual number of atoms of Ĝn can be smaller than K and this is taken as the

new order estimator. This is how the procedure achieves order selection without explicit

maneuvers. We call Ĝn the maximum penalized likelihood estimator (MPLE), and we now

show that it has desirable asymptotic properties.
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3. ASYMPTOTIC PROPERTIES

Write Ĝn =
∑K

j=1 π̂jI(θ̂j ≤ θ) and define Ik = {j : θ0,k−1 + θ0,k < 2θ̂j ≤ θ0,k + θ0,k+1} for

k = 1, 2, . . . , K0 with θ0,0 = −∞ and θ0,K0+1 = ∞. Further, define

Ĥk(θ) =
∑
j∈Ik

π̂jI(θ̂j ≤ θ)/
∑
j∈Ik

π̂j

and hence,

Ĝn(θ) =

K0∑
k=1

α̂kĤk(θ) (5)

with α̂k =
∑

j∈Ik
π̂j . In other words, Ĥk is a part of Ĝn containing atoms near θ0k. The

main idea of the MSCAD method is to use the modified likelihood to squeeze the atoms of

Ĥk into a small neighborhood of θ0k and to use the SCAD penalty to further shrink them

into a single atom.

Theorem 1 Assume that f(y; θ, σ) satisfies regularity conditions A1-A4 in the Appendix,

the true distribution of Y is a finite mixture with density function f(y; G0, σ0), and we apply

the SCAD penalty with γn = n1/4 log n. Then

(a) For any continuous point θ of G0, Ĝn(θ) → G0(θ) in probability, as n → ∞, and

α̂k = π0k + op(1) for each k = 1, 2, . . . , K0.

(b) All atoms of Ĥk converge in probability to θ0k for each k = 1, 2, . . . , K0.

If any Ĥk in Theorem 1 has more than one atom, the order K0 is still over-estimated. We

show that Ĥk has a single atom with probability tending to one for each k = 1, 2, . . . , K0,

and therefore Ĝn is consistent in estimating K0.
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Theorem 2 (Consistency of estimating K0). Assume the same conditions as in Theorem 1.

Under the true finite mixture density f(y; G0, σ0), if (Ĝn, σ̂) falls into an n−1/4-neighborhood

of (G0, σ0), then Ĝn has K0 atoms with probability tending to one.

Under some conditions, Chen (1995) shows that when the order of the finite mixture

model is unknown, the optimal rate of estimating the finite mixing distribution G0 is n−1/4.

Hence, our result is applicable to the class of finite mixture models that includes Poisson

mixtures, normal mixtures in location or scale parameter, and Binomial mixtures.

4. NUMERICAL SOLUTION

Denote Ψ = (θ1, θ2, . . . , θK , π1, π2, . . . , πK−1, σ), and let Ψ0 be the vector of true param-

eters corresponding to G0 and σ0. For convenience, in the following we use l̃n(Ψ) instead

of l̃n(G, σ) to denote the penalized log-likelihood function. We first present a revised EM-

algorithm (Dempster, Laird, and Rubin, 1977) for maximizing l̃n(Ψ) with given K.

Algorithm: Let the complete log-likelihood function be

lcn(Ψ) =
n∑

i=1

K∑
k=1

zik [log πk + log{f(yi; θk, σ)}]

where the zik are unobserved indicator variables showing the component-membership of the

ith observation in the mixture. Then the penalized complete log-likelihood function is

l̃cn(Ψ) = lcn(Ψ) −
K−1∑
k=1

pn(ηk) + CK

K∑
k=1

log πk.

The EM algorithm maximizes lcn(Ψ) iteratively in two steps as follows:

E-Step: Let Ψ(m) be the estimate of the parameters after the mth iteration. The E-step

computes the conditional expectation of l̃cn(Ψ) with respect to zik, given the observed data
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and assuming that the current estimate Ψ(m) is the true parameter of the model. The

conditional expectation is given by

Q(Ψ;Ψ(m)) =

n∑
i=1

K∑
k=1

w
(m)
ik log{f(yi; θk, σ)} −

K−1∑
k=1

pn(ηk) +

n∑
i=1

K∑
k=1

[w
(m)
ik +

CK

n
] log πk

where

w
(m)
ik =

π
(m)
k f(yi; θ

(m)
k , σ(m))∑K

l=1 π
(m)
l f(yi; θ

(m)
l , σ(m))

, k = 1, 2, . . . , K

are the conditional expectations of zik given the data and the current estimate Ψ(m).

