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Experimental designs with performance measures as responses are common in industrial applications.

The existing analysis methods often regard performance measures as sole response variables without repli-

cates. Consequently, no degrees of freedom are left for error variance estimation in these methods. In

reality, performance measures are obtained from replicated primary-response variables. Precious informa-

tion is hence lost. In this paper, we suggest a jackknife-based approach on the replicated primary responses

to provide an estimate of error variance of performance measures. The resulting tests for factor effects

become easy to construct and more reliable. We compare the proposed method with some existing meth-

ods using two real examples and investigate the consistency of the jackknife variance estimate based on

simulation studies.

KEY WORDS: Lenth’s Method; Performance Measure; Pseudo Standard Error; Unreplicated Factorial

Experiments.

Introduction

E
XPERIMENTAL designs are widely used in indus-
tries to control and improve the quality of prod-

ucts. The basic purpose of these experiments is to
arrive at a combination of factor levels that optimize
the response or to identify the important factors that
control the characteristic of interest. Designed ex-
periments are also used to reduce the variation of
the response by identifying critical factors (Taguchi
(1986)).

There are many situations where analysis is
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performed on summary statistics of the primary-
response variables. Hereafter, we refer to these sum-
mary statistics as performance measures. For exam-
ple, in an experiment discussed in Wu and Hamada
(2000, p. 124), the primary-response variable is the
thickness of epitaxial layer on a silicon wafer. The
aim of the experiment is to find the level combina-
tions of the 4 factors such that its variation is mini-
mized. In this case, the performance measure is cho-
sen as the log(sample variance) of the replicated ob-
servations at each level combination. If the perfor-
mance measure is regarded as our response, for the
purpose of data analysis, then no degrees of freedom
are left for error variance estimation. In this situa-
tion, the general practice is to use the analysis meth-
ods for unreplicated factorial experiments. See Wu
and Hamada (2000).

A detailed review of analysis of unreplicated fac-
torial experiments is available in Hamada and Bal-
akrishnan (1998). Some widely used methods are (i)
normal/half normal probability plots (Daniel (1959))
to identify the active effects and then to pool the in-
active effects to arrive at an estimate of error variance
and (ii) the Pseudo standard error (PSE) estima-
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tion method by Lenth (1989). These simple methods
will be discussed in more detail later with examples
and/or in simulations.

The problem we are interested in is different from
the analysis of unreplicated factorial experiments.
We have replications at each design setting, but our
focus is on a performance measure of these replica-
tions. When we use analysis methods for unrepli-
cated factorial experiments for these performance
measures, precious information in the replicated ob-
servations (for the primary response) is lost and,
hence, the opportunity to obtain a proper estimate of
the error variance is also lost. We suggest a method
based on jackknife to recoup the information to esti-
mate the error variance.

This paper is organized as follows. First, we dis-
cuss the most frequently used performance measures
and introduce the jackknife method for analyzing
the performance measures, which will be explained
by two real examples. In the subsequent section,
we explore the consistency of the jackknife method
and compare its performance with that of Lenth’s
method. Some concluding remarks are given in the
last section.

Jackknife Method for
Performance Measures

Consider an experiment with n runs, each repli-
cated m times. Let yij be the jth replicate of the
ith experimental run, where i = 1, 2, . . . , n and j =
1, 2, . . . ,m. Most commonly used performance mea-
sures include η1 = ȳi and η2 = loge(s2

i ), where ȳi =

(1/m)
∑m

j=1 yij and s2
i = [1/(m−1)]

∑m
j=1(yij− ȳi)2.

Taguchi (1986) proposed a number of performance
measures in the context of quality engineering based
on the response of interest. These performance mea-
sures, referred to as signal-to-noise (SN) ratios are
also discussed in Box and Meyer (1986), Leon et al.
(1987), Box (1988), and Phadke (1989). For some
explanation of these performance measures and the
selection of appropriate ones in a given context, one
may refer to these papers. Some frequently used per-
formance measures are given in Table 1.

