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Abstract

We consider a finite mixture model with k components and a kernel distribution from a

general parametric family. We consider the problem of testing the hypothesis k = 2 against

k ≥ 3. In this problem, the likelihood ratio test has a very complicated large sample

theory and is difficult to use in practice. We propose a test based on the likelihood ratio

statistic where the estimates of the parameters, (under the null and the alternative) are

obtained from a penalized likelihood which guarantees consistent estimation of the support

points. The asymptotic null distribution of the corresponding modified likelihood ratio test

is derived and found to be relatively simple in nature and easily applied. Simulations based

on a mixture model with normal kernel are encouraging that the modified test performs

well, and its use is illustrated in an example involving data from a medical study where the

hypothesis arises as a consequence of a potential genetic mechanism.
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1 Introduction

Finite mixture models are often used to study data from a population that is suspected

to be composed of a number of homogeneous subpopulations. For example, mixture

distributions are used routinely to accommodate the genetic heterogeneity thought to

underlie many human diseases. See, for example, Friedlander and Leitersdorf (1995);

Heiba, et al. 1995; Schork, Allison and Thiel, 1996; and Ott, 1999.

We consider a finite mixture distribution with probability density function (pdf)

f(x;G) =
∫
f(x, θ)dG(θ), (1)
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where f(x, θ) is a specified pdf (called the kernel function) with parameter θ ∈ Θ, and

G(θ) is a discrete cumulative distribution function (called the mixing distribution)

with a finite number of support points. Let θj ∈ Θ, j = 1, · · · , k be the support points

of G and π1, . . . , πk be the corresponding weights (
∑
πj = 1). Then

G(θ) =
k∑
j=1

πjI(θj ≤ θ),

where I(·) is the indicator function. The class of all finite mixing distributions with

k support points is denoted by Mk, i.e.,

Mk = {G(θ) =
k∑
j=1

πjI(θj ≤ θ) : θ1 ≤ · · · ≤ θk,
k∑
j=1

πj = 1}.

The class of all finite mixing distributions is M = ∪k≥1Mk.

We assume that the model (1) is identifiable by the mixing distribution G in the

sense that f(x;G1) = f(x;G2), for all x, implies G1 = G2. We also assume that the

parameter space Θ of the kernel function is compact. It should be noted that, while

the compactness of Θ is a basic technical requirement of the study (see, e.g., Ghosh

and Sen, 1985; Dacunha-Castelle and Gassiat, 1999), it may not be so restrictive in

applications since the parameter θ is typically known to be bounded.

The books by Titterington, Smith and Makov (1985), McLachlan and Basford

(1988) and Lindsay (1995) give extensive discussion of the background of finite mix-

ture models. Some important more recent developments can be found in Cheng and

Traylor (1995), Bickel and Chernoff (1993), Chernoff and Lander (1995), Lemdani

and Pons (1999), Dacunha-Castelle and Gassiat (1999) and Chen and Chen (2001),

Qin (1998), Liang and Rathouz (1999).

As noted above, finite mixture models are useful models for many types of data,

but they are non-regular. As a consequence, it is often difficult to apply standard

inferential procedures to finite mixture models. For example, it has long been recog-

nized that the likelihood ratio test statistic for the hypothesis G ∈ M1 (or k = 1)

does not have the usual chi-squared limiting distribution (Hartigan, 1985), and there

have been extensive discussions on testing this hypothesis. For example, Neyman

and Scott (1966) proposed the well known C(α) test. MaLachlan (1987) used a

bootstrap method to simulate the quantiles of the null distribution of the likelihood
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ratio statistic. Chen, Chen and Kalbfleisch (2001) developed a modified likelihood

approach which they showed to be simple to use and have superior performance in

many situations.

Constructing a test of the hypothesis G ∈M2 (or k = 2) is similar in principle to

k = 1. Perhaps due to its mathematical complexity, however, there is a less extensive

literature. Some approaches can be found in the diagnostic method (Roeder, 1994

and Lindsay and Roeder, 1997), the moment methods (Lindsay, 1989), and the model

selection approach (Chen and Kalbfleisch, 1996; Henna, 1985). If the component

distributions are known, Chen and Cheng (1997) discussed a bootstrap method. Even

though there is relatively little literature on the subject, the problem of testing k = 2

is also important in applications. For example, if a quantitative trait is determined

by a simple gene with two alleles, a mixture of two normal distributions might be

appropriate when the mode of inheritance is dominant, whereas a mixture of three or

more normals will be appropriate when the mode of inheritance is additive or more

complex in nature. In this and other examples in genetics and elsewhere, determining

the size of k can play a crucial role. More generally, we are interested in determining

how large k needs to be to adequately describe the data; in the interest of parsimony,

we prefer models with less complexity.

In this paper, we consider mixture models in the classMk and, with reference to

that class, test the null hypothesis that G ∈M2. Our approach is to define a modified

likelihood function on the classMk and interpret the null hypothesis within this class.

If k is large enough, the modified LRT has a relatively simple asymptotic distribution

under the null hypothesis. It is argued that this distribution is appropriate for a test

of the null hypothesis G ∈M2 against the general alternative G ∈M.

