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The phenotype of a quantitative trait locus (QTL) is oftenmodeled by a finitemixture of normal
distributions. If the QTL effect depends on the number of copies of a specific allele one carries,
then the mixture model has three components. In this case, the mixing proportions have a
binomial structure according to the Hardy--Weinberg equilibrium. In the search for QTL, a sig-
nificance test of homogeneity against the Hardy--Weinberg normal mixture model alternative
is an important first step. The LOD score method, a likelihood ratio test used in genetics, is a
favored choice. However, there is not yet a general theory for the limiting distribution of the
likelihood ratio statistic in the presence of unknown variance. This paper derives the limiting
distribution of the likelihood ratio statistic, which can be described by the supremum of a
quadratic form of a Gaussian process. Further, the result implies that the distribution of the
modified likelihood ratio statistic is well approximated by a chi-squared distribution. Simula-
tion results show that the approximation has satisfactory precision for the cases considered.
We also give a real-data example.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

In genetics, the phenotype of a quantitative trait locus (QTL) is often modeled by a finite mixture of normal distributions.
Assume that the QTL has two alleles A and a, then the corresponding genotypes AA, Aa, and aa induce three components in
the mixture model. The mixing proportions have a binomial structure according to the Hardy--Weinberg (HW) equilibrium
(Ott, 1999). In the absence of quantitative trait loci, the mixture model degenerates to a single-component normal model. Hence,
in the search for quantitative trait loci, a significance test of homogeneity against the HW-normal mixture model alternative is
an important first step (Jones andMcLachlan, 1991; Roeder, 1994). The LOD scoremethod, a likelihood ratio test used in genetics,
is a favored choice.

The class of normal mixture models is part of the general class of finite mixture models. Recently, there has been rapid
development in this area because of their great importance in a wide range of disciplines. Three recent books by Lindsay (1995),
McLachlan and Peel (2003), and Titterington et al. (1985) among others are devoted to the theory and methods of finite mixture
models. For genetic applications of finite mixture models, we recommend Schork et al. (1996) and the recent papers of Zhu and
Zhang (2004) and Tadesse et al. (2005).

Due to the non-regularity of finite mixture models, many classical asymptotic results do not apply. Many researchers have
contributed to the understanding of the asymptotic properties related to the analysis of finite mixture models. Hartigan (1985)
pointed out the peculiar behavior of the likelihood ratio statistics. Placing a separation condition, Ghosh and Sen (1985) derived
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the limiting distribution of the likelihood ratio statistic for an important class of finite mixture models. More recently, Chernoff
and Lander (1995), Dacunha-Castelle and Gassiat (1999), Garel (2001, 2005), Chen and Chen (2001, 2003), Liu and Shao (2003),
Charnigo and Sun (2004), and many others have worked on this class of problems and their results have led to much insight into
finite mixture models.

A general normal mixture model in the presence of a structure parameter has density function

f (x;G,�2) =
K∑
j=1

�j�(x;�j,�
2), (1.1)

where�(x;�,�2) is the univariate density function of a normal random variable withmean � and variance �2; and G is themixing
distribution on � with K support points such that the probability of observing �j is �j for j = 1, 2, . . . ,K.

Assume that a QTL has two alleles A and a and hence three genotypes AA, Aa, and aa. Their proportions are given by p2, 2pq,
and q2 under the HW equilibrium, where q = 1 − p and p is the population prevalence of A. The QTL determined by this gene
is modeled by a finite mixture of normal distributions with K = 3 and mixing proportions �1 = p2,�2 = 2pq, and �3 = q2. An
important genetic problem is to test the null hypothesis of H0 : pq = 0 or �1 = �2 = �3. Despite its illusive simplicity, general
results on the limiting distribution of the likelihood ratio test are not available. The result by Dacunha-Castelle and Gassiat (1999)
is fairly general yet not applicable to this model. Liu and Shao (2003) provided an insightful general principle. Chen and Chen
(2003) produced a concrete solution to a related problem, but it lacks generality.

In this paper, we derive the limiting distribution of the likelihood ratio test statistic for the HW mixture. In addition to
the fact that the HW mixture model has important genetic applications, it also presents a class of models where the discrete
mixing distributions are parameterized. Our result can be combined with the techniques discussed in Davies (1977, 1987) for
applications. We also apply the asymptotic result to the modified likelihood method (Chen et al., 2001, 2004). The resulting
chi-squared approximation to the modified likelihood ratio test (MLRT) statistic is found to be very satisfactory. Our results can
be easily generalized to other HW location-scalemixturemodels under some regularity conditions. Yet the process of verification
is tedious and differs from one model to another. For clarity, we present results only for this most useful model.

The paper is organized as follows. In Section 2,wepresent some consistency results for the estimation of the commonunknown
variance. The asymptotic distribution of the likelihood ratio statistic is presented in Section 3.1. Its application to the MLRT is in
Section 4. In Section 5, we report some simulation results, which confirm the accuracy of the chi-squared approximation. A real
genetic data example is also included. Proofs are given in Section 6 with some technical details deferred to the Appendix.

2. Consistency results

Let X1, . . . ,Xn be a random sample of size n from the mixture population (1.1). We wish to test H0 : K = 1 versus the HW
alternative H1 : K = 3,�1 = p2,�2 = 2pq, and �3 = q2 such that 0 < p <1 and �1 �= �2 �= �3. For convenience, both �j and p, q are
used. The likelihood function is given by

�n(G,�2) =
n∑

i=1

log

⎧⎨
⎩

3∑
j=1

�j�(Xi;�j,�
2)

⎫⎬
⎭ . (2.1)

Finite normalmixturemodels are identifiable in terms ofmixing distributions. That is, two distinct mixing distributions result
in two distinct finitemixturemodels. Amixing distribution, however, can be parameterized differently due to the exchangeability
of its components. To avoid non-identifiability of the HWmodel in this sense, we adopt a restriction 0�q� 1

2 .We further assume
that |�j|�M<∞ for j = 1, 2, 3, or the likelihood ratio statistic is stochastically unbounded when the sample size increases.

