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SUMMARY

Observational data are often analysed as if they had resulted from a controlled study, and
yet the tacit assumption of randomness can be crucial for the validity of inference. We take
some simple statistical models and supplement them by adding a parameter � which re¯ects
the degree of non-randomness in the sample. For a randomized study � is known to be 0.
We examine the pro®le log-likelihood for � and the sensitivity of inference to small non-
zero values of �. Particular models cover the analysis of survey data with item non-
response, the paired comparison t-test and two group comparisons using observational
data with covariates. Some practical examples are discussed. Allowing for sampling bias
increases the uncertainty of estimation and weakens the signi®cance of treatment effects,
sometimes substantially so.
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1. INTRODUCTION

One of the greatest contributions of Fisher was his insight into the importance of
randomization, not only in the design of experiments and surveys but also as the
logical underpinning of methods of analysis. In the third chapter of The Design of
Experiments, Fisher (1966) (®rst edition 1935) discussed Darwin's famous data on
the heights of cross- and self-fertilized plants and showed that a permutation analysis
based on a simple model of randomization of treatment order to pairs gives almost
exactly the same P-value as the t-test. The essence of Fisher's argument is that it is
randomization, or an equivalent assumption of sampling from a population, which
justi®es the use of standard signi®cance tests and other methods of normal inference.
However, methods designed for analysing experimental data are also routinely
applied to observational data, sometimes (often?) with little or no recognition of the
fact that the absence of randomization has, in Fisher's sense, removed the grounds
for the validity of these methods. Essentially, randomization becomes a model for the
data rather than a factual statement of how the data were obtained.

Modern statistics places great emphasis on the testing of assumptions. But the
argument that randomization underpins the standard model assumptions is not
reversibleÐ the empirical veri®cation of these assumptions does not imply that
the hidden assumption of randomization is necessarily justi®ed so that standard
inference statements can safely be made. Often, interesting features of observational
data, such as a `signi®cant' di�erence between responses of subjects given di�erent
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treatments, can just as well be explained by biases in the way that those subjects have
been allocated to the treatments.
As an example to illustrate this, and to introduce the later discussions in this paper,

we take the analysis of data on a new form of dialysis (ambulatory peritoneal
dialysis) for patients with kidney disease, reported in Burton and Wells (1989). The
response of interest here is the rate of hospitalization, measured as the number of
days in hospital per annum. A feature of the data highlighted by Burton and Wells
(1989) is that this rate appeared to decrease over time, as seen in Fig. 1 which plots
log(rate) against date of commencement of therapy. The linear regression

y � 3:93ÿ 0:079x

gives a reasonable summary of the data, where y is log(rate) and x is the date in years
measured from 1980.
Patients who were not assigned to the new treatment were simply given the

standard therapy (haemodialysis), but the treatment allocations were not random.
Data on patients on both treatments were available, so we can model the selection
process by a probit analysis which gives

P�Sjx� � ��ÿ0:514� 0:17x� �1�

where S is the event of allocation to the new treatment and � is the standard normal
distribution function. Thus as time progressed an increasing proportion of patients
were allocated to the new therapy. But, much more importantly, each allocation
decision was made by the clinician involved and so would be in¯uenced by the
patient's clinical state, which could itself have a direct bearing on the outcome y. An
alternative explanation of the trend in Fig. 1 is that the average of y in fact remains
constant throughout but that it is the allocation process which has changed over
time. Although in this context y is only de®ned for the patients on the new treatment,
we could envisage extending its de®nition to other patients by letting y be the value
that would have been observed had the patient been allocated to the new treatment.
At least conceptually we can then extend equation (1) by allowing the probit to
depend on both x and y, and, if we make some further assumptions to be set out in
Section 2, then we can estimate this extended model by using the fact that the data in
Fig. 1 come from the conditional distribution of y given both x and S. This leads to
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P�Sjx, y� � ��ÿ7:79� 0:34x� 1:85y�: �2�
For x � 0 (1980 admission), only a large value of y will make the right-hand side of
equation (2) su�ciently large for that patient to have much chance of being selected,
but as x increases smaller values of y are more likely to be among those selected. The
model goes on to imply that

E�yjx, S� � 3:09� 0:75��ÿ0:514� 0:17x� �3�
where the function � is the Mills ratio de®ned by ��u� � ��u�=��u�, � being the
standard normal density function. Values of equation (3) are shown as the circles in
Fig. 1 and give just as good an explanation of the trend as the linear regression. The
question is, do the data in Fig. 1 mean that hospitalization rates have decreased
during the study, or is the trend just an artefact of the selection process? If the trial
had been randomized then of course this alternative model could not arise since the
design would ensure that the coe�cient of y in equation (2) would be known to be 0.

The approach of this paper is to extend some simple statistical models to include
an additional parameter � which models the degree of non-randomness in the
mechanism generating the data. The special value � � 0 is the random hypothesis,
that the data are as if they had resulted from a randomized experiment. We could
regard � as an unknown parameter along with those already in the model and
proceed to parametric inference in the usual way, or we could proceed by testing the
hypothesis that � � 0 and then take acceptance of this hypothesis as justi®cation for
the standard inference. But both approaches are fraught with di�culties, some of
which will be discussed here. The more cautious approach which we adopt is to study
inference conditional on a range of di�erent values of �, and to see how sensitively
our conclusions depend on departures of � from 0. We also study the (pro®le) log-
likelihood for � after maximizing out the other parameters, to see how much
information the data give us about �. Often this information will be very weak
(pro®le log-likelihood very ¯at) and we have to entertain a range of inferences given
by the range of values of � which could be considered plausible in the light of the
scienti®c context.

Section 2 discusses a generic model underlying the later sections of the paper and
sets out some basic properties and methods including the reasoning behind equation
(3) above. A direct application of this model is to item non-response, which is taken
up in Section 3. Section 4 shows that the same model leads to an extension of the
paired comparison t-test, in which the selection process now corresponds to the
allocation of treatment order within pairs. A slight modi®cation of the same model
leads to the two-sample t-test in Section 5.1, generalized to two-group comparisons
with covariates in Section 5.2. The paper concludes with some practical suggestions
and pointers to further work.

There is a large but scattered literature on sample selection issues relating to the
topics discussed in the paper, both in the statistical literature and, more prominently,
in the econometrics literature. Much statistical literature is concerned with missing
data, particularly in sample surveys. Basic aspects are covered in chapter 13 of
Cochran (1953). A major reference is Little and Rubin (1987), who give an excellent
survey of earlier papers and applications. The model of Section 3 of the paper is
discussed in section 11.4 of Little and Rubin (1987). Several other models have also
been studied, e.g. Little (1994) and Freedman (1986). Following Fay (1986), Little
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(1985a) and Baker and Laird (1988), Chambers and Welsh (1993) set out a rather
general theory for analysing categorical survey data with non-response. Wider
aspects of selection mechanisms in sampling are discussed in Sugden and Smith
(1984) and in many other papers. A central theme is that of ignorability, the
conditions under which missing data can, and cannot, be ignored in inference.
Explained in terms of equation (2), the selection method is `informative' (non-
ignorable) if the coe�cient of y is non-zero. Data are `missing completely at random'
if the coe�cients of both x and y are 0Ð the presence of missing data can then safely
be ignored. If the data are `missing at random' then the coe�cient of y but not x is
zeroÐ it is then possible to adjust the analysis for missing values or to impute the
missing values by using covariates. These conditions correspond to special cases of
the model in Section 3 as we shall explain. Similar issues arise in the analysis of
longitudinal data, questions of ignorability now relating to `drop-outs' during the
studyÐsee the recent paper and discussion Diggle and Kenward (1994). A broader
setting in inference is the idea of `coarsening' discussed in Heitjan and Rubin (1991)
and Heitjan (1993, 1994).
Although based on a completely di�erent model, the series of papers by

Rosenbaum (1987, 1988) and also Rosenbaum and Rubin (1983) and Rosenbaum
and Krieger (1990) is closely related to the sensitivity approach which we adopt later
in the paper. Rosenbaum's approach is compared with our more model-dependent
method in Section 4. Also see Rosenbaum (1995).
Questions of ignorability for missing data are placed in a wider context of

comparative studies in the literature on causality. Cox (1992) has discussed some
statistical aspects. Holland (1986) explains the basic issues involved and discusses the
approaches found in the literature from various disciplines including statistics (much
in¯uenced by the pioneering work of Rubin), philosophy, economics and sociology.
More recent contributions in the philosophy of science covering both formal and
empirical views of causality can be found in Humphreys (1994). The `fundamental
problem of causality' arises when it is impossible to give two treatments simul-
taneously to the same individual. Given data in which di�erent treatments are given
to di�erent individuals, we can only proceed to causal inference by making
assumptions, assumptions which, as Holland explains, are in principle untestable.
Some of these assumptions correspond to special cases of our model, as pointed out
in Section 5.
An application which brings these problems into sharp focus is the evaluation of

social programmes, e.g. estimating the e�ectiveness of an employment training
scheme. This is an area where randomized trials would be di�cult or impossible, and
where reliable methods based on observational data would be particularly valuable.
The question of whether the validity achievable by experimental studies (in which
subjects are randomized in or out of the programme) can also be achieved by non-
experimental studies (in which subjects are self-selected) is debated at length. Several
non-experimental estimates of e�ectiveness have been proposed but, as widely noted,
these can give quite di�erent answers in practice. This has lead Barnow (1987), and
others, to conclude that only experimental studies can be trusted. The alternative
view is put forward in Heckman et al. (1987). Heckman and Hotz (1989) reviewed
this literature and went on to list a menu of models and speci®cation tests for the
analysis of non-experimental data. They claimed that in applications their tests tend
to reject the models which lead to estimates that are in con¯ict with experimental
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evidence. Our approach is closer to that of Holland's contribution to the discussion
of Heckman and Hotz (1989), emphasizing sensitivity of inference to assumptions
rather than attempting model choice leading to a de®nitive analysis.