M-Step: The M-step on the (m + 1)th iteration maximizes Q(Ψ;Ψ(m)) with respect to Ψ.

The updated estimate π
(m+1)
k of the mixing proportion πk is given by

π
(m+1)
k =

∑n
i=1 w

(m)
ik + CK

n + KCK
, k = 1, 2, . . . , K.

Due to non-smoothness of pn(·), the usual Newton-Raphson method cannot be directly used

for maximization with respect to θk. However, Fan and Li (2001) suggested approximating

pn(η) by

p̃n(η; η
(m)
k ) = pn(η

(m)
k ) +

p′n(η
(m)
k )

2η
(m)
k

(η2 − η
(m)2

k ).

With this approximation, the component parameters θk and the structure parameter σ are
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updated by solving

n∑
i=1

w
(m)
i1

∂

∂θ1

{log f(yi; θ1, σ)} − ∂p̃n(η1; η
(m)
1 )

∂θ1

= 0,

n∑
i=1

w
(m)
ik

∂

∂θk
{log f(yi; θk, σ)} − ∂p̃n(ηk−1; η

(m)
k−1)

∂θk
− ∂p̃n(ηk; η

(m)
k )

∂θk
= 0,

k = 2, 3, . . . , K − 1,

n∑
i=1

w
(m)
iK

∂

∂θK

{log f(yi; θK , σ)} − ∂p̃n(ηK−1; η
(m)
K−1)

∂θK

= 0,

n∑
i=1

K∑
k=1

w
(m)
ik

∂

∂σ
{log f(yi; θk, σ)} = 0.

Starting from an initial value Ψ(0), the iteration between the E and M steps continues until

some convergence criterion is satisfied. For example, for a pre-specified value ǫ > 0, the

algorithm will stop if ‖Ψ(m+1) −Ψ(m)‖ < ǫ. When the algorithm converges, the equations

∂ln(Ψ̂n)

∂θ1
− ∂pn(η̂1)

∂θ1
= 0,

∂ln(Ψ̂n)

∂θk
− ∂pn(η̂k−1)

∂θk
− ∂pn(η̂k)

∂θk
= 0, k = 2, 3, . . . , K − 1,

∂ln(Ψ̂n)

∂θK

− ∂pn(η̂K−1)

∂θK

= 0

are satisfied (approximately) for non-zero valued η̂k, but not for zero valued η̂k. This enables

us to identify zero estimates of ηk.

To see this, recall that when a local maximum is attained, all θ̂j are stationary points of

l̃n(Ψ). Thus, if θ̂j is at a smooth point of l̃n(Ψ), we get a zero derivative. However, because

of the non-smoothness of SCAD at η = 0, the derivative of l̃n(Ψ) does not exist in theory at

η̂k = 0, or the above equation fails to hold in numerical computation.

The initial values of G are chosen to be a discrete uniform distribution on the 100(k −
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1/2)/K% sample quantiles. We used σ0 as the initial σ value in our simulations. In appli-

cations, one may use the sample variance or its 0.8, 1.2, etc. multiples as initial values.

Next, we discuss the choice of the tuning parameters γn and a in SCAD and CK . We

let a = 3.7 as suggested in Fan and Li (2001). Chen et al. (2001) reported that the choice

of CK is not crucial, and this is re-affirmed by our simulations. They suggested that if the

parameters θk are restricted to be in [−M, M ] or [M−1, M ] for large M , then an appropriate

choice is CK = log M . In our simulations, we choose CK = log 20 for both the normal and

Poisson mixture models.

The theory provides merely some guidance on the order of γn to achieve consistency. In

applications, cross validation or CV (Stone, 1974) and generalized cross validation or GCV

(Craven and Wahba, 1979) are often used. Denote D = {y1, y2, . . . , yn} as the full data set.

Let N be the number of partitions of D. For the ith partition, let Di be the subset of D

which is used for evaluation and D−Di be the rest of the data used for fitting a model. The

parts D −Di and Di are often called the training and test data sets respectively. Let Ψ̂n,−i

be the MPLE of Ψ based on the training set, for a given γn. Further, let ln,i(Ψ̂n,−i) be the

log-likelihood function evaluated on the test set Di, using Ψ̂n,−i, for i = 1, 2, . . . , N . Then

the cross-validation criterion is defined by

CV (γn) = − 1

N

N∑
i=1

ln,i(Ψ̂n,−i).