In Section 2, we give a list of conditions with some brief discussions. In Section

3, we introduce the modified likelihood ratio statistic, and show the consistency of

the modified maximum likelihood estimate of the mixing distribution. The limiting

distribution of the test statistic is given in Section 4, and a sketch of the derivation

is also included. Section 5 contains an example based on data from Roeder (1994),

and Section 6 presents some simulation results. Technical proofs are presented in the

Appendix.
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2 A Modified Likelihood Ratio Test Procedure

Let X1, ..., Xn be a random sample of size n from the model (1). One wishes to

test the hypothesis H0 : G ∈ M2. As remarked in the introduction, the ordinary

LRT or its bootstrap approximation is impractical for use. In this paper, a modified

from the LRT is proposed. The new procedure is described in this section. We will

proceed with the modified maximum likelihood estimation of G. Throughout the

paper, assume that the true mixing distribution is

G0(θ) = π0I(θ01 ≤ θ) + (1− π0)I(θ02 ≤ θ), (2)

where θ01 and θ02 are distinct interior points of Θ and 0 < π0 < 1. All expectations

and probabilities are with respect to this null distribution.

2.1 Modified likelihood function of G

The main complications of the asymptotic null distribution of the ordinary LRT un-

der the mixture model (1) are due to the fact that the maximum likelihood estimates

(MLE’s) of the weights πj can be very close to the boundary point 0. As a con-

sequence, some of the MLE’s of the support points θj’s become inconsistent, and

a quadratic approximation to the likelihood function fails. These complications are

expected to disappear if we can prevent the estimates of πj from being too close to 0.

This consideration results in the following definition of modified likelihood function.

For G(θ) =
∑k
i=1 πiI(θi ≤ θ) ∈ Mk with k ≥ 2, the modified likelihood function is

defined as

l̃n(G|k) = ln(G) + Ck
k∑
j=1

log πj, (3)

where Ck is some positive constant and

ln(G) =
n∑
i=1

log f(Xi;G)

is the ordinary likelihood function. The constant Ck determines the penalty size on the

proportion parameters πj of G. Though the asymptotic properties of the statistical

procedures based on l̃n(G|k) does not depend on choice of Ck, in practice choice of

Ck is expected to have some effects on performace of the statistical procedures for
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small or moderate sample sizes. One basis for the choice of Ck is to reflect the size of

Θ. See Chen, Chen and Kalbfleisch (2001) for further discussion.

The modified MLE of G is then obtained by maximizing l̃n over the space Mk.

We denote the modified MLE of G by Ĝ = Ĝ(k), and the modified MLE’s of θj and πj

by θ̂j and π̂j. Thus, the modified MLE of G under the null hypothesis is Ĝ0 = Ĝ(2)

that maximizes the modified likelihood (3) when k = 2. Let π̂0, θ̂01, and θ̂02 be the

modified MLE’s of π, θ01, and θ02, respectively, i.e.,

Ĝ0(θ) = π̂0I(θ̂01 ≤ θ) + (1− π̂0)I(θ̂02 ≤ θ).

2.2 An adaptive choice of k

It is important to note that the class Mk implicitly contains the models with fewer

than k distinct support points. These models are obtained by allowing the θj’s to

coincide with one another while still maintaining separate weights πj. In general, there

are infinitely many representations of any specific model with fewer than k distinct

support points. By convention, we will consider the representation that gives rise to

the maximum modified likelihood (3). More specifically, the true null distribution (2)

in M2 can be written as an element of Mk as

G
(k)
0 =

k∑
j=1

π
(0)
j I(θ

(0)
j ≤ θ) (4)

where

θ
(0)
i = θ01, i = 1, ..., r0, and θ

(0)
i = θ02, i = r0 + 1, ..., k,

and

π
(0)
i =

π0

r0

, i = 1, ..., r0 and π
(0)
i =

1− π0

k − r0

, i = r0 + 1, ..., k.

In these expressions, r0 is chosen to minimize the penalty term

−Ck
[
r log

π0

r
+ (k − r) log

1− π0

k − r

]
. (5)

Note that

l̃n(G
(k)
0 |k) = Ck

[
r0 log

π0

r0

+ (k − r0) log
1− π0

k − r0

]
. (6)

We denote the class of all such two point distributions in Mk as M(0)
k .
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Note that r0 as defined in (5) is implicitly a function of the unknown weight π0

in the true null distribution and the order k of the mixture model. Without loss of

generality, we suppose that π0 < 0.5 and define

k∗ = min{k : r0 ≥ 2}, i.e. k∗ = [1.5/π0], (7)

where [x] is the smallest integer greater than or equal to x. The MLE of k∗ under

the null hypothesis is k̂∗ = [1.5/π̂0]. The modified LRT is then based on the statistic

Rn = 2{ln(Ĝ)− ln(Ĝ0)},

where Ĝ is the modified MLE of G in Mk with k ≥ k∗.

2.3 The testing procedure

The modified LRT procedure proposed above for testing

H0 : G ∈M2 versus H1 : G ∈M

is summarized as follows.

Step 1. Obtain the estimate Ĝ0 which maximizes the modified likelihood function

l̃n(G|2) over M2 . Let π̂0 be the probability mass of Ĝ0 at the lower support

point and k̂∗ = [1.5/π̂0].

Step 2. Let k ≥ k̂∗ be any integer. Obtain the estimate Ĝ which maximizes l̃n(G|k)

over Mk.

Step 3. Compute the testing statistic Rn = 2{ln(Ĝ) − ln(Ĝ0)}. Reject the null

hypothesis H0 if Rn is large.

A critical value of Rn can be approximated by its limiting distribution. As pre-

sented in Corollory 1, for large sample size, the null distribution of Rn is asymptoti-

cally distributed as a mixture of chisquares as follows:

(
1

2
− α

2π
)χ2

0 +
1

2
χ2

1 +
α

2π
χ2

2,

where α is defined in Theorem 2.
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3 A Large Sample Theory of the Modified LRT

The exact null distribution of Rn is intractable, but a critical value or the p-value

can be approximated by the limiting null distribution of Rn . We will outline a

large sample theory of Rn in this section, while rigorous proofs of the asymptotic

results, together with a number of regularity conditions (Conditions 1-5), are given

in Appendix.