Let Ĝ0, �̂2
0 be the maximum likelihood estimators of G and �2 under the null K =1, and Ĝ1, �̂2

1 be the corresponding maximum
likelihood estimators under the HW alternative. The likelihood ratio statistic is

Rn = 2{�n(Ĝ1, �̂
2
1) − �n(Ĝ0, �̂

2
0)}. (2.2)

Without loss of generality, we assume that the true null distribution is N(�0,�2
0)with �0=0 and�2

0=1. Put Ĝ1(�)=
∑3

j=1�̂jI(�̂j��),

and Ĝ0(�) = I(�̂0��).
Even if the sample is from a null model, the maximum likelihood estimator �̂2

1 under the HW alternative is still consistent.
This result is established in the following two lemmas.

Lemma 1. Under the null hypothesis N(0, 1), there exist constants 0 < � <� <∞ such that

lim
n→∞ P(�� �̂2

1��) = 1.
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Proof. It is seen that

�n(G,�) =
n∑

i=1

log

⎧⎨
⎩

3∑
j=1

�j�(Xi;�j,�
2)

⎫⎬
⎭

= − n
2
log�2 +

n∑
i=1

log

⎡
⎣ 3∑
j=1

�j exp

⎧⎨
⎩−

(Xi − �j)
2

2�2

⎫⎬
⎭

⎤
⎦

� − n
2

⎛
⎝log�2 + �−2n−1

n∑
i=1

Hi

⎞
⎠ ,

where Hi = Hi(�1,�2,�3) = min{(Xi − �j)
2, j = 1, 2, 3}.

By the law of large numbers, and the easily verified tightness of the process, we have

n−1
n∑

i=1

Hi → E{H1(�1,�2,�3)}

in probability uniformly in the range of |�j|�M. See Rubin (1956) for the result of uniform convergence.
Since E{H1(�1,�2,�3)} >0 for all |�j|�M, and E{H1(�1,�2,�3)} is continuous in the compact region |�j|�M, we get

inf |�j|�ME{H1(�1,�2,�3)} >0. Thus, when n is large (but finite), either very small or very large �2 will lead �n(G,�2) to neg-

ative infinity. Hence, these �2 values cannot be maximum likelihood estimates. This leads to the conclusion. �

This result does not rely on K or the HW structure. It enables us to restrict �2 within a closed interval [�,�]. Once the relevant
parameters �j and �2 are confined into a compact space, the Wald (1949) type proof can be carried out easily which leads to the
following consistency result. The details are omitted.

Lemma 2. Under the null hypothesis, andwith the convention q� 1
2 ,wehave �̂1=op(1), �̂2�̂2=op(1), �̂3�̂3=op(1), and �̂2

1−1=op(1).

Consequently, either all support points of Ĝ1 stay close to the true value 0 or those that wander away are associated with
diminishing probabilities. Thus, the asymptotic distribution of the likelihood ratio statistic is determined by parameters in a small
range as indicated by this lemma.

3. Limiting distribution

We state the main result as follows. The proof will be given in Section 6.

Theorem 1. Let {�(s) : −M� s�M} be a Gaussian process with E{�(s)} = 0, Var{�(s)} = 1, and correlation function

	(s, t) = b(st)√
b(s2)b(t2)

,

where b(s) = s−3{exp(s) − 1 − s − s2/2}. Let 
 be a random variable with standard normal distribution such that

Cov{
,�(s)} = s2√
5!b(s2)

.

Then, under the null hypothesis, the likelihood ratio statistic Rn given by (2.2) satisfies

Rn → sup
|s,t|�M

{
�2(s) + �2(t) − 2	2(s, t)�(s)�(t)

1 − 	2(s, t)
+ 
2I(s = t = 0)

}
(3.1)

in distribution, as n → ∞.

We canuse the techniques ofDavies (1977, 1987) to approximate theupper-tail probabilities in applications. Another approach
is to use modified likelihood, as will be discussed. It will be seen that at s = t = 0, the process reduces to �2(0) + 
2 + �2 which
has a chi-squared distribution with three degrees of freedom, where � has a standard normal distribution and is independent
of (�(0),
)′. Further, the spike of the process at s = t = 0 implies that the null rejection rate is dominated by the outcomes in
this area.
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Table 1
The HW-normal mixture models used in the simulation

Model A1 A2 A3 A4

�1 −1.0 −1.0 −2.0 −2.0
�2 0.0 0.0 0.0 0.0
�3 1.0 1.0 1.0 1.0
p 0.5 0.3 0.5 0.3

4. Application to the modified likelihood method

The modified likelihood approach (Chen, 1998; Chen et al., 2001, 2004) penalizes models with small mixing proportions. It
effectively prevents the over-fittings caused by spurious mixing components with very low mixing proportions. As a result, all
parts of the mixing distribution are consistently estimated. When used for a test of homogeneity, it automatically focuses on the
region where s = t = 0 as discussed in the last section. Hence, the modified likelihood method is expected to be highly efficient.
The ultimate advantage of this method is the simplicity of its limiting distribution for many commonly used models.

The modified likelihood for the current problem is defined as

�̃n(G,�2) = �n(G,�2) + C
3∑

j=1

log�j

for some positive constant C. The usual choice is C = 1 which has been found satisfactory in many investigations (Chen, 1998;
Charnigo and Sun, 2004; Zhu and Zhang, 2004) as well as in our simulation. In applications, we recommend a pilot simulation
study being conducted to ensure the null type I error is close to the nominal value. If the simulated null rejection rate is more
than 5.5% when the nominal level is 5%, C should be increased. Yet, our experience indicates that such a suitable C can be found
quickly. Let G̃1 and �̃2

1 be themaximummodified likelihood ratio estimators of G and �2. Let G̃0 and �̃2
0 be themaximummodified

likelihood ratio estimators of G and �2 under the null model. The modified likelihood ratio statistic is defined as

R̃n = 2[�n(G̃1, �̃
2
1) − �n(G̃0, �̃

2
0)].

The most important property of the modified likelihood method for finite mixture models is that �̃j → 0 for all j=1, 2, 3. This can
be verified by using Theorem 1, similarly to the proof of Theorem 1 in Chen et al. (2001). We ignore the technical details here.
Asymptotically, this claim reduces to

R̃n�2 sup
|�j|� �0,j=1,2,3

{�n(G,�2) − �n(Ĝ0, �̂
2
0)} + op(1)

for any �0 >0. That is, the limiting distribution of R̃n is bounded by Rn with M = �0. In Section 6.2, a result summarized in the
following lemma will be shown.