Resampling methods are commonly used for con-
structing simple and efficient variance estimators.
Our idea here is to obtain an appropriate estima-
tor of the variance of a performance measure by re-
sampling methods. Jackknife and bootstrap are two
widely used resampling methods. In general, both
jackknife and bootstrap lead to similar variance esti-
mates. For small sample sizes, jackknife is simple and
quicker to use. Moreover, jackknife produces nonran-
dom estimates and it is easy to work with its closed-
form solution. For small sample sizes, such as m = 3
or 4, there is high probability that the bootstrap sam-
ples contain only one distinct unit, which leads to η2

and η4 not being defined. Thus, we will only pursue
jackknife in this paper.

Assume that we have n experimental runs and
each run is replicated m times. Let yi = (yi1, yi2,
. . . , yim) be the vector of replications from the ith
experimental run, with c(yi) being the correspond-
ing performance measure. By deleting yij from yi for
j = 1, . . . ,m, we obtain m delete-one jackknife repli-

TABLE 1. Frequently Used Performance Measures

Response type Notation Formulas

Average η1 ȳi

Log variance η2 loge(s2
i )

Smaller the better η3 −10 log10


 1

m

m∑
j=1

y2
ij




Nominal the better η4 10 log10

(
ȳ2

i

s2
i

)

Larger the better η5 −10 log10


 1

m

m∑
j=1

y−2
ij
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cates of size (m − 1), yi(j). Hence, we obtain m
jackknife replications of the performance measure
c(yi(j)), j = 1, 2, . . . ,m. The jackknife variance es-
timate of the performance measure c(yi) is given by

V̂ja (c (yi)) =
m− 1
m

m∑
j=1

(
c
(
yi(j)

)
− c (yi.)

)2
, (1)

where c(yi.)=(1/m)
∑m

j=1 c(yi(j)). A pooled estimate
of the error variance is

V̂pja (c(y)) =
1
n

n∑
i=1

V̂ja (c (yi)) . (2)

Let us consider the F statistic,

F =
Mean Square for the Factor Effect

V̂pja(c(y))
.

We suggest using this F to test the significance of
factor effects in the ANOVA, where the variance esti-
mate has (m−1)n degrees of freedom. Some theoret-
ical aspects of jackknife together with justifications
for the F test are discussed in the Appendix.

In principle, one can obtain delete-d (d = 1, 2, . . .)
jackknife replicates and a corresponding estimate of
variance of c(yi). However, in the experimental de-
sign context, m is reasonably small and deleting
more than one observation at a time can be problem-
atic. Thus, we consider only the delete-one jackknife
method.

Next we illustrate this method with two real ex-
amples from the literature together with existing
analysis methods.

Example 1

This example is from Wu and Hamada (2000, p.
124). The nominal value of the thickness of the epi-
taxial layer on a silicon wafer is 14 µm, with a specifi-
cation of ±0.5 µm. The current process setting leads
to excessive variation, and a 24 factorial experiment
is conducted with four process factors (A, B, C, and
D), and the experiment is replicated m = 6 times. In
this experiment, we would like to identify the impor-
tant factors that could be used to minimize epitaxial
layer nonuniformity while maintaining average thick-
ness close to the nominal value. Let us consider the
performance measure η2 = loge(s2). The design ma-
trix together with values of the performance measure
are given in Table 2.

Traditional half-normal plots are used to judge the
significance of the factor effects. Factor A is judged
as significant based on these plots. A formal test

TABLE 2. Design Matrix, Performance Measure, and

the Jackknife Variance Estimates for Example 1

Factors

Run A B C D η2 V̂ja(η2)

1 − − − + −5.77 0.6904
2 − − − − −5.31 0.1665
3 − − + + −5.70 0.6371
4 − − + − −6.98 0.8964
5 − + − + −5.92 0.4658
6 − + − − −5.49 0.9030
7 − + + + −4.11 0.1596
8 − + + − −6.24 0.5398
9 + − − + −1.54 0.2893