In the asymptotical analysis of Rn , we first treat k∗ = [1.5/π0] as given, so k ≥ k∗

replaces the requirement k ≥ k̂∗ in the modified LRT procedure. We will then show

that the limiting null distribution of Rn remains the same when k∗ is estimated by

k̂∗.

In the modified LRT procedure, the requirement of k ≥ k∗ ensures the simplicity

of the limiting distribution of Rn without loss of statistical consideration of the testing

problem. For details, see the remarkes following Theorem 2.

3.1 Consistency of the modified MLE of G

As similar to the ordinary LRT, the large sample behavior of the modified LRT relies

on the asymptotic properties of the estimate of G. Let Ĝ be the modified MLE of G

over Mk and put

Ĝ(θ) =
k∑
j=1

π̂jI(θ̂j ≤ θ).

Lemma 1 Suppose that Conditions 1-5 listed in Appendix hold and that the true

distribution is f(x;G0). For any given k > 0, there exists a positive constant ε = ε(k)

such that

lim
n→∞

P (π̂1 ≥ ε, · · · , π̂k ≥ ε) = 1.

An immediate and yet important implication of Lemma 1 is that under the null

distribution f(x;G0), all the modified MLE’s θ̂j are consistent; that is, the support

points of Ĝ converge to those of G0. For clarification, let θ0 = (θ01 + θ02)/2 be the

average of the support points of G0. Define

π̂ = Ĝ(θ0)
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which is the probability assigned to the support points θ̂j ≤ θ0 by the mixing distri-

bution estimate Ĝ. Then Ĝ can be expressed as a mixture as follows:

Ĝ(θ) = π̂Ĝ1(θ) + (1− π̂)Ĝ2(θ),

where Ĝ1(θ0) = 1 and Ĝ2(θ0) = 0. Similarly, we can express the null mixing distri-

bution G0 as

G0(θ) = π0G1(θ) + (1− π0)G2(θ),

where G1(θ0) = 1 and G2(θ0) = 0.

Theorem 1 Suppose that Conditions 1-5 hold and that the true distribution is f(x;G0).

Then

(a) π̂ = π0 + op(1).

(b) For i = 1, 2

|Ĝi −Gi| = op(1),

where |F1 − F2| is the supremum distance between two probability distributions

F1 and F2, namely,

|F1 − F2| = sup
x
|F1(x)− F2(x)|.

(c) All support points of Ĝi converge to those of Gi for i = 1, 2.

(d) The absolute moment
∫
|θ − θ0i|rdĜi(θ) = op(1) for i = 1, 2 and r > 0.

3.2 Limiting distribution of Rn.

Recall Rn = 2{ln(Ĝ)− ln(Ĝ0)}, where Ĝ maximizes l̃n(G) overMk with k > k∗. Let

Rn = R1n −R0n,

where R1n = 2{ln(Ĝ)− ln(G0)} and R0n = 2{ln(Ĝ0)− ln(G0)}. The limiting distribu-

tion of Rn will be established by the quadratic-type expansions of R1n and R0n. The

following quantities play an important role in our study: for i = 1, · · · , n and j = 1, 2

Yij(θ) =
f(Xi, θ)− f(Xi, θ0j)

f(Xi;G0)
, Y ′i (θ) =

f ′(Xi, θ)

f(Xi;G0)
,
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Y ′′i (θ) =
f ′′(Xi, θ)

f(Xi;G0)
, Y ′′′i (θ) =

f ′′′(Xi, θ)

f(Xi;G0)
. (8)

Quadratic expansion of R1n. Put R1n = 2
∑

log(1 + δi), with

δi =
f(Xi; Ĝ)− f(Xi;G0)

f(Xi;G0)
. (9)

A quadratic-type expansion of R1n can be given by the Taylor expansion of the

function log(1 + δ). As always in a large sample study, the key point and yet the

difficult part is the justification of negligibility of the remainder.

Using a typical technique of adding and subtracting an identical expression, we

have

δi = (π̂ − π0)∆i + π̂
f(Xi; Ĝ1)− f(Xi, θ01)

f(Xi;G0)
+ (1− π̂)

f(Xi; Ĝ2)− f(Xi, θ02)

f(Xi;G0)
, (10)

where

∆i = [f(Xi, θ01)− f(Xi, θ02)]/f(Xi;G0).

Note the symmetry of the second and third terms on the right side of (10). Note

also that the consistency result of Theorem 1 implies that all three terms converge to

zero in probability.

When θ − θ01 = op(1), we have

n∑
i=1

f(Xi, θ)− f(Xi, θ01)

f(Xi;G0)
≈ (θ − θ01)

n∑
i=1

Y ′i (θ01) +
1

2
(θ − θ01)2

n∑
i=1

Y ′′i (θ01),

where Y ′i and Y ′′i are defined in (8). Put

m̂ij =
∫

(θ − θ0j)
idĜj(θ).

Then
n∑
i=1

f(Xi, Ĝ1)− f(Xi, θ01)

f(Xi;G0)
≈ m̂11

n∑
i=1

Y ′i (θ01) +
m̂21

2

n∑
i=1

Y ′′i (θ01),

with a similar expression for Ĝ2, It follows that

n∑
i=1

δi ≈
n∑
i=1

[
(π̂ − π0)∆i + π̂m̂11Y

′
i (θ01) + (1− π̂)m̂12Y

′
i (θ02)

+ π̂
m̂21

2
Y ′′i (θ01) + (1− π̂)

m̂22

2
Y ′′i (θ02)

]
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Using the inequality log(1+δi) ≤ δi−δ2
i /2+δ3

i /3 and neglecting the high order terms

(see the Appendix), we get

R1n = 2
n∑
i=1

log(1 + δi) = Ln −Qn + op(1), (11)

where Ln = 2
∑n
i=1 δi and Qn =

∑n
i=1 δ

2
i

Note that Ln and Qn are, respectively, linear and quadratic functions of

t̂ = (π̂ − π0, π̂0m̂11, (1− π̂0)m̂12, π̂0
m̂21

2
, (1− π̂0)

m̂22

2
)τ .