Gronau (1974) seems to have been the ®rst to formulate the model which we use
here (Section 2). See also the commentary on Gronau's paper by Lewis (1974). This
was followed by two important papers by Heckman (1976, 1979) and Nelson (1977)
which led to the extensive literature on sample selectivity bias in econometrics. A
useful introduction and discussion is in the text by Maddala (1983). Heckman's
correction for selectivity bias has been very in¯uential in economics, particularly
labour economics, and its application was considered almost routine practice among
empirical economists in the 1980s. Although the Heckman correction is consistent in
the technical sense, it does not always give sensible answers and is now no longer
regarded as the panacea for all data selection problems. Heckman's method has also
been criticized on theoretical grounds in that it depends sensitively on strong model
assumptions (Little, 1985b). We give a brief discussion of the Heckman method in
Section 2, but see Idsen and Feaster (1990) for a more detailed review and an
extended example. A topical example in the British context is Main and Shelly
(1990), who used the method in their evaluation of the UK government's youth
training scheme. Many variations of the Heckman approach have been proposed.
Stelcner et al. (1989) used full maximum likelihood for a model similar to that used in
Section 5.2 later, and other approaches include those by Duncan and Leigh (1980),
Lee (1982, 1983) and Manski (1989). Closely related is the econometrics literature on
tests for exogeneity; see for example Duncan and Leigh (1985) and references therein.
Lee and Chesher (1986) and Melino (1982) discussed tests for sample selectivity,
which we go on to discuss in Section 3.3.

2. BASIC MODEL

Let y be the response variable of interest, assumed linearly related to covariates x
through the standard multiple regression

y � �Tx� ��1: �4�
Here, vector x has m components and x1 � 1, so that the ®rst component of vector
� is the intercept term. Residual �1 is standard normal. This main model is
supplemented by a `selection equation'

z � 
Tx� �2: �5�
We assume that �2 is also standard normal, and that ��1, �2� is standard bivariate
normal with correlation coe�cient �.

Our two main applications of this model are to missing data (y is only observed if
z > 0; Section 3) and to comparative trials (a subject is allocated to treatment A if
z > 0 and to treatment B if z4 0; Sections 4 and 5). We assume that covariates x are
®xed and always observed. We never observe the actual value of z, but we always
know whether it is positive or negative. In both applications we have observations on
the conditional density f �yjx, z > 0�, which is

�ÿ1 �ÿ1�
Tx� �f�ÿ1�yÿ �Tx�g�f�1� �2�1=2
Tx� ��ÿ1�yÿ �Tx�g, �6�
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where

� � �

�1ÿ �2�1=2 :

Equation (6) follows from the fact that

P�z > 0jx, y� � �

�

Tx� ��ÿ1�yÿ �Tx�

�1ÿ �2�1=2
�
: �7�

The parameter � is a convenient reparameterization of �, which also has the
advantage of improving some of the linear approximations to be developed later. If
� � 0 then expression (6) is exactly the same as the marginal normal distribution of y
in equation (4). Analogous equations follow when conditioning on z4 0.
The simplest special case of this model is � � 
 � 0 and � � 1, i.e. y and z are

standard bivariate normal with correlation �. Then f�yjz > 0� is 2 ��y����y�, the
`skew-normal distribution' studied by Azzalini (1985). This is shown in Fig. 2 for a
few di�erent values of �. This immediately shows the di�culty in trying to estimate
the model from observations on the conditional distribution. Only when � is close to
ÿ1 or 1 is the conditional density appreciably skewed to the left or right (if j�j � 1
the conditional density is half-normal). Any attempt to estimate � from the shape
of the conditional density will therefore depend sensitively on the normality
assumptions.
It is easy to show that

E�yjx, z > 0� � �Tx� �� ��
Tx� �8�
where, as before, � is the Mills ratio �=�. This equation is the basis of Heckman's
two-stage estimation procedure (Heckman, 1976, 1979). First estimate 
 by noting
which cases have z > 0. This is a standard probit analysis since

P�z > 0jx� � ��
Tx�: �9�
Use the resulting estimate of 
 to form ��
Tx� for each of the cases with z > 0, and
then take this as an additional covariate in equation (8) and ®t by least squares. The
coe�cient of the additional covariate then gives an estimate of ��. The conditional
variance is
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var�yjx, z > 0� � �2�1ÿ �2 ��
Tx�f
Tx� ��
Tx�g�, �10�
so, by equating the average value of the right-hand side of equation (10) to the
observed residual variance of the second-stage regression, estimates of both � and �
can be obtained.

This was the method used in the example in Section 1. Here we identify selection to
the new treatment with the event z > 0, take x � �1, date), and constrain �2 to be 0.
Equation (1) is the ®rst-stage probit model, and equation (3) is the second-stage
regression. Equation (2) is the implied selection mechanism found by substituting the
estimated parameters into equation (7).

The Heckman method su�ers from several de®ciencies as pointed out by Little
(1985b) and others. If all the non-intercept components of 
 are 0, then 
Tx is a
constant, duplicating the intercept term already included, and so the second-stage
regression fails. Thus components of 
 have to be su�ciently large for the non-
linearity in ��
Tx� to safeguard the second-stage regression against multicollinearity
between ��
Tx� and x. But the method then depends sensitively on the assumed
linearity in equation (4). The requirements that the estimates satisfy j��j4 � and
�5 0 can be violated. In practice Heckman's method is only useful if restrictions are
placed on which covariates enter equations (4) and (5) to avoid the multicollinearity
problem, as is done in many applications of the procedure in the economics liter-
ature. But again the results depend sensitively on which components of � and 
 are
constrained to be 0, and di�erent choices could give sharply di�erent estimates of �.

The third central moment of f �yjx, z > 0�, indicating distributional shape, is

�3�3 ��
Tx�f�
Tx�2 � 3
Tx ��
Tx� � 2 �2�
Tx� ÿ 1g: �11�
Comparing equations (8), (10) and (11) we see that the mean (and hence most
inferences of interest) depends linearly on �, but the variance, and even more so the
skewness, depends on � much less sensitively, as we have already seen in Fig. 2.

A further reparameterization of � is useful in comparing our approach with that of
Rosenbaum (1987, 1988), and also as an aid to interpretation. If � is positive, values
of y with z > 0 are likely to be larger than those with z4 0, and vice versa if � is
negative. We can capture this in terms of a log-odds ratio by comparing the
conditional probability that z > 0 at the upper quartile of the distribution of y
with the probability at the lower quartile of y. From equation (7), this gives the
interquartile log-odds ratio as

� � log

�
�f�1� �2�1=2
Tx� 0:674�g�fÿ�1� �2�1=2
Tx� 0:674�g
�fÿ�1� �2�1=2
Txÿ 0:674�g�f�1� �2�1=2
Txÿ 0:674�g

�
: �12�

For a single summary we suggest replacing 
Tx in equations (12) by �ÿ1�n=N�, where
n is the number of observations out of N with z > 0, on the grounds that the expected
proportion of cases with z > 0 is the average of ��
Tx�. Approximating equation
(12) for small values of � then gives

� ' � 1:348N
2

n�Nÿ n� �
�

�ÿ1
�

n

N

��
: �13�

The linear approximation (13) is adequate for many practical purposes.
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3. MISSING DATA

A direct application of the model in Section 2 is to item non-response in surveys.
Consider a random sample of size N from a large population in which y is the
response of interest, assumed to be related to covariates x by equation (4). Some of
the y-values are missing, the response process being modelled by the sign of z in
equation (5). A latent variable interpretation of the model is to suppose that the trio
�x, y, z� exists for all members of the sample but they are not all recorded: vector x is
always observed, only the sign of z is observed (since we know which of the ys are
missing) and y is observed only if z is positive.
The crucial parameter in the model as far as ignorability is concerned is �. If � � 0

then the data are missing at random, and valid inference about the conditional
distribution of y given x can be made from the data on the complete cases.
Adjustments for missing data can then be made by using the covariates. If the non-
intercept terms in 
, as well as �, are 0 then no adjustment is needed and the missing
data are missing completely at random. If � 6� 0 then the missing data are
informative or non-ignorable. Often in practice the assumption that � � 0 cannot be
held with conviction, and so we shall be particularly concerned to study the
sensitivity of inference to local departures of � from 0.