10 + − − − −2.12 0.1446
11 + − + + −1.58 0.1155
12 + − + − −1.49 0.2961
13 + + − + −1.92 0.2711
14 + + − − −2.43 0.2231
15 + + + + −1.12 0.1129
16 + + + − −2.65 0.1816

Pooled 0.3803

of effect significance using Lenth’s method (1989)
was also provided in Wu and Hamada (2000). The
method uses a robust estimator of the standard de-
viation of the factor effect, θi. It is called pseudo
standard error (PSE) and is defined as

PSE = 1.5 Median(|θi|<2.5s0)|θi|,

where the median is computed among the |θi| with
|θi| < 2.5s0 and s0 = 1.5 Median|θi|.

An effect θi is declared significant if |θi/PSE|
exceeds the critical values, which can be found in
Wu and Hamada (2000), reproduced from Ye and
Hamada (2000). In this example, factor A is found
to be significant.

Using jackknife replicates for each experimental
run, we obtain a variance estimate V̂ja(η2) of the
performance measure as per Equation (1). For the
first run, the primary responses are (14.812, 14.774,
14.772, 14.794, 14.860, 14.914) (see Wu and Hamada
(2000)). By deleting one observation at a time, we
create 6 jackknife samples of size 5. The perfor-
mance measures, loge(s2

i ), for these jackknife samples
are (−5.5537, −5.7338, −5.7518, −5.6052, −5.6719,
−6.6432). Then the jackknife variance estimate of
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TABLE 3. Analysis of Variance Table for η2

Source d.f. MS F

A 1 58.8135 154.45
B 1 0.0245 0.06
AB 1 0.7321 1.92
C 1 0.0236 0.06
AC 1 0.1829 0.48
BC 1 0.4394 1.15
ABC 1 0.4479 1.18
D 1 1.5961 4.19
AD 1 0.0000 0.00
BD 1 0.3721 0.98
ABD 1 0.0295 0.08
CD 1 1.3535 3.55
ACD 1 0.9758 2.56
BCD 1 0.3947 1.04
ABCD 1 0.0472 0.12
V̂pja 80 0.3808

loge(s2
i ) for run 1 is computed as 0.6904. Similarly, we

compute the jackknife variance estimate for each run,
and they are given in the last column of Table 2. The
pooled jackknife variance estimate V̂pja = 0.3808 by
Equation (2), which is then used to test the factor
effects. The ANOVA table for η2 is given in Table 3.

We find that factors A and D are significant at
the 5% level. The analysis based on Lenth’s method
finds only A being significant. Note that the effect
for A is extremely large compared with other effects.
Almost any method will declare it to be significant.
The smaller effect D was not judged significant by
Lenth’s method.

Example 2

This example is from Taguchi (1986, p. 127). An
experiment was conducted to identify the factors that
have strong effects on the wear on a slider pump.
Five factors (A, B, C, D, and E) and two interac-
tion effects (AB and AC) were thought to influence
the wear, and an orthogonal array experiment L8(27)
with m = 8 replicates was performed. The data con-
sist of wear (in microns) at eight points on the slider
of a pump, and the goal is to reduce both the mean
and variation of the wear. According to Taguchi, the
SN ratio of smaller-the-better type, η3 (see Table 1),
is an appropriate choice for a performance measure.
The design matrix and the values of η3 for this ex-
periment are given in Table 4. The corresponding
ANOVA table is given in Table 5.

TABLE 4. Design Matrix, Performance Measure, and

the Jackknife Variance Estimates for Example 2

Factors

Run A B C D E η3 V̂ja(η3)

1 − − − − − −21.8717 1.8395
2 − − + + + −20.6023 5.6720
3 − + − + + −14.7712 4.9053
4 − + + − − −16.1278 1.3237
5 + − − − + −24.1539 7.0389
6 + − + + − −21.7136 9.9465
7 + + − + − −22.9584 2.6745
8 + + + − + −23.2710 7.1220

Pooled 5.0663

In Taguchi’s (1986) analysis, the sum of squares
due to the small effects C, AC, and E are pooled to
obtain the sum of squares of error, which is given
as Error in Table 5. The contribution percentages
(ρ%) of the remaining effects are then calculated.
The effects of A, B, and AB are found significant by
examining the magnitude of their contribution per-
centages.