Let

bi = (∆i, Y
′
i (θ01), Y ′i (θ02), Y ′′i (θ01), Y ′′i (θ02)) .

Finally, let

b =
n∑
i=1

bi and B =
n∑
i=1

bib
τ
i .

It can then be seen that Ln = 2bτ t̂ and Qn = t̂τBt̂ so that, from (11)

R1n ≈ Ln −Qn ≤ sup
t

[2bτt− tτBt] + op(1). (12)

where

t = (π − π0, π0m11, (1− π0)m12, π0
m21

2
, (1− π0)

m22

2
)τ

and π = π(G) = G(θ0) and mij = mij(G) =
∫

(θ − θ0j)
idG(θ). Thus, to find the

supremum in (12), t ranges over its admissible values generated by π and mij as G

ranges over the region defined by the alternative hypothesis.

Let bτ = (bτ1,b
τ
2), tτ = (tτ1, t

τ
2) and

B =

 B11 B12

B21 B22


where b1 and t1 are 3× 1 vectors and B11 is a 3× 3 matrix. Some algebra shows that

2bτt− tτBt = 2bτ1 t̃1 − t̃τ1B11t̃1 + 2b̃τ2t2 − tτ2B̃22t2, (13)

where t̃1 = t1−B−1
11 B12t2, b̃τ2 = bτ2 −bτ1B

−1
11 B12, and B̃22 = B22−B21B

−1
11 B12. When

t̃1 and t2 are regarded as free variables, we find that

R1n ≈ Ln −Qn ≤ bτ1B
−1
11 b1 + sup

t2

{2b̃τ2t2 − tτ2B̃22t2}+ op(1). (14)
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Since tτ2 = (π0
m21

2
, (1−π0)m22

2
), the supremum over t2 in (14) is taken within the first

quadrant of the R2 plane.

The upper bound in (14) can be attained and a useful quadratic-type expansion

of R1n is thus obtained. The result is summarized in the following lemma.

Lemma 2 Suppose that Conditions 1-5 hold and that the true distribution is f(x;G0)

with 0 < π0 < 1 and θ01 6= θ02. Then as n→∞

R1n = bτ1B
−1
11 b1 + sup

t2

{2b̃τ2t2 − tτ2B̃22t2}+ op(1),

where the supremum over t2 is taken within the first quadrant of the R2 plane.

It is important to note that all components of b have mean zero and that the

matrix n−1B converges to the covariance matrix of n−1/2b. This is the key ingredient

of obtaining the classical chi-squared limiting distribution.

Quadratic expansion of R0n. The analysis of R0n = ln(Ĝ0)− ln(G0) is similar

to that above for R1n except for the following difference: When k = 2 (the null

hypothesis), each of Ĝ1 and Ĝ2 has a single support point so that m̂2j = m̂2
1j. The

terms of Y ′′i are thus controlled by those of Y ′i , implying that in (13),

2b̃τ2t2 − tτ2B̃22t2 = op{2bτ1 t̃1 − t̃τ1B11t̃1}.

Thus, it follows that

R0n ≤ sup
t̃1

2bτ1 t̃1 − t̃τ1B11t̃1.

This gives the following lemma.

Lemma 3 Suppose that Conditions 1-5 hold and that the true distribution is f(x;G0)

with 0 < π0 < 1 and θ01 6= θ02. Then as n→∞

R0n = bτ1B
−1
11 b1 + op(1).

From Lemmas 2 and 3, it follows that

Rn = sup
t2

{2b̃τ2t2 − tτ2B̃22t2}+ op(1), (15)
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where the supremum over t2 is taken within the first quadrant of the R2 plane. As

remarked before, the two components of b̃2 have mean zero and the matrix n−1B̃22

converges to the covariance matrix of n−1/2b̃2. Depending on the nature of the alter-

native hypothesis, which can place various restrictions on the range t2, the limiting

distribution of Rn may have different forms. In the following, we state the simplest

and the most important case.

Theorem 2 Suppose that Conditions 1-5 hold and that the true distribution is f(x;G0)

with 0 < π0 < 1 and θ01 6= θ02. Suppose that k satisfies k ≥ k∗. Then the asymptotic

distribution of the modified LRT statistic Rn is that of the mixture

(
1

2
− α

2π
)χ2

0 +
1

2
χ2

1 +
α

2π
χ2

2,

where α = arccos(ρ) and ρ is the correlation coefficient between the two components

of b̃2.

At last, it is pointed out that the result of Theorem 2 remains true even if k∗ =

[1.5/π0] actually has to be estimated by k̂∗ = [1.5/π̂0] as proposed in the modified

LRT procedure.

Corollary 1 Suppose that Conditions 1-5 hold and that the true distribution is f(x;G0)

with 0 < π0 < 1 and θ01 6= θ02. Suppose that k ≥ k̂∗. The result of Theorem 2 remains

true, i.e., the asymptotic distribution of the modified LRT statistic Rn is that of the

mixture

(
1

2
− α

2π
)χ2

0 +
1

2
χ2

1 +
α

2π
χ2

2,

where α is given in Theorem 2.