3.1. Likelihood for Item Non-response
Suppose that the data are arranged so that �yi, xi� are observed for i � 1, 2, : : : , n

but only xi is observed for i � n� 1, n� 2, : : : , N. Then the log-likelihood function
is

L��, �, 
, �� � ÿn log �ÿ 1

2�2

Xn
1

�yi ÿ �Txi�2 �
Xn
1

log ��ui� �
XN
n�1

log��ÿ
Txi�

�14�
where

ui � �1� �2�1=2
Txi � ��ÿ1�yi ÿ �Txi�:
Note that, when � � 0, equation (14) is maximized by the usual estimates of � and �
based on the complete cases only and, for 
, by the vector of coe�cients in the probit
regression (9). Of these parameters, � is usually the principal object of inference.
It can be shown that for given �, and when the other parameters are constrained to

be solutions of @L=@� � @L=@� � @L=@
 � 0, the Hessian matrix of L is always
negative de®nite, and so the conditional maximum likelihood estimates �̂���, �̂���
and 
̂��� are uniquely de®ned for all �. This enables us to de®ne the pro®le log-
likelihood

L*��� � max
�;�;
j�
fL �, �, 
, �� �g � Lf�̂���, �̂���, 
̂���, �g:

It is helpful to separate the intercept terms in the model explicitly by writing

 � �
1, 
Tÿ1�T and � � ��1, �T

ÿ1�T. Write D2 � 
Tÿ1
ÿ1, which describes the strength of
the dependence of selection on the covariates.
Aspects of inference are relatively straightforward if D � 0. We then ®nd that
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L*0�0� � L*00�0� � 0, and so the pro®le log-likelihood is very ¯at near � � 0,
regardless of the data. Also

L*
000�0� � K1

Xn
1

�
yi ÿ �̂T�0�xi

�̂�0�
�3

�15�

and

L*
0000�0� � K2

Xn
1

��
yi ÿ �̂T�0�xi�

�̂�0�
�4

ÿ 3

�
, �16�

where K1 and K2 are simple polynomials in 
̂1�0� and �f
̂1�0�g. Thus the local shape of
the pro®le log-likelihood at � � 0 is determined by the skewness and kurtosis of the
distribution of observed residuals. If the model is correct and � � 0, so that the
residuals from the regression of observed y on x are normal, then the ®rst four
derivatives of L* are all 0, or approximately so, at � � 0.

Formulae (15) and (16) suggest that inference for � is very sensitive to dis-
tributional assumptions, and hence to the choice of any transformations before
analysis. Later examples show that L*��� is often quite ¯at near � � 0 even when
D 6� 0, suggesting that the data give little information about local departures of �
from 0.

3.2. Local Sensitivity to Selection
Of particular interest is the dependence of �̂��� on � locally to � � 0. Finding �̂ 0�0�

from equation (14) gives

�̂��� '
�Xn

1

xix
T
i

�ÿ1 Xn
1

yixi ÿ � �̂�0�
�Xn

1

xix
T
i

�ÿ1Xn
1

�f
̂T�0�xigxi: �17�

This linear estimate is closely related to Heckman's procedure outlined in Section
2. In equation (8) replace � by �̂�0�, � by � (which are approximately equal when both
are close to 0) and 
 by 
̂�0�, the probit estimate. Then equation (17) is just the value
of � which minimizes the sum of squared di�erences between the values of the right-
hand side of equation (8) and the observed values yi.

Again everything simpli®es if D � 0. For then 
̂1�0� � �ÿ1�n=N� and
�̂
0
1�0� � ÿ�̂�0� �f
̂1�0�g,

which tends to 0 as n! N. The other components of �̂ are insensitive to values of �
close to 0, as �̂ 0ÿ1�0� � 0. We also ®nd that �̂0�0�, 
̂ 01�0�, 
̂100�0� and �̂00�0� are all 0, and
so �̂��� � �̂�0� �O��2�, 
̂1��� � 
̂1�0� �O��3� and the linear approximation (17) is
correct to O��3�.

Some insight into what happens when D 6� 0 is given in the case when x � �1, xT
ÿ1�T

and xÿ1 is multivariate normal across the population. Asymptotically (N!1),
�̂ 0ÿ1�0� is a vector in the same direction as 
ÿ1. Hence all contrasts between non-
intercept components of � in directions orthogonal to 
ÿ1 are locally insensitive to
departures from � � 0. Some algebraic manipulation leads to
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�̂
0�0� � ÿ�

�
��
1� � 1

2
D2 �00�
1�


ÿ1��0�
1� �D2f��
1� �00�
1� � �000�
1�g�
�
�O�D4�:

If D is small the intercept �̂1��� depends on � much more sensitively than �̂ÿ1��� does.
Rather than attempting to estimate the whole vector �, we may only be interested

in a linear combination of its components such as

� � �T �x,

where �x � Nÿ1 �N
1 xi. Estimating � would then provide an estimate of the population

mean since we are assuming that the xs are sampled randomly.
Estimating � by �y � nÿ1 �n

1 yi, completely ignoring the missing data, is only
unbiased if � � 0 and either �ÿ1 or 
ÿ1 or both are 0. A better estimate, for a given �,
is �̂T��� �x. Another approach is to impute the missing values by estimating their
expectations

E�yjx, z < 0� � �Txÿ �� ��ÿ
Tx�,
giving

�̂��� � Nÿ1
Xn
1

yi �
XN
n�1
��̂T���xi ÿ � �̂��� �fÿ
̂T���xig�

 !
:

This estimate is particularly useful when, as is often the case in practice, a non-linear
transformation is involved. If we model y* � f�y� instead of y then the estimate of
the mean on the original scale is

Nÿ1
Xn
1

yi �
XN
n�1

f ÿ1��̂T���xi ÿ � �̂��� �fÿ
̂T���xig�
 !

: �18�

If the proportion of missing data is reasonably small, then the value of expression
(18) will not depend sensitively on which particular transformation is used.
The sensitivity of �̂��� with respect to � near 0 is measured by

�̂
0�0� � Nÿ1

XN
n�1
��̂0T�0�xi ÿ �̂�0� �fÿ
̂T�0�xig�:

If D � 0 this simpli®es to

�̂
0�0� � ÿ�̂�0� N

n
�

�
�ÿ1

�
n

N

��
, �19�

which tends to 0 rapidly as n=N tends to 1. Combining equation (19) with equation
(13) gives

�̂��� ÿ �̂�0� ' ÿ �̂�0��Nÿ n�
1:348N

�: �20�

It can be helpful to standardize di�erences in �̂ with respect to the standard
deviation of estimation. A crude estimate of this standard deviation is s=

p
n, where s
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is the sample standard deviation of the observed ys. This suggests the standardized
selectivity correction

f�̂��� ÿ �̂�0�gpn=s �21�
which, for small D, simpli®es to approximately

ÿ�1ÿ R2�1=2 �Nÿ n�pn
1:348N

�, �22�

where R is the multiple correlation coe�cient between y and x for the complete cases.
All these estimates are functions of � (or � or �). We are very cautious about any

proposal to estimate � by a single numerical value. The Heckman method attempts to
do this but is very unreliable, especially if D is not large. Maximum likelihood could
be used, but unless the sample size is extremely large the likelihood function is not
well behaved. We suggest setting up the calibration of � in terms of the interquartile
log-odds ratio � given in equation (13) and then examining plots of both L*��� and
�̂���. If L*��� attains a clear maximum far from 0, then this indicates that there is
either strong selection bias or that the model is inadequate, for example that the
population distribution of the residuals �1 is skewed. If the plot of �̂��� shows widely
di�ering estimates over a range of values of � which can be considered plausible in
the context of the survey, then this may simply be a warning that the study is ¯awed
and that little useful information about the population mean can be deduced.
Plotting expression (21) instead of �̂��� can suggest how the extra uncertainty in �
due to uncertainty in � can be assessed relative to the inherent level of sampling error.