Another approach is to use the traditional anal-
ysis where the error sum of squares is constructed
by pooling the small effects after a visual inspection
of the normal probability plot. Here it has 3 degrees
of freedom, and the F tests confirm that A, B, and
AB are significant at the 5% level. Analysis based
on Lenth’s method indicates that only factor A is
significant at that level.

TABLE 5. Analysis of Variance Table for η3

Source d.f. SS MS Fpooled ρ % Fjack

A 1 43.82 43.82 115.30 52.90 8.65
B 1 15.72 15.72 41.40 18.70 3.10
AB 1 17.81 17.81 46.90 21.20 3.51
C 1 0.52 0.52 1.37 0.00 0.10
AC 1 0.61 0.61 1.60 0.00 0.12
D 1 3.61 3.61 9.50 3.90 0.71
E 1 0.00 0.00 0.00 0.00 0.00
(Error) (3) 1.13 0.38 − 3.30

Total 7 82.09 100.0
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Using the jackknife replicates for each experiment,
we obtain jackknife variance V̂ja(η3) (see Table 4).
The pooled jackknife variance estimate is V̂pja =
5.06. This is used to test the significance of the fac-
tor effects in the ANOVA table (see Table 5). We
find that only the main effect A is significant at the
5% level since our jackknife error variance estimate
for η3 is larger than the estimate obtained by pooling
the 3 smaller effects.

Performance of Jackknife

Adapting methods from unreplicated factorial ex-
periments to analyze performance measures requires
the pooling of sum of squares for smaller effects, as
indicated in Examples 1 and 2. However, tests based
on jackknife variance estimate make use of the in-
formation from the primary response variables and,
thus, is a better approach.

Consistency and Relative Bias

It is well known that the jackknife variance es-
timator is consistent under very general conditions
(Shao and Tu (1995)). In our context, the number
of replicates is typically small at each design setting,
and the jackknife variance estimate may be biased.
However, this bias can be corrected easily if the de-
gree of bias is known. In this section, we investigate
the relative bias by simulation.

The jackknife variance estimator for the perfor-
mance measure η is strongly consistent if

V̂ja

σ2
n(η)

→
a.s.

1

as n → ∞, where σ2
n(η) is the variance of η based on

n observations and a.s. denotes almost sure conver-
gence (Shao and Tu (1995, p. 25)).

We postulate a simple linear model for a 23 full
factorial design with all three factors having signifi-
cant effects:

yij = µ + αA + βB + γC + eij , (3)

with µ = 10, α = β = γ = 1, eij ∼ N(0, 0.32), and
A,B,C take values of ±1 depending on the levels of
the three factors. The chosen values of α, β, and γ do
not play any role in the consistency of the variance
estimators of the performance measures.

For each experimental run, we generate m repli-
cates based on the above model and compute all
five performance measures given in Table 1. We con-
struct m jackknife samples from each run and com-
pute the jackknife variance for each of the perfor-

mance measures. This procedure is repeated 10,000
times. The average of the jackknife variance esti-
mates over 10,000 simulations is computed and de-
noted as V̂ja(η). The variances of performance mea-
sures based on 10,000 repetitions are denoted as
V̂ (η).

Let us define the relative bias as

R̂(η) =
V̂ja(η)

V̂ (η)
. (4)

If the jackknife variance estimator provides a sen-
sible error variance estimate, we should have R̂(η)
close to 1. The jackknife variance estimator overes-
timates when R̂(η) > 1, and it underestimates when
R̂(η) < 1.

For each performance measure, simulation stud-
ies were carried out for m = 3, 4, 5, 6, 10, 20, and 50.
The results for η1, η3, and η5 (not shown here) indi-
cate that relative bias is within the 3% range, which
implies that jackknife variance estimate is nearly un-
biased. Simulation results for η2 and η4 are given in
Tables 6 and 7.