The value of γn which minimizes CV (γn) is chosen as a data-driven choice of γn. In particular,

the five-fold CV (Zhang, 1993) can be used.

In our implementation, we delete one observation at a time and the CV is calculated

on a sequence of γn values over a specified range. For the normal mixture model, the
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range of γn/
√

n was chosen as [.2, 1.5], and for the Poisson mixture model the range was

[.4, 1.6]. These choices meet the conditions specified in the theorems for the sample sizes

under consideration. In applications, some trial runs can be used to identify a proper range

before a formal analysis.

On a typical Unix machine, it took about 45 seconds to complete the analysis of one

simulated data set for the most difficult normal mixture model with 7 components and

sample size n = 400.

The generalized cross validation (GCV) is computationally cheaper than the CV criterion.

Yet its derivation often requires regularity conditions that may not be satisfied by mixture

models. We find that the GCV does not work well in our simulations. Thus we do not

recommend its use.

5. SIMULATIONS AND EXAMPLES

We compared MSCAD with a number of existing methods in the literature for order

selection under normal mixtures in location parameter and Poisson mixtures. For the normal

mixtures, MSCAD is compared to six methods: two information-based criteria AIC and

BIC; the Bayesian method GWCR by Ishwaran et al. (2001); the Kullback-Leibler (KL)

distance method by James et al. (2001); the Hellinger distance (HD) method by Woo and

Sriram (2006); and the method of Lassoing by Xing and Rao (2008). For the Poisson

mixtures, MSCAD is compared to AIC and BIC, the sequential testing procedure based on

the likelihood ratio test (LRT) by Karlis and Xekalaki (1999), and the Hellinger distance

(HD) method of Woo and Sriram (2007). We report the percentage of times the estimated

order equals a number of values out of 500 replications with sample sizes n = 100, 400 for
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the normal mixtures, and n = 100, 500 for the Poisson mixtures.

For normal mixtures, we have

f(y;Ψ) =

K∑
k=1

πk

σ
φ(

y − θk

σ
)

with φ(·) being the density of the standard normal N(0, 1). We regard σ as an unknown

parameter and generate data from the ten normal mixtures discussed in Ishwaran et al.

(2001) with the parameter values given in Table 1. Note that the number of modes of the

mixture models does not necessarily reflect the order of the model.

The results for AIC, BIC, and GWCR are quoted from Ishwaran et al. (2001), and the

results for Lassoing are quoted from Xing and Rao (2008). The results for the two distance

methods KL and HD are based on our own implementations. Since both methods involve

integrations, numerical approximations are used. For the HD method, we used the EM-type

algorithm outlined in Section 4.1 of Cutler and Cordero-Brana (1996). The non-parametric

density estimate required in these two methods was computed by a standard function in the

R software. Our codes may not be as efficient as the authors’ codes but the latter are not

publicly available. Similarly to Ishwaran et al. (2001), we set the upper bound K = 15. The

simulation results are reported in Tables 3, 4, and 5.

Under the first two models, all the methods did well except for KL and Lassoing. MSCAD

is not the best but nearly so. Under the third model, MSCAD is the indisputable best

followed by Lassoing and then KL. The AIC, BIC, GWCR, and HD were all misled by the

number of modes. Under model 4, MSCAD did well and outperformed all the other methods

by good margins. Under models 5 and 6, none of the methods were effective at detecting the
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true order but MSCAD had the highest success rate. In addition, in as many as 60% of the

instances, MSCAD underestimated the true order of four by only one, which was unmatched

by other methods. Under model 7, MSCAD is simply the best again. Under models 8-10,

none of the methods were very effective at detecting the true order. However, MSCAD

provided a closer order estimate most often. Overall, MSCAD is consistently the best or

close to the best under all models. Compared to the other methods, MSCAD tends to give

a higher order estimate, yet it does not seem to overestimate according to this simulation

study.

We next simulate data from Poisson mixture models with density function

f(y;Ψ) =
K∑

k=1

πk (θy
k/y!) exp(−θk).

We generate data from seven selected models from Woo and Sriram (2007). The parameters

are given in Table 2. We exclude the models with very close components because all methods

are expected to be poor in such situations. We let the upper bound K = 15 for all models,

simulated with two sample sizes n = 100, 500, and with 500 replicates. The simulation

results are reported in Tables 6, 7, and 8.

Under models 1-2 and both sample sizes, all the methods did very well. Under model 3

with n = 100, the two HD methods did poorly. Woo and Sriram (2007) also noted that HD

methods are not effective when a component has a large mean but a small mixing proportion.