In the context of analysing survey data our model is of course very simple and
often we shall be interested in the population distribution of several categorical
variables rather than a single continuous variable y. Chambers and Welsh (1993)
discussed a comprehensive model for categorical survey data. Their approach is to ®t
the conditional response probabilities (generalizing our P�z > 0jx, y�) by a variety of
log-linear models of the kind familiar for ordered categorical data (Agresti, 1984).
Although their setting is quite di�erent from ours, and much more complicated, their
conclusions are broadly similarÐ that the data themselves cannot identify any single
model for non-ignorable non-response, and that the way forward in practice is to
adopt a sensitivity approach involving a range of such models.

3.3. Coventry Skills Audit
To illustrate this section we consider some data from a local skills audit in

Coventry, UK. Full details of this survey are given in Elias and Owen (1989) and not
repeated here. One of the variables of interest is income (pounds per week), which is
related to (among other things) sex and age. The N � 1435 cases chosen for analysis
are all adults in the survey who were known to be in full-time employment, which we
assume can be taken to be a random sample of all employed adults in Coventry. Data
on sex and age were complete, but values of y were missing in 7.8% of cases, making
n � 1323. Although the response rate is commendably high, the possibility of
selection bias certainly cannot be ruled out: perhaps subjects with an unusually high
income may be more likely to refuse to provide information on their income to the
survey interviewer.
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The ®t of the model is illustrated for three di�erent transformations on y:
logarithmic, Box±Cox and square root. We take m � 4 and the components of x to
be 1, sex (coded 0 and 1), age (in years) and {ageÿmean(age)}2. Normal plots of the
®tted residuals from the least squares regressions ®tted to the observed cases suggest
that if � � 0 then all three are reasonable. Estimates of 
ÿ1 from equation (9) suggest
that D2 is small (not signi®cantly di�erent from 0), and so the approximations in
Sections 3.1 and 3.2 for small D are relevant.
Fig. 3 shows the pro®le log-likelihoods L* plotted against �Ðeach likelihood has

been scaled so that L*�0� � 0. The curves are very ¯at near � � 0 as expected, but the
point of maximum depends sensitively on the transformation used. By contrast, Fig.
4 displays values of �̂���, after allowing for each transformation as in expression (18),
showing that the estimates of the population mean for given � are much the same.
For the Box±Cox transformation, the standardized selectivity correction (21) is
plotted against � in Fig. 5, along with the simple linear approximation (22).
For a well-designed and well-executed survey such as this it is implausible that j�j

would be very large. With an overall rate of about 8%, a fairly extreme possibility
might be that the probability of missing data at the lower quartile of y is 4% whereas
at the upper quartile it is 12% (three times as large). This would give a log-odds ratio
of 1.18. If values of � between say ÿ 1.2 and 1.2 were considered plausible, then
from Fig. 5 the standardized selectivity correction lies between ÿ 2 and 2, directly
comparable with the conventional standardized sampling error of � 2. Roughly, the
extra uncertainty could be thought of as doubling the standard error of estimation.
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Fig. 3. Pro®le log-likelihood function for the skills data:Ð, log-transformation; ........., Box±Cox
transformation; - - - -, square-root transformation

Fig. 4. Estimated average for the skills data: Ð, log-transformation; ........., Box±Cox trans-
formation; - - - -, square-root transformation



Over this range of values the linear approximation (22) is very adequate and could be
used directly, avoiding the need to calculate any complicated estimates explicitly.

These data provide an opportunity to assess the e�ectiveness of standard
asymptotic formulae about the estimation of �. For the Box±Cox transformation
we have �̂ � 0:750 from Fig. 3. The Hessian matrix of equation (14) gives the
asymptotic standard error of �̂ to be 0.178. This was tested by simulating 50
independent samples of the same size from the ®tted model, and for each sample
determining �̂ by maximizing L* numerically. These values averaged 0.515 with a
standard deviation of 0.588, three times larger than the nominal asymptotic value.
Similar results were obtained for the other two transformations, suggesting that �̂ is
substantially biased and is much more variable than we might expect from
asymptotic theory.

As mentioned earlier, the second stage of the Heckman method of allowing for
selection bias is to ®nd the coe�cient of �f
̂T�0�xg in the right-hand side of equation
(8) by ordinary least squares. The usual signi®cance test based on its `t-statistic' is
then taken as a test of the null hypothesis of no selection bias. Melino (1982) showed
that this regression signi®cance test is exactly the same as the Lagrange multiplier
test, essentially the score test of the hypothesis that � � 0 based on equation (14).
This, to quote Melino (1982), `allows us to deduce that the simple regression test also
has desirable asymptotic properties'. Further asymptotic aspects are discussed by
Lee and Chesher (1986). These limited bootstrap results, however, suggest that to
assume that standard asymptotic theory applies even in relatively large samples is
problematical and at worst grossly misleading.

4. PAIRED t-TEST

Consider the classical design in which two treatments A and B are to be applied
in random order to N pairs of experimental units. We assume strict treatment
additivity, in the sense that for a given experimental unit the response which would
result if A were applied di�ers by a constant � from the response which would result
if B were applied. For a typical pair, let �r1, r2� be the responses if B were applied to
both members. Then we describe the within-pair variability by supposing that
r1 ÿ r2 � N�0, �2�.

Now apply the treatments in random order, or equivalently let z � N�0, 1� and
allocate (A, B) if z5 0 and (B, A) if z < 0. Then if z5 0 the responses are �r1 � �, r2�
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but are �r1, r2 � �� if z < 0. Hence the treatment di�erence y (response for A minus
response for B) is �� sign�z��r1 ÿ r2�. The complete model can therefore be written

y � �� � sign�z��1,
z � �2:

If ��1, �2� is bivariate normal, then this is closely related to the general model of
Section 2.
The correlation � between �1 and �2 measures the degree of selection bias in the

allocation process. A positive � would indicate that the choice of the unit given A is
biased in favour of the unit likely to give the higher response, so that the sample
mean will tend to overestimate �. If � < 0 then A would favour the unit likely to give
the lower response, giving an underestimate of �. Properly conducted randomization
of course would ensure that � � 0. The size of this allocation bias can also be
measured in terms of a log-odds ratio as in Section 2. Comparing the probability of
(A, B) when r1 ÿ r2 is at its upper quartile with the probability of (A, B) when r1 ÿ r2
is at its lower quartile gives

� � 2 log

�
��0:674��

��ÿ0:674��
�
: �23�

If � is not too large then � ' 2:15�.
It is obvious that the conditional distribution of sign��2��1 given �2 5 0 is the same

as its conditional distribution given �2 < 0 and hence must also equal its marginal
distribution. Thus the marginal distribution of y here is exactly the same as the
conditional distribution of y given z5 0 in the basic model in equations (4) and (5),
where we set m � 1, �1 � � and 
1 � 0. Properties of y in the paired experiment
model can thus be deduced directly from Section 2. In particular

E�y� � �� ��
�
2

�

�
,

var�y� � �2
�
1ÿ 2�2

�

�
and hence if � � 0 and N is large

t � �yp
var� �y� � N

�
�

�
2N

�ÿ 2�2

�
, 1

�
: �24�

In large samples, where estimation error in the variance can be ignored, t is just the
usual paired t-statistic for testing the hypothesis that � � 0. The hypothesis is
rejected at level � if

jtj > z�=2 � �ÿ1�1ÿ �=2�,

and so the asymptotic type I error is

�p
�p
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�

�
ÿ z�=2 ÿ �

�
2N

�ÿ 2�2

��
��

�
ÿ z�=2 � �

�
2N

�ÿ 2�2

��
: �25�

Of course this equals � if � � 0. Some values of expression (25) are shown in Fig. 6.
This shows that the test is very sensitive to departures of � from 0Ðeven a small
amount of selection bias such as � � 0:1 gives a type I error that is twice as large as
its nominal level when N � 100.

The log-likelihood function follows immediately from Section 3.1 and is

L � ÿN log �ÿ 1

2�2

XN
1

�yi ÿ ��2 �
XN
1

log �f��ÿ1�yi ÿ ��g:

As in that section, we ®nd that L*0�0� � L*00�0� � 0, and that L*000�0� and L*0000�0� are
proportional to the sample skewness and kurtosis of the ys respectively. Again the
shape of L* depends sensitively on the model speci®cation.

If �̂��� is the maximum likelihood estimate of the treatment e�ect then

�̂��� ' �yÿ
�
2

�

�
� �̂�0�: �26�

Thus for the standardized deviate

t��� � �̂���p
varf�̂���g

we have the simple approximation

t��� ' t�0� ÿ
�
2N

�

�
�

' t�0� ÿ 0:371N1=2�: �27�
This allows us to see the sensitivity of the `signi®cance' of the data to local departures
of � from 0.