Tables 6 and 7 indicate that some adjustments are
necessary for small m for η2 and η4. For example,
when m = 6, the relative bias of η2 is 1.55. Hence,
the jackknife variance estimator should be divided
by 1.55 when m = 6 before it is used to compute
the F statistic. For small m, the relative bias can be
large and the adjustment is crucial. When m is large
(m ≥ 20), an adjustment is not crucial.

To verify that the adjustment factor is not sensi-
tive to σ2 chosen in the model of Equation (3), we
repeat the simulation study with σ = 0.3, 0.6, 1, 1.5,
and 2 for m = 3, 4, 5, 6, 10, 20, and 50. We found
that the ratio R̂(η) does not depend on the value of
σ and takes very similar values among the experi-
mental runs. For brevity, we only present the ratio
for pooled variance in Table 8 for η2 and η4.

Continuing Example 1 and incorporating the ad-
justment factor 1.55 for m = 6 for η2, the jackknife
variance estimate is reduced from 0.3808 to 0.2457.
This results in interaction effect CD being significant
at the 5% level.

For the performance measures η1, η3, and η5, the
jackknife variance estimates are approximately unbi-
ased and no adjustments are required. For η2 and η4,
an adjustment factor needs to be used to estimate
the jackknife variance as indicated in Tables 6 and
7. For any other performance measure not listed in
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TABLE 6. Comparison of R̂(η) for η2

Run m = 3 m = 4 m = 5 m = 6 m = 10 m = 20 m = 50

1 3.45 2.12 1.78 1.56 1.26 1.15 1.01
2 3.60 2.14 1.69 1.62 1.27 1.15 1.08
3 3.67 2.12 1.81 1.50 1.27 1.11 1.02
4 3.55 2.15 1.69 1.58 1.26 1.12 1.04
5 3.54 2.19 1.75 1.61 1.27 1.14 1.07
6 3.57 2.14 1.64 1.50 1.26 1.14 1.05
7 3.58 2.03 1.71 1.55 1.25 1.11 1.05
8 3.46 2.18 1.78 1.53 1.29 1.08 1.05

Pooled 3.55 2.13 1.73 1.55 1.27 1.12 1.05

TABLE 7. Comparison of R̂(η) for η4

Run m = 3 m = 4 m = 5 m = 6 m = 10 m = 20 m = 50

1 3.62 2.21 1.70 1.57 1.23 1.15 1.03
2 3.62 2.18 1.71 1.54 1.27 1.07 1.05
3 3.72 2.13 1.65 1.57 1.30 1.10 1.04
4 3.36 2.18 1.75 1.51 1.31 1.09 1.02
5 3.58 2.20 1.68 1.47 1.28 1.12 1.06
6 3.57 2.28 1.66 1.55 1.29 1.11 1.03
7 3.43 2.15 1.75 1.54 1.27 1.11 1.04
8 3.55 2.11 1.74 1.50 1.23 1.08 1.07

Pooled 3.55 2.18 1.71 1.53 1.27 1.10 1.04

Table 1, simulation studies are recommended to de-
cide whether an adjustment factor is necessary.

Comparison of Jackknife Method with
Lenth’s Method

Among the methods designed for unreplicated fac-
torial experiments, Lenth’s method is most prefer-
able due to its efficiency and simplicity (Hamada and
Balakrishnan (1998)). Hence, Lenth’s method is com-
monly used for analyzing performance measures (Wu
and Hamada (2000)), and we now compare it with
the jackknife method. Other commonly used meth-
ods for analyzing the performance measures are nor-
mal probability plots and the pooling method (see
Examples 1 and 2). These methods are subjective in
nature and require human intervention for each sim-
ulation run. Thus, they are not included here in the
comparisons.