Remark 1. As seen in the analysis, using k ≥ k∗ in the modified LRT procedure

enables the fitted second moments m̂j2 to achieve the upper bound. The re-

sulting limiting distribution becomes simple. On the other hand, the procedure

itself is suitable for any k ≥ 3. However, we would like to point out that the

limiting distribution with k < k∗ is stochastically less than the limiting distri-

bution with k ≥ k∗. Thus, the asymptotic result given by Theorem 2 could

be used for any k ≥ 3 and in the case of k < k∗, the asymptotic critical value

would be conservative with some loss in power.
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Remark 2. Note that the limiting distribution of Rn does not depend on k as long

as k ≥ k∗. This gives the advantage and flexibility to fit the finite mixture

models without bound on the number of mixture components.

4 Examples and Simulation Studies

4.1 Example 1.

The data set considered in Roeder(1994) was analyzed to illustrate the modified LRT

approach. The data set consists of 190 observations of red blood cell sodium-lithium

countertransport(SLC). As discussed by Roeder, geneticists are interested in SLC

because it is correlated with blood pressure and hence may be an important cause of

hypertension. The condition is also easier to study than blood pressure because the

latter is a complex trait that is highly variable and affected by environmental and

perhaps many genetic factors.

One possibility is that SLC is determined by a simple mode of inheritance com-

patible with the action of a single gene with two alleles, A1 and A2, which occur with

probabilities p and 1 − p. In this case, we might suppose that each observation is

composed of the sum of a genetic component and a normally distributed measure-

ment error. This would lead to a finite normal mixture model with common variance.

A single dominance model for the gene yields a finite mixture model with k = 2

components whereas an additive model yields a finite mixture model with k = 3. A

mixture model with more components is also possible if the mode of inheritance is

complex. Roeder (1994) gives more background and references as well as illustrating

some graphical methods of analysis.

Using the modified likelihood with C2 = 1, the best fit with k = 2 is a model with

θ1 = 0.236, θ2 = 0.443, π1 = 0.866 and π2 = 0.134. The common standard deviation

is σ = 0.070. For k ≥ 3, we fit a model with k = 4 and C4 = 0.5, and the maximum

modified likelihood estimates of the four location parameters 0.223, 0.223, 0.377, 0.571

with corresponding probabilities 0.382, 0.382, 0.205, 0.030. The common standard de-

viation is σ = 0.058. Note that the first and second location parameters are identical,

the outcome in fact chooses a model with k = 3. This fit is almost identical to that

given by Roeder (1994) except that the penalty term in the modified likelihood results
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in fitted probabilities that are shifted slightly toward the center of interval [0, 1].

Using a graphical diagnostic method, Roeder (1994) suggested that k = 3 is the

most appropriate model, which would correspond to the additive model in genetics.

The diagnostic curve for k = 2 also falls within the 90% confidence bands but only

just. The graphical analysis is suggestive that k = 3 is more appropriate, but it does

not give a conclusive answer.

The modified likelihood ratio statistic for testing k = 2 against k ≥ 3 is found to be

9.47. (The choices of C2 and C4 have very limited influence). The mixing parameter
α
2π

in the limiting distribution is estimated as 0.15. Accordingly, the asymptotic

p-value is 0.0025. Therefore, we can conclusively reject the null model k = 2. In

addition, models with k ≥ 4 do not outperform the model with k = 3 as is evident

from the fact that the overall modified MLE is concentrated on three points. We

further claim that there is no evident to suggest that k ≥ 4.

It should be noted that our theoretical result is based on the assumption that

the variance is known, whereas we have estimated the variance above. An important

generalization of this work would include models with unknown variance. We plan to

report on this extension in a future publication.

4.2 Similation studies

We have conducted simulations under finite normal mixture models. For each model

considered, we generated n = 100 and 200 samples to evaluate the modified LRT of

the hypothesis k = 2 against k ≥ 3. A slightly adjusted E-M algorithm (see Chen,

Chen and Kalbfleisch, 2001) was used to compute the maximum modified likelihood

estimate of the mixing distribution. Since the data sets were simulated, the choice

of initial values was simplified. We selected two or k initial support points which

were more or less consistent with the generating distribution. For example, if the

true distribution had 2 support points, we took the true values as the starting values

for fitting k = 2. For fitting k = 6, we spread 6 support points over the range of

data, and set all the initial weights equal. Since we were able to use the true values

in specifying initial values, convergence of the algorithm was not a problem. We did

some detailed investigations of special cases which indicated that we usually obtained

a global maximum or, in a relatively small percentage of cases, a local maximum that
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gave a likelihood value near the global maximum. (In the case of analyzing real data,

one should always try different initial values to be reasonably sure that the algorithm

converges to the global maximum. This was our approach in the example discussed

in the last section.)

For the simulations, we chose C2 = C6 = 1. We explored other choices of Ck,

but found little difference. We chose k = 6 since this was large enough to exceed

the critical k∗ for the cases considered. The results were not affected by selecting

other larger values of k. Once the estimate Ĝ0 is obtained, the the angle α in the

asymptotic distribution is easily estimated. The nominal p-value or significance level

can then be determined for each simulated sample.

We selected six distributions under the normal null model (See Table 1) to rep-

resent a variety of situations. When the difference between the two support points

is less than or equal to two standard deviations, the corresponding mixture density

has only one mode. One might expect difficulties in identifying the need for even as

many as two components for these model. We have done some preliminary investiga-

tions for such mixtures, but in the present study we concentrated attention on true

null mixture distributions that are bimodal, but with some variation in the degree

separation and sizes of the modes.