As an example, take the famous data on heights of cross- and self-fertilized plants

�p �p

�p
�p
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Fig. 6. Type I error of the t-test (nominal 5% level):Ð, sample size 20; ........., sample size 50;
- - - -, sample size 100



(Darwin's data) analysed by Fisher (1966) and by many subsequent researchers.
There are N � 15 paired di�erences as follows (in eighths of an inch):

49, ÿ 67, 8, 16, 6, 23, 28, 41, 14, 29, 56, 24, 75, 60, ÿ 48.

These have �y � 20:93 and s � 37:74 giving t � 2:148. In this experiment (Darwin,
1876), pairs of seedlings produced from cross- and self-fertilization were grown
together so that members of each pair were reared under nearly identical conditions.
Here, randomization could mean randomizing the growing positions of each plant
within pairs, and allocation bias would be present if, for instance, the crossed
seedlings tended to be placed in positions of more sunlight. In that case � 6� 0 and
approximation (27) gives

t��� ' 2:148ÿ 1:44�: �28�
Even a small positive bias brings the value of t��� to below the conventional
percentage point. Unless we can be sure that � � 0, the evidence in these data for a
real e�ect is surely considerably weakened.
A graph of the pro®le log-likelihood L* is ¯at near 0 but has a marked cubic shape

reaching a maximum near � � ÿ1. The cubic shape results from the negative
skewness of the data caused by the two outliers. Interestingly, a negative value of �,
which is what the likelihood is indicating at face value, increases the size of the t-
statistic.
If the t-test used in this analysis is replaced by the Wilcoxon signed rank test, the

method of Rosenbaum (1987, 1988) gives an alternative approach to assessing
sensitivity to selection bias. Following Rosenbaum (1988), and simplifying and
adapting to the notation used here, we assume that the treatment orders are allocated
by

log

�
P�A, B�
P�B, A�

�
� vu, �29�

where u is a latent covariate speci®c to each experimental pair and v is a parameter,
assumed non-negative. Rosenbaum ®xes the arbitrary scale of u by supposing that u
lies in the ®nite interval �ÿ1, 1�. (Our u equals the di�erence between the two unit-
speci®c covariates de®ned in Rosenbaum (1988).)
The signed rank statistic is

T �
XN
1

qiIi

where qi is the rank of jyij and Ii is 1 if yi > 0 and 0 otherwise. Under the null
hypothesis y � ���1, with the sign determined by the treatment order. Hence

P�y > 0j�1� �
1

2

�
1� exp �vu� ÿ 1

exp �vu� � 1
sign��1�

�
which takes its maximum over u in �ÿ1, 1� when u � sign��1� and its minimum when
u � ÿsign��1�. These values of u give the corresponding bounds to the P-value for
testing the treatment e�ect. Equivalently, in large samples, the extremes of the
corresponding standardized deviate are tR��v�, where, for small values of v,
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tR�v� ' tR�0� ÿ v

�
3N�N� 1�
8�2N� 1�

�
:

For Darwin's data this is

tR�v� ' 2:045ÿ 1:70v: �30�
Only a very small positive value of v renders this `insigni®cant'.

The parameter � measures selection bias by comparing the allocation probabilities
for two cases (here pairs) at the upper and lower quartile of the variable governing
the allocation process. From equation (29), if we compare pairs with covariates u1
and u2 the log-odds ratio is v�u1 ÿ u2�. If we were to assume that the us are uniformly
distributed in �ÿ1, 1� and set u1 and u2 at the quartiles � 1

2
then this log-odds ratio is

simply v. Thus, in this sense, both � and v can be interpreted as log-odds ratios
measuring selection bias. Note that approximations (28) and (30) are rather similar.
We can also study the distribution of T implied by our model rather than by equation
(29), again with very similar results.

A crucial assumption in Rosenbaum's model is the ®nite range of u. In our
model the selection probit (given y) is unbounded, but the selection process is more
tightly speci®ed by a fully parametric model. Rosenbaum's method can be applied
to various generalizations of the signed rank statistic (Rosenbaum, 1988) and to
permutation inference in two-sample problems (Rosenbaum and Krieger, 1990) but
would be more complicated for other statistics (e.g. a t-test) and for more general
comparisons in the presence of covariates.

5. TWO-SAMPLE COMPARISONS

5.1. Two-sample t-test with Equal Groups
A small change to the model of Section 4 leads to the comparison of two

independent groups. The model is now

y � �� sign�z�� � ��1,
z � �2:

The interpretation is that we allocate treatment A if z5 0, in which case response y
has mean �� �, but allocate treatment B if z < 0, in which case y has mean �ÿ �. We
suppose that, of N experimental units, n are allocated to A giving data y1, y2, : : : , yn,
and the remaining Nÿ n are allocated to B with data yn�1, yn�2, : : : , yN. As n is
ancillary, conditioning on n will not change the likelihood function.

As before, the parameter � measures the degree of selectivity bias in the treatment
allocation. Imagine giving A to all N cases, and locate the lower and upper quartiles
of the responses. Then the interquartile log-odds ratio � compares the probabilities
that these two cases will be allocated treatment A rather than treatment B. The value
of � is given by formula (23), exactly as before. A fully randomized design would of
course ensure that � � 0. Conversely, � � 0 corresponds to the assumption of
`independence' in Holland's (1986) terminology.

In the obvious notation, the usual estimate of the treatment e�ect � is

�̂ � 1
2
� �y1 ÿ �y2�,
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and so

E��̂� � � � ��
�
2

�

�
and

var��̂� � �
2

N

�
1ÿ 2�2

�

�
�O�Nÿ2�:

Hence the asymptotic null distribution of the two-sample t-statistic is exactly the
same as expression (24), and so the asymptotic type I error of the t-test is the same as
in equation (25) and Fig. 6. The same conclusion follows, that the t-test is very
sensitive to non-randomness in the treatment allocation.
The log-likelihood is

ÿN log �ÿ 1

2�2

Xn
1

�yi ÿ �ÿ ��2 �
Xn
1

log �f��ÿ1�yi ÿ �ÿ ��g

ÿ 1

2�2

XN
n�1
�yi ÿ �� ��2 �

XN
n�1

log �fÿ��ÿ1�yi ÿ �� ��g:

Trivial modi®cations to the earlier calculations show that L*0�0� and L*00�0� are 0, but
that L*000�0� is proportional to the di�erence between the skewness statistics for the
two samples, suggesting that the local shape of L* near � � 0 is less sensitive to data
transformations than in the single-sample problem. From expression (11) we see that
the skewness coe�cients of the two samples are equal but of opposite sign. Hence, if
we accept the assumption of additivity in the treatment e�ect, then the di�erence in
skewness of the data between the two groups does provide some information about �,
and we would expect this to stay roughly the same over a modest range of di�erent
data transformations.
Evaluating the derivatives of the maximum likelihood estimate of � with respect to

� shows that

�̂��� � 1

2
� �y1 ÿ �y2� ÿ

�
2

�

�
� �̂�0� �O��3�:

The local selectivity correction to �̂ is exactly the same as in approximation (26) and
so the `t-statistic' for testing the treatment di�erence also leads to approximation
(27), just as in the paired case.
We illustrate these points by applying the model to some data from the national

hearing survey, described in Davis (1995). One question of interest is the extent to
which exposure to excessive noise at the workplace contributes to the impairment of
hearing, after allowing for the confounding e�ect of age. For our ®rst sample we take
the data for male manual workers between the ages of 50 and 60 years who have been
exposed to high levels of occupational noise, and we compare these with a control
sample of similar age and occupation but who have been exposed to at most low
levels of occupational noise. Not surprisingly those in the exposed sample show
poorer levels of hearing than the controls, but the data are not randomized and non-
zero values of � should at least be considered. (Perhaps workers with poor hearing

�p

�p
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are less concerned about noise and so are more likely to accept jobs in noisy
factories.) We take y to be the average hearing threshold (volume of sound that can
just be heard) for pure tones at frequencies 1, 2 and 3 kHz and, following Longford
(1993), use the transformation log�y� 20�. We have n � Nÿ n � 78. Statistical
aspects of these data and other data in the survey are discussed in Bowater et al.
(1996).

Normal plots of log�y� 20� for the two groups show a clear di�erence in mean but
with roughly the same variance. The plot of L*��� is quite ¯at, corresponding to the
fact that the normal plots just referred to show little di�erence in skewness. For these
data t�0� � 2:40, indicating a nominally signi®cant noise exposure e�ect. But from
approximation (27)

t��� ' 2:40ÿ 4:66�,

and so only a very small positive selection bias is su�cient to undermine this conclu-
sion (t��� < 2 if � > 0:09 or � > 0:04). Again, a rather marginal level of signi®cance
based on the usual analysis needs to be viewed with considerable caution.