Comparison for Performance Measure η1

We compare the jackknife method to Lenth’s
method for η1, where the true variance is known. Let
us consider a 23 factorial experiment with factors A,
B, and C. Let yij be the response for the jth replicate
of the ith run, where i = 1, . . . , n and j = 1, . . . ,m,
which is modeled as

yij = 10 + 0.2A + 0.05B + 0.1C
+ 0.1AB + 0.075AC + eij , (5)

where A, B, and C take values of ±1 depending on
the levels, the eij are normally distributed with mean
0, and σ = 0.5, and AB and AC represent the values
of the variables associated with the interactions. The
coefficients in Equation (5) are chosen to represent
a range of factor effects. This choice enables us to
study the sensitivity of the two methods in different
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TABLE 8. Sensitivity of R̂(η) for Different White Noise (σ) for η2 and η4

η2 η4

σ 0.3 0.6 1 1.5 2 0.3 0.6 1 1.5 2

m = 3 3.55 3.59 3.55 3.57 3.53 3.55 3.53 3.57 3.48 3.45
m = 4 2.13 2.12 2.11 2.14 2.11 2.18 2.17 2.13 2.10 2.08
m = 5 1.73 1.74 1.75 1.74 1.75 1.71 1.75 1.76 1.72 1.67
m = 6 1.55 1.58 1.54 1.59 1.60 1.51 1.60 1.56 1.54 1.53
m = 10 1.25 1.28 1.22 1.25 1.26 1.23 1.23 1.30 1.24 1.26
m = 20 1.16 1.12 1.13 1.11 1.10 1.13 1.10 1.07 1.10 1.12
m = 50 1.06 1.04 1.03 1.03 1.08 1.04 1.08 1.07 1.05 1.03

situations. Var(ȳi) for the ith run is σ2/m, and the
variance of an estimated effect is σ2/2m. The jack-
knife error variance estimate for each run, V̂ja(ȳi),
is unbiased for Var(ȳi) = σ2/m. Thus, V̂pja/2 is an
unbiased estimate of σ2/2m. Because the expected
value of PSE is complicated, we carry out 1,000 sim-
ulations according to model of Equation (5) to ap-
proximate its expected value. For each simulation, we
estimate PSE and V̂pja and perform 5% significance
tests based on both jackknife and Lenth’s methods.
Based on the 1,000 simulations, we compute the per-
centage of times each effect is declared significant at
the 5% level of significance. The results are summa-
rized in Table 9.

Table 9 shows that Lenth’s method overestimates

the standard error of the factor effects for this perfor-
mance measure, but the jackknife variance estimate
is almost the same as the true variance. For instance,
when m = 6, the true standard deviation of a fac-
tor effect is 0.1443. The jackknife variance estimate
is 0.1436 while the estimate by Lenth’s method is
much larger at 0.2467. This is the reason why Lenth’s
method is more conservative in picking up the signif-
icant effects. When m = 6, factor A is found signifi-
cant 76.6% of the time by the jackknife method but
only 26.2% by Lenth’s method. Factor effects not in
the model (say BC) are found significant at 5% and
1.1% of the times by jackknife and Lenth’s methods,
respectively, compared with the 5% specified by the
significance level. For larger sample sizes, the jack-
knife performs superior to Lenth’s method.

TABLE 9. Percent of Times a Factor is Significant for the Jackknife Method and Lenth’s Method for η1

m = 3 m = 4 m = 5 m = 6

Factor True effect Jack Lenth Jack Lenth Jack Lenth Jack Lenth

A 0.200 45.5 20.6 57.7 21.5 70.8 23.1 76.6 26.2
B 0.050 6.5 2.3 9.0 2.3 9.5 2.6 11.1 1.4
AB 0.100 15.1 4.8 20.2 6.4 20.9 5.5 29.2 4.7
C 0.100 15.4 6.0 20.2 5.5 22.5 4.9 25.6 5.7
AC 0.075 11.4 4.7 13.6 3.7 15.4 3.4 19.3 2.3
BC 0.000 4.8 1.4 4.3 1.8 4.8 1.5 5.0 1.1
ABC 0.000 4.8 1.8 4.6 0.9 4.7 1.9 4.4 0.8

Standard error
of factor effect 0.2033 0.2891 0.1750 0.2643 0.1577 0.2534 0.1436 0.2467