Lemma 3. Under the same assumptions as Theorem 1,

2 sup
|�j|� �0,j=1,2,3

{�n(G,�2) − �n(Ĝ0, �̂
2
0)}�

5∑
k=3

{∑n
i=1Y

(k−1)
i }2∑n

i=1{Y(k−1)
i }2

+ op(1)
d−→
23,

where the Y(k−1)
i , k = 1, . . . , 5 are defined in Section 6.

This lemma implies that R̃n has 
23 as an asymptotic upper bound. Simulation shows that R̃n is well approximated by 
23. One
may be interested in the theoretical aspect of finding the exact limiting distribution of the modified likelihood ratio statistic.
This is a technical problem for future research.

5. Simulation and an example

Simulation:We generated 2000 samples of size n=200 and 500 from a standard normal distribution and compared the sample
quantiles of R̃n with the quantiles of the 
23 distribution. The modification constant C was set to 0. 0 and 1. 0. When C = 0. 0, R̃n
becomes the ordinary likelihood ratio statistic, whereas when C = 1. 0, R̃n is a modified likelihood ratio statistic. We used the
EM-algorithm with eight random initial values plus the true value of the parameters to compute the statistics of the MLRT.
Fig. 1 contains four Q--Q plots corresponding to the two statistics with respect to the chi-squared distribution with three degrees
of freedom for n = 200 and 500. The chi-squared approximation is liberal for both tests when n = 200. When n = 500, the chi-
squared approximation improves substantially for bothmethods, particularly for theMLRT. This and other simulation experiences
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Fig. 1. Q--Q plots of the modified likelihood ratio statistics.

Table 2
Rejection rates for K = 1 versus the HWmixture model

C = 0 C = 1

Nominal 0.100 0.050 0.025 0.010 0.100 0.050 0.025 0.010
Null (n = 200) 0.134 0.074 0.041 0.019 0.119 0.069 0.039 0.017
Null (n = 500) 0.109 0.052 0.030 0.013 0.095 0.049 0.026 0.013
A1 (n = 200) 0.153 0.094 0.054 0.023 0.136 0.086 0.049 0.022
A2 (n = 200) 0.153 0.086 0.040 0.021 0.137 0.078 0.037 0.020
A3 (n = 200) 0.639 0.521 0.412 0.291 0.606 0.498 0.397 0.281
A4 (n = 200) 0.642 0.512 0.409 0.283 0.630 0.508 0.405 0.280

indicate that C = 1 is suitable in a wide range of applications. Only if controlling type I error is very important should one select a
larger value suggested by additional simulations. See Chen and Kalbfleisch (2004) for further discussion.

Table 2 contains simulated null rejection rates, powers of both ordinary andMLRTswith the 
23 approximation. The alternative
models are specified in Table 1. The null rejection rates are very close to the nominal values. The agreement between the simulated
quantiles and those of the 
23 approximation is very good. On the other hand, the powers of the two methods are comparable
among the models considered.

The MLRT against simple heterogeneity alternatives, as discussed in Chen and Chen (2003) and Chen and Kalbfleisch (2004),
is also effective. In fact, some unreported simulation results show that it has a slightly higher power. However, its rejection does
not indicate whether the departure is in the direction of the HWmixture, which is the goal of the current method.

Real-data example: We re-analyze the data presented in Roeder (1994) to illustrate the MLRT. The data set consists of 190
observations of red blood cell sodium--lithium countertransport (SLC). As discussed by Roeder, geneticists are interested in SLC
because it is correlated with blood pressure and hence may be an important cause of hypertension. The condition is also easier to
study than blood pressure because the latter is a complex trait that is highly variable and affected by environmental and perhaps
many genetic factors.

One possibility is that SLC is determined by a simple mode of inheritance compatible with the action of a single gene with two
alleles, A1 and A2, that occur with probabilities p and q. In this case, we might suppose that each observation is composed of the
sum of a genetic component and a normally distributed measurement error. This would lead to a finite normal mixture model
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with common variance. A single dominance model for the gene yields a finite mixture model with K = 2 components whereas an
additive model yields a finite mixture model with K = 3. A mixture model with more components is also possible if the mode of
inheritance is complex. Roeder (1994) gives more background and references as well as some graphical methods of analysis.

With C=1 for a test against the HW-normalmixture alternative, we found the value of R̃n to be 36. 5 with fitted normalmeans
equaling 0. 58, 0. 37, 0. 22 and corresponding q̂ = 0. 144. Thus, there is strong evidence for rejecting the homogeneous model in
favor of the HW-normal mixture alternative model.

Since the outcome may simply reflect the need for a more complex model than a single normal, but not necessarily the HW-
normalmixturemodel, we also fitted a 2-component normalmixturemodel. The outcome is summarized as R̃n=27. 65with fitted
normal means equaling 0. 442, 0. 236 and corresponding proportions 0. 136, 0. 864. This result indicates that the HW-mixture is
more suitable than a simple 2-component mixture without a formal test.

If we fit a 3-component model without the HW structure or mixture models with more components, the log-likelihood is
increased by less than 0. 1 (over themaximum log-likelihood of HW). Hence, when regarded as a null model, the HW-mixturewill
not be rejected against any of these possible alternatives. Thus, there is no need to fit models more complex than the HW-normal
mixture.

6. Proofs

We divide the proof of Theorem 1 into several major steps, and leave some details to the Appendix. Write

Rn = 2{�n(Ĝ1, �̂
2
1) − �n(G0, 1)} − 2{�n(Ĝ0, �̂

2
0) − �n(G0, 1)} = R1n − R2n, (6.1)

where the last equality defines R1n and R2n. Under the null model, R2n is an ordinary likelihood ratio statistic. Hence the following
expansion is immediate and convenient for asymptotic derivation:

R2n = (
∑n

i=1Xi)
2∑n

i=1X
2
i

+ {∑n
i=1(X

2
i − 1)}2∑n

i=1(X
2
i − 1)2

+ op(1). (6.2)

Consequently, finding the asymptotic distribution of Rn relies on a careful analysis of R1n. Letting R1n(G,�2) = 2{�n(G,�2) −
�n(G0, 1)}, we have

R1n = sup{R1n(G,�2) : G(t) = p2I(�1� t) + 2pqI(�2� t) + q2I(�3� t),�2 >0}.
Let �0 >0 be arbitrarily small. We partition the parameter space in the above expression into four regions in terms of the relative
sizes of �j, j = 1, 2, 3 as follows:

(I) |�2|��0, |�3|��0;
(II) |�2|��0, |�3| > �0;
(III) |�2| > �0, |�3|��0;
(IV) |�2| > �0, |�3| > �0.