The rejection rates for normal models in Table 2 are based on 2,000 repetitions.

The significance levels are chosen as 10%, 5%, and 2.5%. According to the simulation

results, the null rejection rates are close to the nominal values for both n = 100 and

200.

Our simulation indicates that the null limiting distribution gives satisfactory ap-

proximations in all cases. These results are very encouraging and suggest that the

asymptotic approximations work reasonably well. More numerical work is needed,

however, to investigate how best to select the penalty constant and to identify the

applicability of the asymptotic results.

The rejection rates under the alternative models are usually substantially larger

than the significance levels. When n = 200, and the more extreme alternatives

are considered, the power of the test approaches 1 suggesting the consistency of the

method. The alternative models 1A, 2A and 3A give mixture densities that are similar

to those achievable under the null hypothesis. While the method still appears to be

consistent in these cases, there is less power as should be expected.

15



Appendix: Regularity Conditions and Proofs

A. Regularity conditions

Although the mixture model (1) is non-regular, it is reasonable and necessary to

require that the kernel function f(x, θ) be regular. We list these regular conditions

followed by brief discussion.

Condition 1. Wald’s integrability conditions. The kernel function f(x, θ) is

such that the mixture distribution f(x;G) satisfies Wald’s integrability conditions for

consistency of the maximum likelihood estimate (see Leroux, 1992). It is sufficient to

assume that

(i) E| log f(X;G0)| <∞, and (ii) there exists ρ > 0 such that for eachG, f(x;G, ρ)

is measurable and E log f(X;G, ρ) <∞, where

f(x;G, ρ) = 1 + sup
|Q−G|≤ρ

{f(x;Q)}.

Condition 2. Smoothness. The support of f(x, θ) is independent of θ and f(x, θ)

is three times differentiable with respect to θ in Θ. Further, f(x, θ) and its derivatives

with respect to θ, f ′(x, θ), f ′′(x, θ) and f ′′′(x, θ), are jointly continuous in x and θ.

Condition 3. Strong identifiability. For any θ1 6= θ2 in Θ,

2∑
j=1

{ajf(x, θj) + bjf
′(x, θj) + cjf

′′(x, θj)} = 0, for all x,

implies that aj = bj = cj = 0, j = 1, 2.

Note that Condition 3 is stronger than an ordinary identifiability condition. In

addition to f(x, θ) itself, f ′(x, θ) and f ′′(x, θ) are also identifiable. The strong identifi-

ability condition is first proposed by Chen (1995). It is related to the non-singularity

of the Fisher Information in regular models, and to the Bhattacharyya inequality

(Lehmann, 1983, pp. 129). Chen (1995) proves that location and scale kernels are

strongly identifiable if f(±∞, θ) = f ′(±∞, θ) = 0. Using the same argument, we can

show that all regular exponential families are strongly identifiable.

Condition 4. Uniform boundedness. There exists an integrable function g and

some δ > 0 such that |Yi(θ)|4+δ ≤ g(Xi), |Y ′i (θ)|3 ≤ g(Xi), |Y ′′i (θ)|3 ≤ g(Xi) and

|Y ′′′i (θ)|3 ≤ g(Xi) for all θ.
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Condition 5. Tightness. For j = 1, 2, the processes

n−1/2
n∑
i=1

Yij(θ), n−1/2
n∑
i=1

Y ′i (θ), n−1/2
n∑
i=1

Y ′′i (θ), n−1/2
n∑
i=1

Y ′′′i (θ)

are tight.

The tightness condition ensures the weak convergence of the processes. It is

noted that the tightness of n−1/2∑Yij(θ), n
−1/2∑n

i=1 Y
′
i (θ), and n−1/2∑n

i=1 Y
′′
i (θ) are

implied by Condition 4. To see this, consider

E{n−1/2
∑

Yij(θ1)−n−1/2
∑

Yij(θ2)}2 = E{Y1j(θ1)−Y1j(θ2)}2 ≤ Eg2/3(X1)|θ1−θ2|2.

The tightness then follows from Theorem 12.3 of Billingsley (1968, p95). The same

argument also applies to Y ′i , Y
′′
i and Y ′′′i .

B. Proofs

Proof of Lemma 1. From (6), it follows that l̃(k)
n (Ĝ) ≥ l̃(k)

n (G
(k)
0 ) = A > −∞. Also,

from Dacunha-Castelle and Gassiate (1999), ln(Ḡ) − ln(G0) = Op(1) where Ḡ is the

ordinary MLE of G. If follows that

A ≤ l̃(k)
n (Ĝ)− Ck

∑
log π̂j = ln(Ĝ)− ln(G0) ≤ ln(Ḡ)− ln(G0) = Op(1).

Thus
∑

log π̂j = Op(1) and the lemma follows. 2

Proof of Theorem 1. In light of Lemma 1, we can assume that the weight on

each support point of Ĝ is at least ε. Thus it is immediate that conclusions (a) and

(b) imply (c) and (d). The claims (a) and (b) are equivalent to the consistency of

Ĝ. Since the space of the mixing distributions G is compact, the consistency of the

modified MLE of G follows the classical proof given by Wald (1945). 2

Proof of Lemma 2 We start with the inequality

R1n ≤ 2
n∑
i=1

δi −
n∑
i=1

δ2
i + (2/3)

n∑
i=1

δ3
i , (16)

where δi is defined in (9). Thus, from (10), we have

n∑
i=1

δi = (π̂ − π0)
n∑
i=1

∆i + π̂
n∑
i=1

f(Xi; Ĝ1)− f(Xi, θ01)
f(Xi;G0)