Under models 4 and 5, the BIC and HD methods trailed behind when n = 100. Under models

6 and 7, MSCAD again outperformed by a good margin all the other methods.

The simulation results indicate that even AIC underestimates the order of the mixture
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model. MSCAD corrects this problem to a large degree. Yet the MSCAD estimate is not

always larger than the AIC estimate, as in the Poisson example to be presented.

Example 1. (Continuous Data) Efron (2004) provided an empirical Bayes approach

for estimating an appropriate null hypothesis when many hypotheses are tested simultane-

ously. The motivating example was an HIV study of 1391 patients, investigating which of 6

Protease Inhibitor drugs cause mutations at which 74 sites on the viral genome. Using logis-

tic regression analysis, 444 z-values were calculated, each for testing a null hypothesis that

the specific drug does not cause mutation at the specific site. Figure 1 contains a histogram

of these z-values, with negative values indicating greater mutational effects.

The usual goal of a large-scale testing problem is to identify a small percentage of in-

teresting cases that deserve further investigation. Efron (2004) fitted the z-values with an

8-component normal mixture model with common unit variance as in Figure 1. In this fit,

about 60.8% of the 444 cases were from the mixture component N(0, 1) and were clearly

“uninteresting” or “non-significant”. Note that N(0, 1) is the theoretical null distribution.

This proportion is relatively small for a typical screening problem. It results in too many

interesting cases to be handled in the second-stage analysis. This genetic background moti-

vated Efron (2004) to combine the four middle components of the fitted model to form the

“uninteresting” class containing 89.4% of the cases. The new class is well approximated by

N(−0.34, 1.192) and the original fitted mixture reduced to a 5-component mixture model,

revealing the crucial importance of replacing the theoretical null N(0, 1) and the empirical

null in a large scale problem.

We applied MSCAD to re-analyze the data with an upper bound of K = 15. The analysis
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concluded with a 4-component normal mixture model, with the parameter estimates given

in Table 9. The estimated common variance is σ̂2 = 1.252. See also Figure 1 for the fitted

model. The third component of our fit is N(−0.38, 1.252) which is close to Efron’s combined

null N(−0.34, 1.192). Efron’s reduced-order mixture model was motivated from the genetic

background as observed earlier. Coupled with the MSCAD analysis, the conclusion can be

more revealing and insightful.

We applied the other methods employed in the simulations to re-analyze the z-values.

They all resulted in 4-component normal mixture models with slightly different parameter

estimates. The results are reported in Table 9.

Example 2. (Count Data) In this example we re-analyze the count data in Table 1

of Karlis and Xekalaki (2001). The data concern the number of defaulted installments in a

financial institution in Spain. There is a high degree of over-dispersion and a large number of

zero counts (3002 out of 4691). Due to over-dispersion, Karlis and Xekalaki (2001) suggested

a Poisson mixture model for this data, and fitted a six-component Poisson mixture. The

unusually high percentage of zero counts also suggests fitting a 0-inflated Poisson mixture

model (McLachlan and Peel, 2000; Böhning, 2000). Using a robust procedure, Woo and

Sriram (2007) selected a 4-component 0-inflated model (W&S). We analyzed the data with

K = 15 and obtained K̂0 = 4, and under the 0-inflated model we obtained K̂0 = 5. The

traditional AIC and BIC methods were also applied. The resulting fits are given in Table

10, and some expected frequencies obtained are given in Table 11.

It is seen that MSCAD fits the data reasonably well under both model assumptions.

Interestingly, both estimates contain a component with mixing parameter 0.7% in spite of
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the built-in penalty on small mixing probabilities. It is natural to question whether such a

fit is supported by the data. After this component is removed, the mean of the remaining

Poisson mixture is only about 1.37, and the chance that a single observation is larger than

15 is about 2 × 10−12. Having 33 or more observations out of 4691 being larger than 15

is practically impossible. Hence, we believe that MSCAD as well as most other methods

have rightfully selected a model with this component. The robust W&S procedure gains by

denying an unreliable component mean estimation, but at the cost of a poorer Pearson’s

goodness-of-fit measure, which is 45.6 compared to 34.8 and 34.7 for MSCAD.

6. CONCLUSIONS

We have developed a new penalized likelihood approach, MSCAD, for order selection

in univariate finite mixture models. Under some conditions, MSCAD is consistent and has

much better performances than six existing methods. In addition, it avoids fitting mixture

models of various orders repeatedly.