5.2. Two-group Comparisons with Covariance Adjustment
Comparing two groups by using observational data usually involves an adjustment

for relevant covariates x. For this the model of Section 5.1 extends to

y � �Tx� sign�z�� � ��1,
z � 
Tx� �2:

The log-likelihood is

ÿN log �ÿ 1

2�2

Xn
1

�yi ÿ �Txi ÿ ��2 �
Xn
1

log ��ui�

ÿ 1

2�2

XN
n�1
�yi ÿ �Txi � ��2 �

XN
n�1

log ��vi�

where now

ui � �1� �2�1=2
Txi � ��ÿ1�yi ÿ �Txi ÿ ��
and

vi � ÿ�1� �2�1=2
Txi ÿ ��ÿ1�yi ÿ �Txi � ��:
This is very similar to the likelihood (14) and so most of the material in Section 3
adapts easily to cover the two-sample case. For example, if 
̂ÿ1�0� � 0, we ®nd

�̂
0�0� � ÿ �̂�0�

2
��f
̂1�0�g � �fÿ
̂1�0�g�, �31�

�̂ 0ÿ1�0� � 0 and �̂ 01�0� is the same as equation (31) but with the plus sign changed to
minus. As in Section 3.2, we expect the major e�ect of selection bias to be in the
intercept terms (here both � and �1) rather than the regression coe�cients �ÿ1.

Approximating 
̂1�0� in equation (31) by �ÿ1�n=N� as before, we have for small D
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�̂
0�0� ' ÿ�̂�0�N

2 �f�ÿ1�n=N�g
2n�Nÿ n� :

Combining this with approximation (13) gives

�̂��� ÿ �̂�0� ' ÿ � �̂�0�
2:696

: �32�

Thus if t��� is the usual asymptotic t-statistic �̂���=pvarf�̂���g then for small � and D
we have

t��� ÿ t�0� ' ÿ �sres
2:696s�

�33�

where sres � �̂�0� is the least squares residual standard deviation and s� is the
standard error of �̂�0�. Even when � and D are not particularly small, equation (33)
provides a rough guide to how much the inference about treatment di�erence is
a�ected by selection bias. No special calculations are needed since both standard
deviations in approximation (33) are obtained by ordinary analysis of covariance.
Finally, we return to the medical example discussed in Section 1. Here there are

two groups of patients with kidney disease, 123 patients on ambulatory peritoneal
dialysis (treatment A) and a control group of 121 patients on haemodialysis (treat-
ment B). The allocation to treatment was non-random, and as noted in Section 1
there was a steady increase in the proportion of patients assigned to treatment A as
the study progressed. There was also a tendency for patients assigned to A to be older
and less ®t. We follow Burton and Wells (1989) by taking the following list of
relevant covariates: date of commencement of therapy, age and powers of age up to a
cubic term (the relationship between hospitalization rate and age is U shaped) and
®ve binary covariates measuring the patient's initial clinical condition.
For these data, the slope of L* is noticeably non-zero at � � 0, re¯ecting the fact

that D is not small in this example (treatment assignments are strongly covariate
dependent). However, the maximum value of L*��� is less than one unit higher than
L*�0�. Here, t�0� � 8:68, and a plot of t��� shows that � would need to be as large as
1.3 (� � 0:52) before the treatment di�erence ceases to be signi®cant at the nominal
5% level. This would mean an interquartile odds ratio of exp 1:3 � 3:7, or, as there
are roughly equal numbers for the two treatments, a probability of around 1

3
that

patients with y at the lower quartile are assigned to A, compared with a probability
of around 2

3
for patients at the upper quartile. This degree of selection bias is

obviously possible but seems rather extreme. We would suspect that if there was this
degree of bias in the allocation process then this would at least be commented on by
the researchers involved, or else would be seized on by others to discredit the study.
We would have arrived at essentially the same conclusion had we just used
approximation (33) instead of calculating t��� exactly.

6. CONCLUSION

A recurring theme in the paper is that great caution is needed in making inferences
about �, the parameter which re¯ects the degree of non-randomness in the sample.
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Often L*��� is very ¯at, indicating that the data provide little information about
sample selection. In fact if the likelihood suggests a clear inference, then this can be
as much concerned with model misspeci®cation as it is with selection bias. A second
theme, echoing several of the papers cited earlier, is that if data are analysed by
conventional methods which assume that � � 0, but in fact selection bias is present,
then the conclusions can be grossly misleading. Even what may appear to be a small
amount of bias in the sampling can have a substantial e�ect on inference. We believe
that at least some kind of sensitivity analysis is essential when analysing obser-
vational data. Allowing for selection bias increases the uncertainty in estimation and
increases type I errors of signi®cance tests.

We suggest that the linear approximations in terms of the log-odds parameter �
(related to � by approximation (13)) which have been developed in this paper give a
simple and useful way of assessing local sensitivity to selection bias. Thus, for any
statistic T of interest, we calculate the sensitivity multiplier A such that

T��� ' T�0� � A�:

For the cases considered, A is given in expressions (20), (22), (27), (32) and (33). In
each case the calculation of A is trivial and there is no need to ®t any selectivity
models explicitly. If T is a standardized test statistic then calculating the size of j�j
needed to render jT���j less than some conventional percentage point gives a rough
guide to how much non-randomness would be needed to explain away the e�ect
being tested. If T is a parameter estimate, and the context of the data suggests that j�j
could reasonably be assumed to be less than some �0, then the limits T�0� � A�0
could be thought of as adding extra uncertainty to the usual sampling con®dence
limits for T�0�. Determining �0 in practice can be little more than an `order of
magnitude' guessÐ for the data in Section 3.3, for example, some value between 1
and 2 would seem to be sensible.

There are many unanswered questions, and in any case the material of Sections 3±
5 only amounts to a few special cases of the model of Section 2. In Section 3, for
example, only item non-response is considered, but in practice there will often also be
unit non-response in which values of both y and x are missing. The model assumes
that P�z > 0jx, y� is monotonic in y, and this may need to be generalized. Data from
survey recalls may provide extra information on both 
 and �.

In Sections 4 and 5 we have made strong additivity assumptions. Allowing for
unequal residual variances and treatment±covariate interactions is relatively
straightforward. Analysis-of-covariance models for more than two treatment levels
would be of interest. For ordered levels a vector of thresholds for z could be used.
For categorical levels (no natural ordering), z could be a vector, perhaps with some
simpli®ed covariance structure. Another important generalization would be to binary
or categorical responses.

At a more technical level, the pro®le likelihood for � may be misleading if m is
large relative to N. The above discussion of �0 assumes that we have some informal
prior information about �, but we have avoided taking it into account in any formal
way. Clearly a full Bayesian analysis is possible, at least numerically. Sensitivity to
prior assumptions would be an important issue and could provide new insights into
the nature of these models.

Normality of residuals has been assumed throughout. A more general model is
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possible on the lines of the analysis of Darwin's data given in Box and Tiao (1962).
This would involve ®rst transforming �1 before assuming joint normality with �2.
Diagnostics for these models have not been discussed. For a ®xed � 6� 0, a residual

Q±Q-plot can be obtained by using an algorithm for the bivariate normal dis-
tribution function. Diagnostics for assumptions invariant to � would be useful; for
example in Section 5.1 the two distributions of y are mirror images of each other, up
to an additive constant.
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DISCUSSION OF THE PAPER BY COPAS AND LI

C. J. Skinner (University of Southampton): The authors have tackled a particularly thorny problem,
which has proved di�cult to resolve. They are to be congratulated for setting out a clear way forward,
providing a fairly general approach to modifying standard procedures to allow for selection and
deriving some remarkably simple adjustments.

There is a wide range of observational settings where selection mechanisms are unknown. In these
cases it is common to suppose that selection is non-informative given some choice of observed
covariates x, i.e. that selection is conditionally independent of y given x. I prefer the term non-
informative to random since unequal probability randomized sampling schemes are often informative
with respect to arbitrary y and x.
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Non-informative assumptions may be adequate if `appropriate' covariate information is collected
(Rubin et al., 1995) and it is thus important to collect such information if possible. Nevertheless, there
will often be reasons to doubt a non-informative assumption. For example, item non-response may be
intrinsically informative by depending directly on the value taken by a respondent on an item, via
reasons such as the sensitivity or di�culty of answering the question.