Because �̂1 = op(1) and �̂2 − 1 = op(1) by Lemma 1, we may further ignore parameters not satisfying |�1|��0 and |�2 − 1|��0.
Our asymptotic analysis of R1n builds on region-specific quadratic expansions of R1n(G,�2). Let R1n(I), R1n(II), R1n(III), and

R1n(IV) be its suprema over corresponding regions. It turns out that R1n(IV) asymptotically dominates R1n(II) and R1n(III). When
the parameters are confined to Region I, the model is ”almost” regular so that

R1n(I) − R2n ≈ 
23.

Two free-range parameters �2 and �3 in Region IV makes R1n(IV)−R2n behave like the supremum of a two-parameter stochastic
process. Hence, we get an overall picture of the asymptotic results.

Before presenting the technical details, we introduce some simplifying notation. Write

R1n(G,�
2) = 2

n∑
i=1

log(1 + �i)

with

�i = �i(G,�2) = �(Xi;G,�2) = f (Xi;G,�2)
�(Xi; 0, 1)

− 1.

Introduce

Yi(�,�2) = �(Xi;�,�2) − �(Xi; 0,�2)
��(Xi; 0, 1)
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and

Ui(�2) = �(Xi; 0,�2) − �(Xi; 0, 1)
(�2 − 1)�(Xi; 0, 1)

with Yi(0,�2) and Ui(1) being the corresponding continuity limits. Then a formal expansion of �i is as follows:

�i(G,�2) =
3∑

j=1

�j�jYi(�j,�
2) + (�2 − 1)Ui(�2). (6.3)

The expansion of Yi(�,�2), Ui(�2), and hence R1n(G,�2) is undertaken in the following subsections.
Let Y(k) = Y(k)(0, 1) be the kth partial derivative of Y(�,�2) with respect to � at � = 0 and �2 = 1. Let U(k) = U(k)(1) be the kth

derivative of U(�2) with respect to �2 at �2 = 1. Simple calculations reveal that

Yi(0, 1) = Xi,

Y ′
i (0, 1) = Ui(1) = 1

2 (X
2
i − 1),

Y ′′
i (0, 1) = 1

3 (X
3
i − 3Xi),

Y(3)i (0, 1) = 2U′
i(1) = 1

4 (X
4
i − 6X2i + 3),

Y(4)i (0, 1) = 1
5 (X

5
i − 10X3i + 15Xi).

Note that these have zero mean and are uncorrelated. We also denotemk = ∑3
j=1�j�

k
j , k�1 as the kth moment of G.

We now outline the stepping stones of the proof further. By (6.3), �i is a linear combination of Yi(�,�2) and Ui(�2). We first
expand these at �2 = 1 so that after ignoring high-order terms (”≈”),

�i ≈
3∑

j=1

�j�j{Yi(�j, 1) + (�2 − 1)Ai(�j, 1)} + (�2 − 1)Ui(1) + (�2 − 1)2U′
i(1)

with Ai(�, 1) to be introduced in (6.6).
Section 6.2 expands Yi(�, 1) and Ai(�, 1) in the above expression further at � = 0 for � in Region I. Ultimately, we arrive at

R1n(I) = sup
�2,G∈I

R1n(�
2,G) ≈

5∑
k=1

{∑n
i=1Y

(k−1)
i }2∑n

i=1{Y(k−1)
i }2

.

Expansions over the other three regions in the other subsections are obtained in the same way. In particular,

R1n(IV) ≈ (
∑n

i=1Yi)
2∑n

i=1Y
2
i

+ {∑n
i=1Y

′
i }2∑n

i=1Y
′
i
2

+ {∑n
i=1Vi(�2)}2∑n
i=1V

2
i (�2)

+ {∑n
i=1Zi(�2,�3)}2∑n
i=1Z

2
i (�2,�3)

.

The exact forms of R1n(II) and R1n(III) are not important because they are bounded by R1n(IV). The two expansions are
combined in the final subsection to give the conclusion of Theorem 1.

6.1. Expanding �i with respect to �2

In this subsection, �i in (6.3) is expanded at �2 = 1 through Ui(�2) and Yi(�,�2).
We first expand Ui(�2) as

(�2 − 1)Ui(�2) = (�2 − 1)Ui(1) + (�2 − 1)2U′
i(1) + �1i(�

2). (6.4)

Note that (�2 − 1)−3�1i(�2) has mean zero (including the case of �2 = 1). As a stochastic process, it is easily shown that n−1/2

(�2 − 1)−3∑n
i=1�1i(�

2) is tight in a neighborhood of �2 = 1. Thus, uniformly in a small neighborhood of �2 = 1,

n∑
i=1

�1i(�
2) = (�2 − 1)3Op(

√
n). (6.5)

Next, we expand Yi(�,�2). Put

Ai(�,�2) = (�2 − 1)−1{Yi(�,�2) − Yi(�, 1)} (6.6)
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with Ai(�, 1) being the corresponding continuity limit. We have

Yi(�,�2) = Yi(�, 1) + (�2 − 1)Ai(�, 1) + �2i(�,�
2),

where

�2i(�,�
2) = (�2 − 1)2

{
Ai(�,�2) − Ai(�, 1)

�2 − 1

}
.

Similarly to the case for �1i(�2), it is seen that

n∑
i=1

3∑
j=1

�j�j�2i(�j,�
2) = (|m1| + m2)(�

2 − 1)2Op(
√
n). (6.7)

In summary, we have

�i =
3∑

j=1

�j�j{Yi(�j, 1) + (�2 − 1)Ai(�j, 1)} + (�2 − 1)Ui(1) + (�2 − 1)2U′
i(1) + {�1i(�2) + �2i(�,�

2)} (6.8)

with the order of
∑

i{�1i(�2)+ �2i(�,�2)} assessed by (6.5) and (6.7). Expanding the terms in the above expression at � = 0 in the
four regions, and therefore obtaining corresponding expansions of R1n(G,�2), are the tasks of the next three subsections.