The MSCAD formulates the problem of order selection as a problem of arranging sub-

populations (i.e., mixture components) in a parameter space. The penalty introduced by

the modified likelihood clusters the fitted subpopulations around the true subpopulations. A

SCAD-type penalty merges each cluster of subpopulations into a single subpopulation. The

procedure starts with a large number of subpopulations and obtains a mixture model with

a proper order by clustering and merging subpopulations. Thus, MSCAD remains effective

even if only a conservative large upper bound is available.

As pointed out by a referee, the influence of the largest observation on the largest |θ̂k| with

small π̂k can be large for MSCAD. Our additional analysis of two real data sets confirmed
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this insightful observation, but showed that the influence is not drastic. It is still advisable

to be cautious when interpreting the meaning of the largest θ̂. Since MSCAD reduces the

excessive number of components in the initial model by merging near subpopulations, it tends

to under-estimate the order when the true model contains near subpopulations. However,

this is more a problem of poor identifiability than the ineffectiveness of the method. We are

not aware of any methods immune from this problem.

APPENDIX: Regularity Conditions and Proofs

The proofs will be brief and heuristic. For detailed proofs, see the supplementary paper

at the JASA website. The expectations below are under (G0, σ0).

Regularity Conditions

A1. (i) E(| log f(y; θ, σ)|) < ∞, ∀ θ and σ.

(ii) There exists ρ > 0 such that for each θ, σ, f(y; θ, σ, ρ) is measurable and

E(| log f(y; θ, σ, ρ)|) < ∞, where f(y; θ, σ, ρ) = 1 + sup|θ′−θ|+|σ′−σ|≤ρ f(y; θ′, σ′).

A2. The component density f(y; θ, σ) is differentiable with respect to θ, σ to order 3. Fur-

thermore, the derivatives f (j)(y; θ, σ) are jointly continuous in y, θ, and σ.

A3. For i = 1, 2, . . . , n; j = 1, 2, 3, define

Uij(θ, G, σ) =
f (j)(Yi; θ, σ)

f(Yi; G, σ)
.

For each atom of G0, θ0k, there exists a small neighborhood of (θ0k, σ0) and a function

q(Y ) with E{q2(Y )} < ∞ such that for G, G′, θ1, θ
′
1, and σ, σ′ in this neighborhood,
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we have

|Uij(θ1, G, σ) − Uij(θ
′
1, G

′, σ′)| ≤ q(Yi){|θ1 − θ′1| + ‖G − G′‖ + |σ − σ′|}.

A4. The matrix with the (k1, k2)th element

E{U11(θ0k1
, G0, σ0)U11(θ0k2

, G0, σ0)}

is finite and positive definite.

Conditions A1-A4 also imply that the finite mixture model with known order K0 satisfies

the standard regularity conditions. Hence, the ordinary maximum likelihood estimator of G

(with K0 known) is
√

n-consistent and asymptotically normal.

Lemma 1 Suppose the component density f(y; θ, σ) satisfies A1-A4. Then the MPLE Ĝn

has the property
∑K

k=1 log π̂k = Op(1).

Proof. We provide a very intuitive proof. If (G, σ) is the MPLE, the penalized likelihood

function must be larger at (G, σ) than at (G0, σ0). It can be verified that this is possible only

if (G, σ) is in a small neighborhood of (G0, σ0). When this is the case, the SCAD penalty at

G can be shown to be more severe than the SCAD penalty at G0. Thus,
∑K

k=1 log πk of G

cannot exceed ln(G, σ) − ln(G0, σ0) = Op(1). This is why
∑K

k=1 log π̂k = Op(1). ♠

Proof of Theorem 1. Part (a). Note that the consistency of (Ĝn, σ̂) is loosely justified in

Lemma 1. The other conclusion is a consequence.

Part (b). By Lemma 1, the mixing proportion on each atom of the Ĝn is positive in proba-

bility. Thus the atom of Ĥk must converge to θ0k in probability. ♠
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Proof of Theorem 2. Suppose (G, σ) is a candidate MPLE with more than K0 atoms

within an n−1/4 neighborhood of (G0, σ0). It can then be decomposed as
∑K0

k=1 αkHk so that

each Hk has its atoms in the n−1/4 neighborhood of θ0k. Since G has more than K0 atoms

the variance of Hk, m2k > 0 for at least one k.