True standard error
of factor effect 0.2041 0.2041 0.1768 0.1768 0.1581 0.1581 0.1443 0.1443
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TABLE 10. Percent of Times a Factor is Significant for the Jackknife Method and Lenth’s Method for η2

m = 3 m = 4 m = 5 m = 6

Factor True effect Jack Lenth Jack Lenth Jack Lenth Jack Lenth

A 1 56.5 30.0 79.1 42.3 90.8 58. 5 96.5 66.2
B 0 7.2 2.1 5.9 1.5 6.7 2.7 6.5 2.7
AB 0 6.1 1.2 6.7 1.9 6.0 2.6 6.5 2.6
C 1 54.2 29.5 79.9 40.2 91.7 58. 7 96.9 65.7
AC 0 5.6 1.7 7.1 2.7 6.2 3.6 5.3 2.4
BC 0 6.3 1.3 6.4 1.5 6.3 1.9 6.7 2.6
ABC 0 6.1 2.3 5.7 1.5 5.4 2.1 5.5 2.3

Comparison for Performance Measure η2

Our next simulation compares the jackknife meth-
od to Lenth’s method for performance measure η2.
We construct a linear model for a 23 factorial experi-
ment with performance measure η2 as response, with
factors A and C having significant effects on η2, and
the other factor effects, including interactions, being
negligible. That is, we use a linear model,

yij = µi + eij , (6)

for the primary response of the ith run and the jth
replicate. Suppose that we are interested in the effect
of the factors on the performance measure loge(s2

i ).
Let µ represents the overall mean, α the effect of
factor A, and β the effect of factor C. A suitable
model for the performance measure is to let σ2

i =
var(eij) such that

log
(
σ2

i

)
= µ + αA + βC + εi, (7)

where A and C take values of ±1 depending on their
levels in the ith run, and εi is white noise such that
εi ∼ N(0, σ2).

In our simulation, we set σ = 0.05, α = 1, β = 1,
and µ = 1. With these values, σ2

i will change substan-
tially at different design setting. In addition, σ = 0.05
adds some external variation from one experiment to
another. We first generate the εi and then determine
a value of σ2

i according to Equation (7). We then ob-
tain m primary responses according to Equation (6)
by generating the eij from N(0, σ2

i ) for the ith run.
The performance measure loge(s2

i ) and its jackknife
variance estimate are computed thereafter. We have
used the adjustment factor to estimate the jackknife
variance as per Table 6. We then test the significance
of factor effects at a 5% level based on the jackknife
variance estimate and Lenth’s method. The whole

process is repeated 1,000 times. The percentage of
times each factor is significant at a 5% level is shown
in Table 10.

According to Table 10, Lenth’s method has lower
power in detecting the effect of factors A and C than
the jackknife method. For instance, when m = 6,
factor A is found significant 96.5% of the time by
using the jackknife method while it is judged sig-
nificant only 66.2% of the time by Lenth’s method.
In addition, the factor effects not in the model are
(falsely) significant around 6% of the time, which is
in line with the 5% significance level, whereas the
significance level is around 2.5% by Lenth’s method.
We note that the adjusted jackknife variance is used
to identify the significant factor effects. If one does
not adjust the jackknife variance appropriately, the
conclusions can be misleading.

Discussion and Conclusions

We have demonstrated that the jackknife method
is useful in analyzing performance measures in facto-
rial experiments. However, it can be used to analyze
performance measures in any other designs where
replicates are available on the primary response vari-
able for each design setting. When replications are
available, it is better to use this information to es-
timate the variance of the performance measures of
interest. The proposed jackknife method is simple to
use and efficient in estimating the error variance. It
gives an opportunity to obtain an estimate of the
within-run variance, which leads to a more reliable
test for the factorial effects. Other usual methods
(including Lenth’s) use variance estimators based on
between-effects variation. In fact, Lenth’s method
is devised for the analysis of unreplicated factorials
when there is effect sparsity. If the ratio of number of

Journal of Quality Technology Vol. 37, No. 2, April 2005



ANALYSIS OF PERFORMANCE MEASURES IN EXPERIMENTAL DESIGNS USING JACKKNIFE 99

active factors to the number of runs is large, then the
commonly used methods for analyzing unreplicated
factorials are not very effective. Increasing the num-
ber of replications in each run improves the power of
detecting significant effects in the proposed method
while it has less impact in the methods commonly
used. We feel that the proposed method can be a
great tool whenever one is analyzing performance
measures such as the average or loge(s2).