6.2. Expansion of R1n(G,�2) in Region I

In this subsection, Yi(�, 1), Ai(�, 1), and Ui(�) in (6.8) are expanded at � = 0, and hence that of R1n over Region I.
When � is in a small neighborhood of � = 0, we write

Yi(�, 1) − Yi(0, 1) =
4∑

k=1

�k

k!
Y(k)i (0, 1) + �3i(�). (6.9)

Note that �−5�3i(�) has zero mean and finite variance. As a stochastic process in �, n−1/2�−5∑n
i=1�3i(�) is tight in |�|�M.

Thus sup|�|�Mn−1/2�−5∑n
i=1�3i(�) = Op(1). Hence,

3∑
j=1

�j�j
n∑

i=1

�3i(�j) = m6Op(
√
n) (6.10)

uniformly over |�j|�M.
We also need to expand Ai(�, 1) defined in (6.6). Direct calculation shows that

Ai(�, 1) = {(Xi − �)2 − 1}�(Xi;�, 1) − (X2i − 1)�(Xi; 0, 1)
2��(Xi; 0, 1)

.

By expanding �(Xi;�, 1)/�(Xi; 0, 1) = exp{�Xi − �2/2}, we easily find

Ai(0, 1) = 1
2 (X

3
i − 3Xi) = 3

2Y
′′
i ,

and

dAi(�, 1)
d�

∣∣∣∣
�=0

= A′
i(0, 1) = 1

4
(X4i − 6X2i + 3) = Y(3)i .

Hence, we may write

Ai(�, 1) = Ai(0, 1) + �Y(3)i + 1
2�2A′′

i (0, 1) + �4i(�). (6.11)

Similarly to (6.10), we note that

3∑
j=1

�j�j
n∑

i=1

�4i(�j) = m4Op(
√
n). (6.12)
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Combining these expansions, we get

�i = m1Yi + (�2 − 1 + m2)Y
′
i + 1

2m3Y
′′
i + 1

6 {3(�2 − 1)2 + m4 + 6(�2 − 1)m2}Y(3)i + 1
24m5Y

(4)
i + �5i (6.13)

with �5i having the order assessment

n∑
i=1

�5i = {m6 + (|m1| + |m3| + m4)|�2 − 1| + (|m1| + m2)(�
2 − 1)2 + |�2 − 1|3}Op(

√
n).

The leading terms in (6.13) are from a number of places:
∑4

j=0(1/j!)mj+1Y
(j)
i is from (6.9), (�2 − 1)Y ′

i + 1
2 (�

2 − 1)2Y(3)i is from

(6.4), (�2 − 1)m2 is from �Y(3)i in (6.11).
The terms in �5i are from the following places: (|m1| + m2)(�2 − 1)2 is from (6.7), (�2 − 1)3 is from (6.5), m6 is from (6.10),

(|m1|+ |m3|)(�2 −1) is from Ai(0, 1)+ 1
2�2A′′

i (0, 1) in (6.11), and (�2 −1)m4 is from (6.12). Note thatm1(�2 −1)2 has higher order
than m1(�2 − 1) but is included for completeness.

For notational simplicity, write s1 = m1, s2 = �2 − 1 + m2, s3 = m3/2, s4 = (m4 − 3m2
2)/6, s5 = m5/24. Hence, by keeping only

linear terms in sj, j = 1, . . . , 5, we may write

�i =
5∑

k=1

skY
(k−1)
i (0, 1) + �̃5i, (6.14)

where Y(0)i (0, 1) = Yi(0, 1). The spillover of a quadratic term in s2 is accommodated by letting �̃5i = �5i − 1
2 s

2
2Y

(3)
i . Note that

according to Lemma 2, we need consider only small values of s2j .

The order of the remainder can be presented in terms of s2j . The following lemma will be proved in the Appendix.

Lemma 4. (i)When �j → 0 for j = 1, 2, 3,m2
6 = o(

∑5
j=1s

2
j ).

(ii)When in addition �2 → 1,

{(|m1| + |m3| + m4)|�2 − 1| + m2(�
2 − 1)2 + |�2 − 1|3}O(√n) = o(1) +

⎛
⎝ 5∑
j=1

s2j

⎞
⎠o(n).

Region I contains parameter values satisfying the conditions in Lemma 4. Hence

n∑
i=1

�̃5i = op(1) +
⎛
⎝ 5∑
j=1

s2j

⎞
⎠op(n).

Using the inequality log(1 + x)�x − 1
2 x

2 + 1
3 x

3, and similarly to Chen and Chen (2003), we have

R1n(G,�
2) = 2

n∑
i=1

log(1 + �i)�2
n∑

i=1

�i −
n∑

i=1

�2i + 2
3

n∑
i=1

�3i

=
5∑

k=1

⎧⎨
⎩sk

n∑
i=1

Y(k−1)
i

⎫⎬
⎭ −

⎡
⎣ 5∑
k=1

s2k

n∑
i=1

{Y(k−1)
i }2

⎤
⎦ {1 + op(1)} + op(1).

Thus, over Region I,

R1n(I) = sup
�2,G∈I

R1n(�
2,G)�

5∑
k=1

{∑n
i=1Y

(k−1)
i }2∑n

i=1{Y(k−1)
i }2

+ op(1).

On the other hand, this upper bound is attained when

sk =
∑n

i=1Y
(k−1)
i∑n

i=1{Y(k−1)
i }2

for k = 1, . . . , 5 with appropriate choice of p,�1,�2,�3, and �2.
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That is, focusing on a very small region where all �1,�2,�3 are close to zero, the likelihood ratio statistic can be approximated
by the quadratic form shown. The conclusion of Lemma 3 also follows. For regular models, this kind of expansion provides the
justification of the usual chi-squared limiting distribution. In the context of the finite mixture model, the likelihood may attain
its maximum when �2 and �3 are not close to zero. That is why the proof does not stop here.

6.3. Expansion of R1n(G,�2) in Regions II and III

In this subsection, we expand Yi(�, 1), Ai(�, 1), and Ui(�) in (6.8) at � = 0 to obtain expansions of R1n over Regions II and III. In
Region II, �3 is outside of the small neighborhood of �0 = 0 while �1 and �2 are close to 0. The expansion of �i given by (6.14)
is still valid in principle. However, the order assessment of the residual does not work because �3 can be large. For example, m6
could be much larger thanm2 (rather than being a higher order quantity).