Let G̃ =
∑K0

k=1 α̃kI(θk ≤ θ) be a mixing distribution that maximizes l̃n(G, σ) with respect

to θk, k = 1, 2, . . . , K0, with the same σ. It turns out that ln(G̃, σ) is smaller than ln(G, σ) by

at most a quantity of order n3/4
∑K0

k=1 m2k. At the same time, the SCAD penalty at (G, σ)

is larger than the SCAD penalty at (G̃, σ) by a quantity larger than n3/4
∑K0

k=1 m2k. Thus,

(G, σ) cannot possibly be the MPLE. That is, the MPLE must have exactly K0 atoms as

claimed. ♠
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Table 1: Parameter values in simulation studies for the normal mixtures.

(π1, θ1) (π2, θ2) (π3, θ3) (π4, θ4) (π5, θ5) (π6, θ6) (π7, θ7)

Model Normal Mixtures

1 (1/3, 0) (2/3, 3)

2 (0.5, 0) (0.5, 3)

3 (0.5, 0) (0.5, 1.8)

4 (0.25, 0) (0.25, 3) (0.25, 6) (0.25, 9)

5 (0.25, 0) (0.25, 1.5) (0.25, 3) (0.25, 4.5)

6 (0.25, 0) (0.25, 1.5) (0.25, 3) (0.25, 6)

7 (1/7, 0) (1/7, 3) (1/7, 6) (1/7, 9) (1/7, 12) (1/7, 15) (1/7, 18)

8 (1/7, 0) (1/7, 1.5) (1/7, 3) (1/7, 4.5) (1/7, 6) (1/7, 7.5) (1/7, 9)

9 (1/7, 0) (1/7, 1.5) (1/7, 3) (1/7, 4.5) (1/7, 6) (1/7, 9.5) (1/7, 12.5)

10 (1/7, 0) (1/7, 1.5) (1/7, 3) (1/7, 4.5) (1/7, 9) (1/7, 10.5) (1/7, 12)
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Table 2: Parameter values in simulation studies for the Poisson mixtures.

(π1, θ1) (π2, θ2) (π3, θ3) (π4, θ4)

Model Poisson Mixtures

1 (0.5, 1) (0.5, 9)

2 (0.8, 1) (0.2, 9)

3 (0.95, 1) (0.05, 10)

4 (0.45, 1) (0.45, 5) (0.1, 10)

5 (1/3, 1) (1/3, 5) (1/3, 10)

6 (0.3, 1) (0.4, 5) (0.25, 9) (0.05, 15)

7 (0.25, 1) (0.25, 5) (0.25, 10) (0.25, 15)
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Table 3: Simulation results for normal mixture models (1-3; n = 100).

Model K0 # Modes K̂0 AIC BIC GWCR KL HD Lassoing MSCAD

CDF PDF

1 .018 .150 .018 .000 .102 .050 .074 .056

1 2 2 2 .896 .838 .920 .220 .898 .584 .432 .900

3 .062 .012 .058 .318 .000 .186 .220 .044

4 .024 .000 .004 .368 .000 .068 .136 .000

1 .022 .212 .030 .000 .078 .022 .016 .032

2 2 2 2 .900 .780 .916 .484 .922 .510 .386 .898

3 .050 .006 0.054 .236 .000 .232 .238 .070

4 .028 .002 0.000 .234 .000 .132 .172 .000

1 .702 .968 .868 .000 .824 .106 .194 .280

3 2 1 2 .264 .030 .130 .354 .176 .572 .416 .634

3 .024 .002 .002 .258 .000 .186 .184 .086

4 .000 .000 .000 .242 .000 .044 .096 .000
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Table 4: Simulation results for normal mixture models (4-6; n = 100).

Model K0 # Modes K̂0 AIC BIC GWCR KL HD Lassoing MSCAD

CDF PDF

1 .000 .110 .000 .000 .026 .014 .034 .000

2 .178 .596 .102 .062 .964 .348 .080 .002

3 .110 .110 .554 .174 .010 .198 .090 .104

4 4 4 4 .674 .182 .306 .700 .000 .194 .268 .824

5 .038 .002 .038 .064 .000 .078 .182 .070

1 .244 .748 .144 .000 .504 .028 .060 .000

2 .556 .246 .818 .292 .496 .494 .312 .072

3 .142 .004 .032 .254 .000 .230 .274 .604

5 4 1 4 .044 .002 .006 .310 .000 .122 .142 .314

5 .014 .000 .000 .140 .000 .040 .086 .010

1 .016 .188 .000 .000 .120 .022 .060 .000

2 .474 .698 .612 .154 .880 .476 .216 .052

3 .392 .106 .368 .504 .000 .208 .280 .654

6 4 2 4 .102 .008 .020 .266 .000 .106 .184 .280

5 .014 .000 .000 .070 .000 .054 .120 .014
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Table 5: Simulation results for normal mixture models (7-10; n = 400).