+ (1− π̂)
n∑
i=1

f(Xi; Ĝ2)− f(Xi, θ02)
f(Xi;G0)

. (17)

17



Note that

n∑
i=1

f(Xi; Ĝ1)− f(Xi, θ01)

f(Xi;G0)
=
∫ {

n∑
i=1

f(Xi, θ)− f(Xi, θ01)

f(Xi;G0)

}
dĜ1(θ).

and a Taylor expansion of the integrand of this expression gives

(θ − θ01)
n∑
i=1

Y ′i (θ01) +
(θ − θ01)2

2

n∑
i=1

Y ′′i (θ01) +
(θ − θ01)3

6

n∑
i=1

Y ′′′i (η1),

where η1 is between θ and θ01. As a consequence, we have

n∑
i=1

f(Xi, Ĝ1)− f(Xi, θ01)

f(Xi;G0)
= m11

n∑
i=1

Y ′i (θ01) +
m21

2

n∑
i=1

Y ′′i (θ01)

+
1

6

∫
(θ − θ01)3

n∑
i=1

Y ′′′i (η1)dĜ1(θ).

A similar expression holds for the term with Ĝ2. Equation (17) becomes

n∑
i=1

δi =
n∑
i=1

[(π̂ − π0)∆i + π̂m11Y
′
i (θ01) + (1− π̂)m21Y

′
i (θ02)

+π̂
m12

2
Y ′′i (θ01) + (1− π̂)

m22

2
Y ′′i (θ02)

]
+ εn,

where

εn =
1

6

n∑
i=1

[∫
π̂(θ − θ01)3Y ′′′i (η1)dĜ1(θ) +

∫
(1− π̂)(θ − θ02)3Y ′′′i (η2)dĜ2(θ)

]
.

The inequality (16) can now be written as

R1n ≤ Ln −Qn + Cn + εn,

where Ln and Qn are defined in (11), and

Cn =
2

3

n∑
i=1

[
(π̂ − π0)∆i + π̂{m11Y

′
i (θ01) +m21Y

′′
i (θ01)}

+
1− π̂

2
{m12Y

′
i (θ02)}+m22Y

′′
i (θ02)}

]3
.

Note that only the leading terms in Qn and Cn are included since the remainders are

negligible and result in no higher order than the remainder in the linear term Ln.
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Furthermore, we shall show that the cubic term as well as the remainder εn can be

controlled by Qn.

First, consider εn. By Condition 5,

sup
θ∈Θ
|n−1/2

n∑
i=1

Y ′′′i (θ)| = Op(1).

Therefore |εn| ≤ n1/2(‖m31‖+ ‖m32‖)Op(1), where

‖mij‖ =
∫
|θ − θ0j|idĜj(θ).

Hence ‖m2j‖ = m2j and |mij| ≤ ‖mij‖ in general. Since ‖mij‖ = op(1) which is

implied by Theorem 1,

‖m3j‖ = m2jop(1),

we obtain

|εn| = n1/2(m21 +m22)op(1) ≤ {1 + n(m2
21 +m2

22)}op(1).

Under strong identifiability condition, Qn is a positive-definite quadratic form in

m11,m12,m21 and m22. Hence,

εn = op(Qn) + op(1).

Second, we consider the cubic term. Since,

Cn
Qn

≤ Op(1)
∑
i,j

‖mij‖ = op(1).

it follows that Cn = op(Qn).

To sum up, we have established an upper bound of R1n as follows:

R1n ≤ Ln −Qn(1 + op(1)) + op(1).

Following the analysis and notation in Section 3.2, we have

R1n ≤ bτ1B
−1
11 b1 + sup

t2

{2b̃τ2t2 − tτ2B̃22t2}+ op(1). (18)

The proof will be complete if it is shown that the upper bound in (18) is achievable.

To see this, let t∗1 = B−1
11 b1 and t∗2 be such that

sup
t2

{2b̃τ2t2 − tτ2B̃22t2} = 2b̃τ2t
∗
2 − t∗2

τ B̃22t
∗
2.
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We suppose that k ≥ k∗ and consider the mixing distribution G∗ ∈Mk whose support

points and weights θ∗j , and π∗j , j = 1, ..., k, are chosen so that π∗j = π
(0)
j , t1(G∗) = t∗1

and t2(G∗) = t∗2. Such a solution exists since, with k ≥ k∗ there is sufficient latitude

to fit both second order moments m̂j2 since, for n large enough we can simultaneously

partition the mass near θ01 and θ02 while maintaining weights that allow the penalty

term to converge to the penalty under the null.

¿From the fact that both t∗1 and t∗2 have an order of n−1/2, we also conclude

|G∗ − G0| = Op(n
−1/4), as Θ is assumed compact. We show next that R1n reaches

the upper bound with this choice of G.

Let R∗1n = 2{ln(G∗) − ln(G0)} = 2
∑

log(1 + δ∗i ), where the definition of δ∗i is

similar to that of δi. Consider the Taylor expansion

2
∑

log(1 + δ∗i ) = 2
n∑
i=1

δ∗i −
n∑
i=1

δ∗i
2(1 + γi)

−2,

where |γi| < |δ∗i |. Note that for a constant c

|δ∗i | ≤ c|G∗ −G0| max
1≤i≤n

{sup
θ∈Θ
|Yi(θ)|}.

By Conditional 4, |Yi(θ)|4+δ ≤ g(Xi) and E{g(Xi)} is finite, implying that

max
1≤i≤n

{sup
θ∈Θ
|Yi(θ)|} = op(n

1/4).

It follows that max{|γi|} = op(1) uniformly in θ. Therefore,

R∗1n = 2
n∑
i=1

δ∗i −
n∑
i=1

δ∗i
2{1 + op(1)}.