The basic problem with allowing for informative selection is that, in a certain sense, the data carry no
information about the degree of informativeness. Thus, if we take the item non-response case, the
informativeness of selection re¯ects the di�erence between the distributions of y given x among
respondents and among non-respondents but the data carry no `direct' information about the latter
distribution.
The authors refer to econometric approaches which explicitly allow for informative selection, through

modelling assumptions. In many applications prior knowledge may not be easily representable in this
form and the authors propose instead to represent assumptions about the degree of informativeness
more directly by specifying the parameter � or its transformed versions � and �.
The econometric approach has been criticized for being sensitive to model misspeci®cation but the

nature of this sensitivity is I think subtle and the paper sheds some interesting light on this issue. In a
somewhat paradoxical way the weakening of the model assumptions from restricted to unrestricted �
appears to increase sensitivity (compare Figs 3 and 4). I ®nd the evidence of insensitivity to Box±Cox
transformation in Fig. 4 particularly interesting and would welcome the authors' comments on any
theoretical reasons or further empirical evidence for this ®nding. This has a bearing on whether the
authors' sensitivity analysis is su�ciently realistic.
To consider further the sensitivity of the unrestricted � approach for the non-response case, suppose

that x � �xT
1x

T
2 �T, 
 � �
T1 
T2 �Tand that the `model constraint' 
2 � 0 is applied. In large samples a

®tting procedure searches for � which minimizes the `discrepancy' between the `observed' distribution
fn(x2|x1) for non-respondents and the mixture�

fr�x2jy, x1� fn�yjx1; �� dy

of the observed distribution fr(x2|y, x1) for respondents with respect to the distribution fn(y|x1; �) implied
for non-respondents by the model. If the model is misspeci®ed so that fn(x2|x1) cannot be obtained from
fr(x2|y, x1) by mixing on y as above then the estimated distribution of y for non-respondents may be
extreme and severe adjustment e�ects obtained. For analogous discrete variable models, Peter Smith and I
have observed this empirically, ®nding that the estimated distribution of y for non-respondents may often
be on the boundary, in the sense of Baker and Laird (1988). If � is ®xed this e�ect is avoided.
The most innovative technical contribution of the paper is the use of small y asymptotics which has

some interesting parallels with the use of small measurement error asymptotics (e.g. Stefanski (1985)). It
is a natural approach to producing ®rst adjustments to standard procedures which ignore informative
selection or measurement error and the authors produce some remarkably simple adjustments such as
that in expression (32). The linear approximation provides simply the attractive inverse statements
about how informative selection needs to be to make tests insigni®cant. I am intrigued by the idea of
in¯ating standard errors to re¯ect non-response e�ects. This is analogous to the use of design e�ects
to re¯ect complex sampling designs. Potential disadvantages of the approximation are that di�eren-
tiation is needed for each new application and that the approximation may simply be unsatisfactory.
Likelihood-based inference about � given � does not su�er these problems and will often be compu-
tationally straightforward.
As the authors show, the choice of � is often crucial. Thus evidence on its magnitude should be sought

whenever possible. Some analogies can be drawn with the measurement error problem, where validation
studies and repeated measurements may provide evidence.
In conclusion, although the authors' methods will not always provide comfortably precise inferences,

they have considerable potential for clarifying what information can be extracted from observational
data and what further information may be required from elsewhere. I believe that this paper makes an
outstanding contribution to an important subject and it gives me great pleasure to propose the vote of
thanks.

Andrew Chesher (University of Bristol): I enjoyed reading this paper. It raises issues that can be
crucial, particularly when drawing inferences from data generated by thinking and reacting agents, as
we do in much work with social, economic and medical data.
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When there is `non-random' sampling in the sense used in this paper, data are realizations from the
density

f��yjx� � f �yjx, Z > 0�
� f �yjx� S�y, x�,

where

S�y, x� � P�Z > 0jx, y�
P�Z > 0jx� ,

rather than from the target density f (y|x). We do have `random sampling', but from f�(y|x) rather than
from f(y|x). Statistical procedures will re¯ect features of f�(y|x) rather than the target density and there
is then the possibility of misspeci®cation and misinterpretation.

Example 1
Regression functions under f�(y|x) and f �yjx� are related by

E��YjX � x� � E �Y S�Y, x�jX � x�
where E� and E denote expectation with respect to respectively f� and f. When E [Y|X � x� is linear in x,
E��YjX � x� will usually be non-linear, creating a potential for misspeci®cation. However, a non-
parametric regression estimator can make a good estimate of this regression function. There is a
problem if we mistakenly interpret the estimate that it produces as an estimate of the regression function
of Y on X for the target distribution or population.

The paper focuses on the bivariate Gaussian version of this model in which S(y, x) is a ratio of normal
distribution functions. In few applications involving non-aggregated data can a strong argument be
made for joint normality so we might be concerned that the information about sensitivity conveyed by
the techniques set out is itself sensitive to assumptions concerning distributional shape. It is interesting
to ask what limits there are to the distortion induced by S(y, x) under plausible assumptions about the
target and selection processes, such as might ¯ow naturally from the theory of the subject in which the
application is set.

One approach is to ask what can be discovered about the target density under less detailed
assumptions. The semiparametrics literature in econometrics surveyed by Powell (1994) has some useful
results. For example Chamberlain (1986) showed that in the model used by Copas and Li, in the absence
of the bivariate Gaussian assumption, identi®cation of the coe�cients in the regression of Y on X
associated with f(y|x) requires that a covariate ®guring in the regression function of Z on X be a priori
excluded from E [Y|X � x]. It follows that the `small D' results (approximately no non-constant
regressors in E [Z|X � x]) deals with a near semiparametrically unidenti®able case which we might
expect to be challenging for conventional methods. Though � � 0 � f� � f � is an attractive point to
expand around if we desire simple approximations it may be less interesting than other points and,
because of the special properties of the likelihood function there, may give an atypical view of the
sensitivity of inference to variations in �.

First-order asymptotic approximations may be poor in the case considered here and the near lack of
semiparametric identi®ability may be a contributory cause, but much more evidence than is presented
here is required before general conclusions can be drawn. The authors use the observed Hessian of the
log-likelihood to produce estimated asymptotic standard errors. The choice of information matrix
estimator can be important in determining the quality of approximation to the size of tests (Chesher and
Spady, 1991) and the relatively ine�cient observed Hessian is not obviously a leading contender. Where
distributional assumptions may be in doubt a robust variance estimator such as the `sandwich
estimator' (Efron and Tibshirani, 1993) can produce a better result.

To obtain trustworthy estimates we must rely on more than distributional shape assumptions to
achieve identi®cation. Here statistics is not enough and information from the application is essential.
Good examples arise in labour economics, the area that spawned Heckman's original work. Consider
the problem of estimating models of labour force participation when wages are only available for those
who choose and are able to obtain paid employment. Labour economic theory suggests that a person's
choice to work is based on a comparison of the valuation of the marginal hour of non-work time that
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would be sacri®ced if a work opportunity were to be taken and the wage that would then be received. So
the model for selection into the labour force (and so for selection into a sample of wage earners)
includes covariates characterizing the home environment of the potential worker (e.g. income from
assets and other household earners) that are naturally excluded from the model for the wage received by
potential labour force participants. Identi®cation and estimation of interesting parameters is possible
without reliance on assumptions about shapes of distributions. In contrast, in the pure missing data
problem posed in the analysis of the Coventry skills audit data there is no theory (at least none
advanced) to generate exclusion restrictions. The result is fragile estimates relying to a large extent on
assumptions of symmetry in the underlying distributions and driven by observed departures from
symmetry in the data.
It gives me great pleasure to second the vote of thanks to Professor Copas and Dr Li for their

stimulating paper.

The vote of thanks was passed by acclamation.

David J. Hand (The Open University, Milton Keynes): It gave me great pleasure to read this paper,
which deals with a crucial but underexplored topic. As the authors show, ignoring the selection issues
can lead to mistaken conclusions and I would like to congratulate them on the signi®cant progress that
they have made in tackling these problems.
Situations of the kind explored by Professor Copas and Dr Li are ubiquitous. One such, with which I

have been involved, is the following.
Statistical methods are used in consumer banking to construct classi®cation rules to identify people

who are at high risk of defaulting on their repayments. Ideally such rules would be based on a random
sample from the application population, for each member of which the application details and the true
good or bad class would be available. In practice, however, the design information usually includes
application form details on all previous applicants, but true good±bad status on only those who were
classi®ed as good by an earlier classi®cation rule. The question then arises whether the information
which is available about those classi®ed as bad by the earlier rule can help in the construction of an
improved rule. Techniques of reject inference used in the credit industry purport to do this (Hand and
Henley, 1993, 1994).
If the set of predictor variables used for the original rule includes only variables which are included as

predictors for the proposed new rule then z is a deterministic function of x. In this case z4 0
corresponds to certain regions of the x-space so that for a given x the conditional distribution of y is
either observed completely or is not observed at all.
Conversely, if the set of predictor variables used for the original rule is a superset of those used for the

proposed new rule then the case of Copas and Li applies. However, in this case it is likely that
the original rule, being based on a superset of variables, will have a superior performance to that of the
proposed new rule. Moreover, in the credit scoring context, where much of the data are categorical,
assumptions of normality for z would be risky.
In these credit scoring applications, extrapolation plays a key role. The accuracy of such

extrapolation clearly depends on the validity of the assumed model for y. Could the authors say
anything further about the e�ect of model misspeci®cation on their conclusions?