Model K0 # Modes K̂0 AIC BIC GWCR KL HD Lassoing MSCAD

CDF PDF

1 .004 .816 .000 .000 .072 .008 .026 .000

2 .000 .000 .000 .000 .002 .260 .218 .000

3 .000 .000 .010 .000 .126 .228 .232 .000

7 7 7 4 .302 .168 .188 .004 .800 .234 .206 .000

5 .212 .016 .424 .480 .000 .160 .086 .002

6 .098 .000 .178 .516 .000 .062 .054 .074

7 .326 .000 .114 .000 .000 .032 .116 .848

1 .030 .538 .000 .000 .000 .002 .014 .000

2 .684 .462 .078 .034 .164 .354 .282 .000

3 .000 .000 .590 .132 .824 .252 .326 .002

8 7 1 4 .248 .000 .272 .318 .012 .234 .246 .012

5 .000 .000 .048 .376 .000 .096 .094 .184

6 .012 .000 .008 .134 .000 .036 .026 .502

7 .024 .000 .004 .006 .000 .016 .010 .270

1 .002 .458 .000 .000 .060 .014 .101 .000

2 .000 .000 .002 .028 .014 .384 .334 .000

3 .144 .398 .120 .550 .716 .220 .268 .000

9 7 3 4 .460 .138 .408 .026 .210 .196 .170 .010

5 .308 .006 .312 .382 .000 .106 .138 .398

6 .048 .000 .128 .014 .000 .046 .058 .506

7 .016 .000 .024 .000 .000 .020 .014 .080

1 .000 .000 .000 .000 .000 .010 .014 .000

2 .496 .992 .020 .006 .224 .292 .232 .000

3 .000 .000 .370 .846 .616 .220 .310 .006

10 7 2 4 .302 .006 .466 .112 .160 .256 .242 .248

5 .118 .002 .128 .034 .000 .112 .150 .506

6 .064 .000 .010 .000 .000 .060 .026 .234

7 .016 .000 .006 .002 .000 .034 .010 .006
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Table 6: Simulation results for the 2-component Poisson mixture models (1-3)

n = 100 Model 1, K0 = 2 n = 500

Method 1 2 3 1 2 3

AIC .000 .938 .062 .000 .924 .076

BIC .000 .998 .002 .000 .998 .002

HD2/n .000 .998 .002 .000 1.00 .000

HDlog n/n .000 1.00 .000 .000 1.00 .000

LRT .000 .950 .050 .000 .960 .000

MSCAD .000 .988 .012 .000 1.00 .000

n = 100 Model 2, K0 = 2 n = 500

Method 1 2 3 2 3 4

AIC .000 .958 .042 .950 .042 .008

BIC .000 .994 .006 1.00 .000 .000

HD2/n .000 .998 .002 1.00 .000 .000

HDlog n/n .002 .998 .000 1.00 .000 .000

LRT .000 .950 .050 .960 .040 .000

MSCAD .002 .986 .012 .990 .008 .000

n = 100 Model 3, K0 = 2 n = 500

Method 1 2 3 2 3 4

AIC .012 .948 .036 .950 .048 .002

BIC .026 .972 .002 .998 .002 .000

HD2/n .616 .384 .000 1.00 .000 .000

HDlog n/n .946 .054 .000 .994 .000 .000

LRT .000 .930 .070 .950 .050 .000

MSCAD .052 .868 .080 .994 .004 .000
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Table 7: Simulation results for the 3-component Poisson mixture models (4-5)