Applying the argument that led to (18) yields the require result

R∗1n = bτ1B
−1
11 b1 + sup

t2

{2b̃τ2t2 − tτ2B̃22t2}+ op(1).

Finally we note that

R1n −R∗1n = l̃(k)
n (Ĝ)− l̃(k)

n (G∗)− Ck{
k∑
j=1

log π̂j −
k∑
j=1

log π∗j}.

It follows immediately that l̃(k)
n (Ĝ)− l̃(k)

n (G∗) ≥ 0. At last, note that when k ≥ k∗, Ĝ

is consistent under the null hypothesis so that
∑

log π̂j −
∑

log π∗j + op(1) ≤ 0. Thus,

R1n ≥ R∗1n + op(1) and the proof is complete. 2
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Proof of Theorem 2. The proof starts with the equation (15). Without loss of

generality, we assume that the covariance matrix of n−1/2b̃2 has the following standard

form:

Σ =

 1 ρ

ρ 1

 .
Let (Z1, Z2)τ be bivariate normal with mean zero and covariance matrix Σ, and let

W1 = Z1 and W2 = (1 − ρ2)−1/2(Z2 − ρZ1), so that W1 and W2 are independent

N(0, 1) variates.

As n→∞, it can be seen that

Rn → sup
ξ1≥0,ξ2≥0

{2Z1ξ1 + 2Z2ξ2 − ξ2
1 − 2ρξ1ξ2 − ξ2

2}

= W 2
1 +W 2

2 − inf
ξ1≥0,ξ2≥0

{[W1 − (ξ1 + ρξ2)]2 + [W2 − (1− ρ2)1/2ξ2]2}

= W 2
1 +W 2

2 − inf
(η1,η2)∈S

{(W1 − η1)2 + (W2 − η2)2}.

The restrictions ξ1 ≥ 0 and ξ2 ≥ 0 are transformed into S = {(η1, η2) : η2 ≥ 0, η1 ≥
ρη2/
√

1− ρ2}, as illustrated in Figure 1.

�
�
�
�
�
�
�
�

H
HH

H
HH

H
HH

π − α

π/2

π/2

α

S

S∗
η1

η2

Figure 1: The cone S = {(η1, η2) : η2 ≥ 0, η1 ≥ ρη2/
√

1− ρ2}

and the dual cone S∗.

Since the norm of (W1,W2) and its direction vector are statistically independent, it

follows that:
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a) Given that (W1,W2) ∈ S, Rn has a χ2
2 distribution;

b) Given that (W1,W2) is in the dual cone (S∗ in Figure 1), Rn = 0;

c) Given that (W1,W2) is in the remaining region, Rn has a χ2
1 distribution.

This completes the proof. 2
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Table 1: Normal Mixture Model Specifications

Model support probability Model support probability

N 1 -1.5 1.5 0.50 0.50 N 4 -2.5 2.5 0.50 0.50

N 2 -1.5 1.5 0.375 0.625 N 5 -2.5 2.5 0.375 0.625

N 3 -1.5 1.5 0.25 0.75 N 6 -2.5 2.5 0.25 0.75

A 1A 0 -1.5 1.5 0.20 0.4 0.4 A 4A 0 -2.0 2.0 0.20 0.4 0.4

A 2A 0 -1.5 1.5 0.30 0.35 0.35 A 5A 0 -2.0 2.0 0.30 0.35 0.35

A 3A 0 -1.5 1.5 0.20 0.30 0.50 A 6A 0 -2.0 2.0 0.20 0.30 0.50

A 1B -3 -1.5 1.5 0.10 0.45 0.45 A 4B -4 -2.0 2.0 0.20 0.40 0.40

A 2B -3 -1.5 1.5 0.20 0.40 0.40 A 5B -4 -2.0 2.0 0.30 0.35 0.35

A 3B -3 -1.5 1.5 0.10 0.30 0.60 A 6B -4 -2.0 2.0 0.20 0.30 0.50
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Table 2: The nominal and power of the test

n = 100 n = 200

Model Rejection rates Rejection rates

N 1 0.0890 0.0490 0.0265 0.1000 0.0550 0.0320

N 2 0.0890 0.0530 0.0295 0.1060 0.0515 0.0305

N 3 0.0930 0.0435 0.0215 0.0975 0.0575 0.0290

N 4 0.1085 0.0540 0.0275 0.1190 0.0685 0.0350

N 5 0.1100 0.0600 0.0335 0.1225 0.0655 0.0345

N 6 0.1000 0.0510 0.0295 0.1080 0.0640 0.0345

A 1A 0.1240 0.0790 0.0465 0.1715 0.1075 0.0670

A 2A 0.1855 0.1085 0.0645 0.2760 0.1800 0.1125

A 3A 0.1270 0.0760 0.0410 0.1840 0.1210 0.0730

A 4A 0.3825 0.2750 0.1925 0.5675 0.4650 0.3735

A 5A 0.5505 0.4395 0.3415 0.8095 0.7390 0.6410

A 6A 0.3690 0.2720 0.1765 0.5675 0.4590 0.3680

A 1B 0.3215 0.2455 0.1145 0.4740 0.3835 0.3005

A 2B 0.5005 0.3950 0.2970 0.7290 0.6420 0.5565

A 3B 0.2960 0.2090 0.1510 0.4100 0.3200 0.2541

A 4B 0.9280 0.8845 0.8375 0.9950 0.9895 0.9830

A 5B 0.9680 0.9470 0.9110 0.9995 0.9990 0.9985

A 6B 0.9315 0.9005 0.8550 0.9965 0.9935 0.9915
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