Appendix

Let y = (y1, y2, . . . , ym) be a sample of size m.
Suppose that the parameter ξ is estimated by ξ̂ =
c(y), with c being a continuous function of y. We
wish to estimate the bias and variance of ξ̂. The jack-
knife focuses on the construction of pseudo samples
by leaving out one observation at a time. The ith
jackknife sample consists of data with the ith obser-
vation removed,

y(i) = (y1, y2, . . . , yi−1, yi+1, . . . , ym) ,
i = 1, 2, . . . ,m. (8)

Let ξ̂(i) = c(y(i)) be the ith jackknife replication of
the estimate ξ̂. The estimates of the bias and variance
of this estimator are

b̂iasja = (m− 1)
(
ξ̂(·) − ξ̂

)
,

V̂ja =
m− 1
m

m∑
i=1

(
ξ̂(i) − ξ̂(·)

)2

, (9)

where ξ̂(·) =
∑m

i=1 ξ̂(i)/m (Efron and Tibshirani
(1993)).

As it is clear from Equation (8) that two jackknife
samples differ only by two data points, and, hence,
are very similar. Thus, the simple standard devia-
tion of the jackknife replications does not represent
the standard error of the original estimator. Because
of this, the total variation in jackknife replicates pro-
vides an approximate estimate of the variance of ξ̂ as
given in Equation (9). For a class of estimators, it can
be shown that V̂ja is asymptotically unbiased as m
→ ∞ (Theorem 2.1, Shao and Tu (1995, p. 25)). One
may refer to Efron and Tibshirani (1993) and Shao
and Tu (1995) for a more detailed discussion.

In many applications, the unknown parameter ξ
is a smooth function of other easily estimable pa-
rameters such as the mean and the second moment.
Then, the corresponding estimator is a function of
the sample moments. This includes all the perfor-

mance measures listed in Table 1, for example. Let
yi1, yi2, . . . , yim be a set of independent and identi-
cally distributed observations. For simplicity, let ξ1 =
g(µ1), and ξ̂1 = g(ȳ1), with µ1 = E(y11) and ȳ1 =
(1/m)

∑m
j=1 y1j . Let s2

1 = [1/(m − 1)]
∑m

j=1(y1j −
ȳ1)2. Approximately, we have,

ξ̂1 − ξ1 = g′(µ1) [ȳ1 − µ1] + op (ȳ1 − µ1) , (10)

where op(·) is a negligible quantity when m is large,
and the jackknife variance estimate of ξ̂1 is approxi-
mately

V̂ja = [g′(µ1)]
2

m∑
i=1

(
y1(i) − ȳ1

)2 =
1
m

[g′(µ1)]
2
s2
1.

(11)

Under normality, ȳ1 − µ1 and s2
1 are independent.

Without the normality assumption, they are approx-
imately independent when m becomes large. Hence,

(ξ̂1 − ξ1)2

V̂ja

≈ m(ȳ1 − µ1)2

s2
1

,

which has an F distribution with degrees of freedom
1 and m − 1. Applied to our performance measure,
the F statistic is approximately the ratio of two in-
dependent quadratic forms. Thus, the F distribution
with 1 and n(m− 1) degrees of freedom is a reason-
able choice.

When the distribution of individual observations
is nearly symmetric, the normal approximation is
very good even when the sample size is not large.
However, the Taylor expansion in Equation (10) may
not be very precise for the typical size of m in exper-
imental designs. This may result in some bias in V̂ja

and some adjustment may be required, as seen in
Tables 6 and 7.
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