n = 100 Model 4, K0 = 3 n = 500

Method 1 2 3 4 1 2 3 4

AIC .000 .410 .590 .000 .000 .006 .972 .022

BIC .000 .778 .222 .000 000 .100 .900 .000

HD2/n .000 .966 .034 .000 .000 .162 .838 .000

HDlog n/n .000 1.00 .000 .000 .000 .846 .154 .000

LRT .000 .390 .580 .020 .000 .000 .940 .060

MSCAD .000 .280 .692 .028 .000 .082 .896 .022

n = 100 Model 5, K0 = 3 n = 500

Method 1 2 3 4 1 2 3 4

AIC .000 .274 .720 .006 .000 .000 .974 .026

BIC .000 .684 .316 .000 .000 .026 .974 .000

HD2/n .000 .840 .160 .000 .000 .018 .982 .000

HDlog n/n .000 .988 .012 .000 .000 .462 .538 .000

LRT .000 .300 .660 .030 .000 .000 .940 .060

MSCAD .000 .200 .780 .020 .000 .016 .964 .020
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Table 8: Simulation results for the 4-component Poisson mixture models (6-7)

n = 100 Model 6, K0 = 4 n = 500

Method 2 3 4 5 2 3 4 5

AIC .080 .878 .042 .000 .000 .644 .356 .000

BIC .316 .680 .004 .000 .000 .974 .026 .000

HD2/n .718 .282 .000 .000 .000 .956 .044 .000

HDlog n/n .962 .038 .000 .000 .060 .940 .000 .000

LRT .090 .780 .130 .000 .000 .590 .380 .030

MSCAD .010 .666 .320 .004 .000 .366 .624 .010

n = 100 Model 7, K0 = 4 n = 500

Method 2 3 4 5 2 3 4 5

AIC .010 .918 .072 .000 .000 .592 .408 .000

BIC .134 .858 .008 .000 .000 .970 .030 .000

HD2/n .182 .812 .006 .000 .000 .924 .076 .000

HDlog n/n .718 .282 .000 .000 .000 1.00 .000 .000

LRT .020 .860 .120 .000 .000 .590 .400 .010

MSCAD .000 .512 .460 .028 .000 .110 .812 .078
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Table 9: The 4-component normal mixture model fit in Example 1 by different methods.

Method k 1 2 3 4

π̂k .017 .075 .884 .024

MSCAD

θ̂k -9.97 -5.06 -0.38 3.53

π̂k .017 .075 .892 .016

GWCR

θ̂k -9.91 -5.03 -0.38 4.03

π̂k .013 .075 .892 .016

AIC - BIC

θ̂k -10.12 -5.11 -0.37 4.01

π̂k .012 .077 .878 .033

HD

θ̂k -9.64 -5.01 -0.42 2.36

π̂k .013 .076 .894 .017

KL

θ̂k -10.08 -5.10 -0.39 3.92

Table 10: Parameter estimates for the Poisson mixture models in Example 2.

Estimates (π̂1, θ̂1) (π̂2, θ̂2) (π̂3, θ̂3) (π̂4, θ̂4) (π̂5, θ̂5)

AIC (.736, .147) (.194, 3.95) (.057, 8.91) (.011, 14.83) (0.001, 28.84)

BIC (.739, .150) (.205, 4.15) (.053, 10.55) (.003, 24.09) —

MSCAD (.733, .147) (.200, 3.98) (.060, 9.52) (.007, 19.72) —

(0-Inflated, AIC-BIC) ( .314, 0) (.435, .298) (.200, 4.37) (.048, 10.99) (.002, 26.15)

(0-Inflated, MSCAD) ( .328, 0) (.417, .302) (.193, 4.19) (.055, 9.78) (.007, 20.01)

(0-Inflated) W&S ( .373, 0) (.385, .36) (.199, 4.52) (.043, 11.26) —
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Figure 1: Histogram of the z-values in Example 1; Solid curve: density of the 8-component

normal mixture of Efron; Dashed-point curve: Density of the 4-component normal mixture

selected by MSCAD.
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Table 11: Observed number of defaulted installments and the results for three fitted models.

Num. Defaults Obs. Freq. Expec. Freq. Expec. Freq. Expec. Freq.

K̂0 = 4 (0-inflated) K̂0 = 5 (0-inflated) W&S

0 3002 2986.0 2998.6 3019.9

1 502 506.3 494.4 499.6

2 187 171.9 187.0 185.7

3 138 188.7 177.0 166.9

4 233 190.4 182.2 179.4

5 160 159.4 158.5 163.8

6 107 118.1 120.8 127.8

7 80 84.1 86.5 89.6

8 59 62.0 62.6 60.6

9 53 48.8 48.1 42.9

10 41 39.8 38.7 33.4

11 28 32.3 31.4 28.1

12 34 25.1 24.7 24.1

13 10 18.7 18.7 20.0

14 13 13.3 13.6 15.9

15 11 9.4 9.7 11.8

≥ 16 33 36.7 38.3 21.5
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