To accommodate this fact, we use a shortened expansion

Yi(�, 1) − Yi(0, 1) =
2∑

k=1

�k

k!
Y(k)i (0, 1) + �3i(�), (6.15)

where �3i(�) satisfies

2∑
j=1

�j�j
n∑

i=1

�3i(�j) = (�1�
4
1 + �2�

4
2)Op(

√
n).

Note that the �3i(�) here is different from the �3i(�) in the previous subsection.
Expanding Yi(�3, 1) at �3 =0 is not useful because in this case �43 is not a higher order infinitely small term. Instead, we define

Wi(�3) = �−3
3

{
Yi(�3, 1) − Yi(0, 1) − �3Y

′
i (0, 1) − �23

2
Y ′′
i (0, 1)

}
,

so that

�i = m1Yi(0, 1) + (�2 − 1 + m2)Y
′(0, 1) + 1

2m3Y
′′(0, 1) + �3�

4
3Wi(�3) + �4i

with

n∑
i=1

�4i = {(�1�41 + �2�
4
2) + (|m1| + m2 + |m3| + m4)|�2 − 1| + |�2 − 1|2}Op(

√
n).

The sources of all the leading terms of �i(G,�2) can be easily identified as before. The contributions of Ai(�, 1) are all included
in the residuals in this case.

Similarly to, but different from, the previous subsection we define s1 =m1, s2 =�2 −1+m2, s3 =m3, and s4 =�3�
4
3. The order

assessment is given by a lemma here with its proof in the Appendix.

Lemma 5. When �1,�2 → 0, p → 1, and �2 → 1,

(�1�
4
1 + �2�

4
2)O(

√
n) = o(1) +

⎛
⎝ 4∑
j=1

s2j

⎞
⎠o(n)

and

{(|m1| + m2 + |m3|)|�2 − 1| + |�2 − 1|2}O(√n) = o(1) +
⎛
⎝ 4∑
j=1

s2j

⎞
⎠o(n).

At last, we have arrived at

n∑
i=1

�i = s1

n∑
i=1

Yi + s2

n∑
i=1

Y ′
i + 1

2
s3

n∑
i=1

Y ′′
i + s4

n∑
i=1

Wi(�3) + op(1) +
⎛
⎝ 4∑
j=1

s2j

⎞
⎠op(n).
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Hence, over Region II,

R1n�
n∑

i=1

(
2�i − �2i + 2

3
�3i

)

= 2

⎧⎨
⎩s1

n∑
i=1

Yi + s2

n∑
i=1

Y ′
i + 1

2
s3

n∑
i=1

Y ′′
i + s4

n∑
i=1

Wi(�3)

⎫⎬
⎭

−
⎡
⎣s21

n∑
i=1

Y2i + s22

n∑
i=1

(Y ′
i )
2 + 1

4
s23

n∑
i=1

(Y ′′
i )

2 + s24

n∑
i=1

{Wi(�3)}2
⎤
⎦ {1 + op(1)} + op(1).

The right-hand side would attain a maximum if we could make

s1 =
∑n

i=1Yi∑n
i=1Y

2
i
, s2 =

∑n
i=1Y

′
i∑n

i=1(Y
′
i )
2
, s3 = 2

∑n
i=1Y

′′
i∑n

i=1(Y
′′
i )

2
, s4 =

∑n
i=1Wi(�3)∑n
i=1W

2
i (�3)

.

Therefore,

R1n(II)�
(
∑n

i=1Yi)
2∑n

i=1Y
2
i

+ (
∑n

i=1Y
′
i )
2∑n

i=1(Y
′
i )
2

+ (
∑n

i=1Y
′′
i )

2∑n
i=1(Y

′′
i )

2
+ {∑n

i=1Wi(�3)}2∑n
i=1W

2
i (�3)

+ op(1).

Since s4�0, the above upper boundmay not be attained. However, it will be seen that R1n(IV) dominates R1n(II). Hence, an exact
expansion is not needed. Region III is a mirror version of Region II. Thus, we turn our attention to Region IV immediately.

6.4. Expansion of R1n(G,�2) in Region IV

In this subsection, we expand Yi(�, 1), Ai(�, 1), and Ui(�) in (6.8) at � = 0 to obtain an expansion of R1n over Region IV.
When both �2 and �3 are outside of the neighborhood of 0, only expanding Yi(�1, 1) at �1 = 0 is meaningful. We write

Yi(�1, 1) = Yi(0, 1) + �1Y
′
i (0, 1) + �3i(�1)

where
∑n

i=1�3i(�1)= �21Op(
√
n). Define Vi(�)= �−2{Yi(�, 1)− Yi(0, 1)− Y ′

i (0, 1)�}, which has one fewer term thanWi(�). We have

�i(G,�2) = m1Yi + (�2 − 1 + m2)Y
′
i + �2�

3
2Vi(�2) + �3�

3
3Vi(�3) + �4i. (6.16)

The order of �4i will be assessed using two cases as follows.
Case I: |�2 − �3|��0. Let �(�2,�3) = Cov{Vi(�2),Vi(�3)}/Var{Vi(�2)} and define Zi(�2,�3) = Vi(�3) − �(�2,�3)Vi(�2). Due to

identifiability, Var(Zi) >0 uniformly over |�2 − �3|��0. It is also seen that Vi(�2) and Zi(�2,�3) are uncorrelated for all �2 and �3.
Let s1 = m1, s2 = �2 − 1 + m2, s3 = �2�

3
2 + �3�(�2,�3)�

3
3, and s4 = �3�

3
3. We have

�i(G,�2) = s1Yi + s2Y
′
i + s3Vi(�2) + s4Zi(�2,�3) + �5i

with

n∑
i=1

�5i = {�1|�31| + (|m1| + m2 + �1|�31| + �2|�32| + �3|�33|)|�2 − 1| + (�2 − 1)2}Op(
√
n).

We further conclude that

n∑
i=1

�5i = op(1) +
⎛
⎝ 4∑
j=1

s2j

⎞
⎠op(n)

based on the following lemma to be proved in the Appendix.

Lemma 6. When �1 → 0, p → 1, and �2 → 1,

{�1|�31| + (|m1| + m2 + �2|�32| + �3|�33|)|�2 − 1| + (�2 − 1)2}O(√n) = o(1) +
⎛
⎝ 4∑
j=1

s2j

⎞
⎠o(n).
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When |�2−�3|��0, Var(s1Yi+ s2Y
′
i + s3Vi(�2)+ s4Zi(�2,�3)) is a positive definite quadratic form of s1, s2, s3, and s4 uniformly.

With the positive definiteness, we find

R1n�2
n∑

i=1

�i −
n∑

i=1

�2i + 2
3

n∑
i=1

�3i

= 2

⎧⎨
⎩s1

n∑
i=1

Yi + s2

n∑
i=1

Y ′
i + s3

n∑
i=1

Vi(�2) + s4

n∑
i=1

Zi(�2,�3)

⎫⎬
⎭

−
⎧⎨
⎩s21

n∑
i=1

Y2i + s22

n∑
i=1

(Y ′
i )
2 + s23

n∑
i=1

V2
i (�2) + s24

n∑
i=1

Z2i (�2,�3)

⎫⎬
⎭ {1 + op(1)} + op(1).

For each given �2 and �3 in the region, it attains a maximum when

s1 =
∑n

i=1Xi∑n
i=1X

2
i
, s2 =

∑n
i=1Ui(1)∑n
i=1U

2
i (1)

, s3 =
∑n

i=1Vi(�2)∑n
i=1V

2
i (�2)

, s4 =
∑n

i=1Zi(�2,�3)∑n
i=1Z

2
i (�2,�3)

.

Therefore,

R1n = (
∑n

i=1Xi)
2∑n

i=1X
2
i

+ {∑n
i=1(X

2
i − 1)}2∑n

i=1(X
2
i − 1)2

+ {∑n
i=1Vi(�2)}2∑n
i=1V

2
i (�2)

+ {∑n
i=1Zi(�2,�3)}2∑n
i=1Z

2
i (�2,�3)

+ op(1).

Case II: |�2 − �3|��0. When �2 and �3 are close, Vi(�2) and Vi(�3) are almost equal. Hence, we write

�i = m1Yi + (�2 − 1 + m2)Y
′
i + (�2�

3
2 + �3�

3
3)Vi(�2) + �3�

3
3{Vi(�3) − Vi(�2)} + �6i. (6.17)

We now show that �3�
3
3{Vi(�3) − Vi(�2)} is negligible in the final expansion.

As before, let s1 =m1, s2 =�2 −1+m2, and s3 =�2�
3
2 +�3�

3
3. Recall that �2 and �3 are close to each other, and both are larger

than �0 in absolute value. Hence, |s3| = �2|�32| + �3|�33|. Similarly, since |�3|�M and |�3 − �2|��0,

n∑
i=1

�3�
3
3{Vi(�3) − Vi(�2)} = �3�

3
3|�3 − �2|Op(

√
n) = s3op(

√
n) = op(1) + s23op(n).

Then, we have

�i = s1Yi + s2Y
′
i + s3Vi(�2) + �7i

such that

n∑
i=1

�7i = op(1) +
⎛
⎝ 3∑
k=1

s2k

⎞
⎠op(n).

It is therefore concluded that over this region,

R1n�2
n∑

i=1

�i −
n∑

i=1

�2i + 2
3

n∑
i=1

�3i

= 2

⎧⎨
⎩s1

n∑
i=1

Yi + s2

n∑
i=1

Y ′
i + s3

n∑
i=1

Vi(�2)

⎫⎬
⎭

−
⎧⎨
⎩s21

n∑
i=1

Y2i + s22

n∑
i=1

(Y ′
i )
2 + s23

n∑
i=1

V2
i (�2)

⎫⎬
⎭ {1 + op(1)} + op(1).

Clearly, R1n here is bounded by the supremum in Case I. Therefore, this case can be simply ignored in the final expression of
R1n(IV).
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6.5. Combining expansions

Recall that Rn = max{R1n(I),R1n(II),R1n(III),R1n(IV)} − R2n. By examining the expansions of R1n(IV) and R1n(II), we note that
R1n(IV)�R1n(II) + op(1). This can be seen as follows. As �2 → 0, we have Vi(�2) → Y ′′

i , and Zi(�2,�3) → �3Wi(�3). Hence,

sup
�2,�3∈IV

{∑n
i=1Zi(�2,�3)}2∑n
i=1Z

2
i (�2,�3)

� sup
�3

{∑n
i=1Wi(�3)}2∑n
i=1W

2
i (�3)

.

For the same reason, R1n(IV)�R1n(III) + op(1). Consequently, Regions II and III do not contribute to the maximum. We have

Rn = max{R1n(I),R1n(IV)} − R2n + op(1).

We now provide a simple description of the limiting distribution. It can be easily (but somewhat tediously) verified that
{∑n

i=1Vi(�2)}/{
∑n

i=1V
2
i (�2)}1/2 converges to the stochastic process �(s) as given in Theorem 1.

SinceWi(�2,�3) = Vi(�3) − �(�2,�3)Vi(�2), we have

R1n(IV) − R2n = sup
�2,�3∈IV

{
{∑n

i=1Vi(�2)}2∑n
i=1V

2
i (�2)

+ {∑n
i=1Vi(�3) − �(�2,�3)Vi(�2)}2∑n
i=1{Vi(�3) − �(�2,�3)Vi(�2)}2

}

→ sup
�2,�3∈IV

{
�2(�2) + �2(�3) − 2	(�2,�3)�(�2)�(�3)

1 − 	2(�2,�3)

}
(6.18)

in distribution, where 	(�2,�3) = Cov{�(�2),�(�3)}.
We now link R1n(I) − R2n into this picture. Recall that the first two terms in the expansion of R1n(I) − R2n are standardized∑n

i=1Y
′′
i and

∑n
i=1Y

(3)
i . At the same time, as �2 and �3 go to 0, we have Vi(�2) → Y ′′

i and V(�3) − r(�2,�3)V(�2) → Y(3). Hence,

lim
s,t,→0

{
�2(�2) + �2(�3) − 2	(�2,�3)�(�2)�(�3)

1 − 	2(�2,�3)

}
= �2(0) + �2,

where � is the weak limit of the standardized
∑n

i=1Y
(3)
i .

Let 
 be the limit of the standardized
∑n

i=1Y
(4)
i . It is seen that �(0), �, and 
 are independent standard normal randomvariables.

Further, for k = 2, 3, and 4,

Cov{Y(k),�(s)} = sk−2√
(k + 1)!b(s2)

.

Therefore, we have the expression

Rn → sup
|s,t|�M

{
�2(s) + �2(t) − 2	2(s, t)�(s)�(t)

1 − 	2(s, t)
+ 
2I(s = t = 0)

}

in distribution. When s= t = 0, the process reduces to �2(0)+ 
2 + �2 which has a chi-squared distribution with three degrees of
freedom.
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Appendix A.

Proof of Lemma 4. Without loss of generality, assume that |�1|� |�2|� |�3| �= 0. Let m̃k =mk/�
k
3, k= 1, . . . , 6. We first show that

m̃2
1 + m̃2

3 + (m̃4 − 3m̃2
2)

2 + m̃2
5�C0 >0 (A.1)

for some constant C0 uniformly in a neighborhood of � = 0.
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For this purpose, define �j = �j/�3 for j = 1, 2. Consider any (p,�1,�2) such that m̃1 = 0, m̃3 = 0, and m̃5 = 0. In matrix
representation

(p2, 2pq, q2)

⎡
⎣�1 �3

1 �5
1

�2 �3
2 �5

2
1 1 1

⎤
⎦ = 0.

Thus, the solution exists only if the matrix is singular:

�1�2(�
2
1 − 1)(�2

2 − 1)(�2
2 − �2

1) = 0.

There are few parameter configurations that solve the above equation. For each solution, it is easy to verify that |m̃4 − 3m̃2
2| >0.

Hence,

m̃2
1 + m̃2

3 + m̃2
5 + (m̃4 − 3m̃2

2)
2

is a continuous, nowhere zero function over the range of (p,�1,�2). Since the range of (p,�1,�2) is compact, we have shown (A.1).
It follows that m̃2

6�1� {m̃2
1+m̃2

3+m̃2
5+(m̃4−3m̃2

2)}/C0. Relating back to the sj values, we havem2
6��20m̃

2
6=o(s21+s23+s24+s25)

as �j → 0 for j = 1, 2, 3.

We now prove (ii). Since
√
ns�1 + ns2,

√
n(|m1| + |m3|)(�2 − 1) = √

n(|s1| + |s3|)(�2 − 1)� {2 + n(s21 + s23)}(�2 − 1).

Hence, as �2 → 1 and n → ∞, we have the required order assessment for these terms.
For the other terms, we have

m2(�
2 − 1)2 = m2{(�2 − 1 + m2) − m2}2 = m2(s2 − m2)

2�m2(s
2
2 + m2

2).

Sincem2 <1when �0 is small, we getm2(s22 +m2
2)� s22 +m6 =o({∑5

j=1s
2
j }1/2) as �j → 0. This gives the required order assessment.

Form4(�2 − 1) and (�2 − 1)3, we havem4(�2 − 1)= (s4 + 3m2
2)(s2 −m2), and |�2 − 1|3 = |s2 −m2|3�8(|s2|3 +m3

2). Both are

dominated by o({∑5
j=1s

2
j }1/2) as �j → 0. Hence, we have the required result and the final conclusion. �

Proof of Lemma 5. It can be verified that

(�21 − �22)(�2�
3
2) = �21(m3 − �3�

3
3) + (�3�3 − m1)

3 + 3�2�2(�3�3 − m1)
2 + 3(�2�2)

2(�3�3 − m1). (A.2)

Recall that �2 = 2pq and �3 = q3. The fact that |�3|��0 in Region II implies that the estimator q̂ → 0 when n → ∞ in probability.
Thus, we need consider only very small q and hence the situation where �21 − �22� 1

5 . That is, it suffices to show that every term
on the right-hand side of (A.2) tends to 0 as fast as |s1| + |s3| + s4.

Since |�3�33|� s4/�0 andm3 = s3, the first term is controlled by |s3| + s4. The remaining terms are controlled by |s1| + s4 for a
similar reason. Hence, we have

�2�
4
2 = o(�2�

3
2) = o(|s1| + |s3| + s4).

Further,

�1�
4
1 = �1(m3 − �2�

3
2 − �3�

3
3) = o(|s1| + |s3| + s4).

This completes the proof for the first part of the lemma.
For the second part, we note that (|m1| + |m3|)|�2 − 1| = o({s21 + s23}1/2). The crucial step is to show that the termsm2(�2 − 1)

and (�2 − 1)2 are under control.
As �1,�2 → 0, �3 → 0, and �2 − 1 → 0, we have

m2|�2 − 1| = m2|s2 − m2|�m2|s2| + m2
2 = o(|s2|) + m2

2

and

(�2 − 1)2 = (s2 − m2)
2�2s22 + 2m2

2 = o(|s2|) + m2
2.
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Thus, it suffices to show that m2
2 is under control. Since

m2
2�2(�1�

2
1 + �2�

2
2)

2 + 2(�3�
2
3)

2

= 2(�1�
2
1 + �2�

2
2)

2 + 2�3s4

�2(�1 + �2)(�1�
4
1 + �2�

4
2) + o(s4),

and given the first result of this lemma, we get m2
2 = o({∑4

j=1s
2
j }1/2) and the conclusion. �

Proof of Lemma 6. As �2 − 1 → 0, we havem1(�2 − 1) = o(s1). Similarly, �3�
3
3((�

2 − 1) = o(s4) and |�2�32|� |s3| + |�(�2,�3)s4|.
Because �(�2,�3) is continuous over the compact space |�2|�M and |�3|�M, it is bounded, and therefore �2�

3
2(�

2 −1)=o(|s3|+
|s4|).

For �1�
3
1, as �2,�3,�1 → 0,

�1|�1|3 = 1

�21
|m1 − �2�2 − �3�3|3

� 27

�21
{|s1|3 + �22(�2|�2|3) + �23(�3|�3|3)}

= o(|s1| + |s3| + |s4|).

Form2(�2 − 1) and (�2 − 1)2, we need work only onm2
2 similarly to the proof of Lemma 5. We have

m2
2�2�21�

4
1 + 2(�2�

2
2 + �3�

2
3)

2�2�21�
4
1 + 2(�2 + �3)

4/3(�2|�2|3 + �3|�3|3)4/3.

Hence we have Lemma 6. �
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