Gillian M. Raab (Napier University, Edinburgh): I would like to congratulate the authors on this
paper, which clari®es the properties and problems of a class of estimators based on the estimation of
selectivity parameters. Their simple expressions for standardized selectivity corrections o�er a safer
route than that of using model-based estimators when assumptions cannot be checked.
A Bayesian analysis of these problems would now be straightforward using numerical methods. I

would like to o�er suggestions for this in the context of the example of missing data discussed in Section
3. Prior information is implicit in the paper, in terms of both the assumptions about the selectivity
parameter and the parametric assumptions of the distributional form of the residuals for the regression
model.
In discussing plausible values for � in relation to the Coventry skills audit data, it is suggested that for

a well-conducted survey it is implausible that � could be very large. But, if other causes of non-response
are removed by good ®eldwork, it might be precisely the non-ignorable non-response that remains, and
� may be substantial. It would be preferable to base the prior for � on follow-up studies of non-
responders. It is also likely that � might vary with the X. A recent example would be data on the number
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of sexual partners in the National Survey of Sexual Attitudes and Lifestyles. Wadsworth et al. (1996)
have presented a sensitivity analysis with di�erential response biases by gender. Extending the current
model to cope with this would be straightforward.

Using parametric assumptions about the conditional distribution of Y as prior information is the
least satisfactory aspect of the current approach. Close to the maximum, in an essentially ¯at region, the
shape of the pro®le likelihood is sensitive to the distribution assumed for the residuals. A Bayesian
solution to this would be to assign a fairly vague prior to the Box±Cox parameter. Integrating over this
should ¯atten out the local bumps. As we move out to the extremes of this ¯at region, the corresponding
variance parameter increases because the Y-values imputed for the missing observations are more
extreme than those observed. The likelihood falls sharply when these imputed values would give
residuals that are incompatible with the distribution assumed. A more satisfactory approach, that could
easily be incorporated into a Bayesian analysis, would be to seek prior information on the extreme
percentiles of the marginal distribution of Y.

R. L. Chambers (University of Southampton): The message that I receive from this paper is that a
statistician must not only take responsibility for modelling the population from which sample data are
obtained but also model the sampling process itself, and integrate these two models in inference.

Many `mainstream' statisticians concentrate on the ®rst of the above models, assuming implicitly that
sample data are obtained `at random'. What is required is systematic development of statistical methods
for `non-random' or informative samples, and I see this paper as a valuable step in that direction.

There are two mathematically equivalent, but conceptually distinct, ways of modelling data obtained
via informative sampling. These are best described by considering the two ways that we can factorize the
joint distribution f (Y, I) of Y, the population vector of the response variable, and I, the 0±1 population
vector characterizing sample inclusion:

(a) the mixture model,

f�Y, I� � f �YjI� f�I�;
(b) the selection model,

f �Y, I� � f�IjY� f �Y�:
In (a), sample inclusion or exclusion is determined ®rst, and then the values in Y are determined. Once I
has been determined, there is no need for any link between the sample and non-sample Y-values. In (b),
the values in Y are determined ®rst, and, depending on these, the values in I are determined. Here there
is a link between the sample and non-sample Y-values which can be exploited for inference.

The authors focus on a rather specialized `threshold' version of (b). I prefer to think instead of a
population unit having a probability � of being included in the sample, where this probability can
depend on Y as well as on other variables. In sample surveys we are often fortunate in having access to
these probabilities, and there is a growing literature on how this information should be combined with
the sample Y-values for inference. For example, a simple estimator of the population mean of Y is the
HaÂ jeÁ k estimator

X
sample

Yi�i
ÿ1
� X

sample

�i
ÿ1
�ÿ1

:

For observational studies or non-response problems, the �-values are unknown. However, we know I,
and we often have access to population covariates which can explain a large part of the variability in I.
This suggests that we empirically model the �-values and then use these estimated inclusion probabilities
in inference, e.g. in a version of the HaÂ jeÁ k estimator above where the �-values are replaced by estimates.
This estimator will not be e�cient, but it may be more robust to misspeci®cation of the sample selection
mechanism than the corresponding Mills ratio-based estimator implied by this paper.

Roger A. Sugden (Goldsmiths College, London): More generally, if the complete data are a vector
Y=(Y1, : : : , YN)' of responses and a matrix of covariates X=(X1, : : : , XN)', but selection occurs
according to a vector of indicators I� (I1, : : : , IN)', then the full likelihood is just the joint
distribution f(Y, X, I) integrated or summed over unobserved data and the face value likelihood
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(Dawid and Dickey, 1977) ignores selection by keeping I ®xed. Both likelihoods can be conditioned as
appropriate.
Sugden and Smith (1984) looked at partial design information under the assumption of non-

informative sampling that I is conditionally independent of Y given X, which makes selection ignorable if
both I and X are completely observed, and de®nes known non-stochastic functions p(I|X), the selection
(sampling) mechanism, and � � ��X� where �i � E �IijX�, i � 1, : : : , N, are the selection (inclusion)
probabilities of the units.
If the assumption of non-informative sampling is not made, as in this paper, then the joint distri-

bution can be written either as

p�IjY, X� f �YjX� f �X�,
the ®rst term being the selection model, or

f�YjX, I � p�IjX� f �X�,
the pattern mixture model, leading to the sample-based likelihood of Skinner (1994), which attempts to
treat the data as a random sample from a selection-modi®ed population.

My interest is when the probabilities � are available (perhaps only for sampled units) and possibly
little other design information. Rather than model � as a non-stochastic function of X and Y, we can
regard it as a random variable in its own right and consider the joint distribution f(Y, X, I, �). If the two
assumptions

I ? YjX, � and I ? Xj�

(equivalent to I ? �Y, X�j�) are satis®ed, and this will be the case if � are the `true' selection probabilities
which fully specify the probabilistic rule determining the selected units s � f1, : : : , Ng, then the joint
distribution can be written

f �YjX, �� f �Xj�� f��� p�Ij��,

and the ®rst term of this reduces to the target conditional distribution f �YjX� under the non-
informativeness condition � ? YjX.
Under informative sampling, we can either use the mixture approach with � as a further covariate or

the selection approach, modelling the decomposition

f ��jY, X� f�YjX� f�X� p�Ij��:

In the independent and identically distributed case with independent sampling of units and data �i, yi, xi,
�i), i 2 s, we obtain the likelihood (further conditioning on I which is now typically an ancillary statistic)Y

i2s
f �yijxi, �i� f �xij�i� f ��i��i

E ��i� :

This is in the form of the face value likelihood times a factor corresponding to size-biased sampling for
inference on the parameters of the marginal distribution of the �i. A similar derivation in this case was
given by Smith (1988).

Ben Armstrong (London School of Hygiene and Tropical Medicine): I would like to make a comment
at a somewhat di�erent level from that of the other contributors to the discussion, more on the context
than the technical content of the paper. As an applied statistician working with epidemiologists, I was
delighted to see from the title of this paper that mainstream statisticians were addressing what I see as
one of my major practical concerns, and I was even more delighted, on reading the paper, that the
approach suggested was one that could be implemented without extensive software development.

However, I was concerned that in their introduction and in the context in which they presented some
examples the authors, perhaps inadvertently, may have given the impression that scientists concerned
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with observational studies were unaware that inference from non-random samples must go beyond
application of statistical methods based on the assumption of random samples, or that these scientists
do not have approaches, albeit less formal, to doing so. It is my experience that epidemiologists, for
example, are well aware of this problemÐsometimes to obsessionÐand they have quite a wide range
of approaches to address it. Formal models such as that presented here should have a role in making
inference from non-random samples, but it is not easy to see such models incorporating more than a
small part of the information brought to bear in the less formal approaches, even in contexts of no more
than average complexity. Thus I suspect that less formal discussion of the implication of non-random
samples will continue to predominate in the observational sciences even when this and similar
approaches are widely knownÐand probably rightly so.

Garrett Fitzmaurice (Nu�eld College, Oxford): I have some concerns regarding how sensitive the
authors' proposed methods are to misspeci®cation errors, in particular to departures from

(a) the assumption of normal residuals and
(b) the assumed linearity of the conditional expectation of �1 given �2.

With the assumption of normal residuals in equation (4), information about the selection process comes
from the skewness in the observed residuals. However, if the population distribution of the residuals is
skewed, but due to selection the observed residuals are symmetric, the proposed methods will
mistakenly infer that there is no selection bias (Rubin, 1978). I also question how robust the proposed
methods are to violations of (b).

Another issue concerns how to determine a plausible range for Z. The authors remark that this choice
is often no more than an `order of magnitude' guess. But surely determining a plausible range for Z
requires auxiliary information about the selection process. This leads to my ®nal comment on the kinds
of supplementary information that can alleviate problems of selection bias. Focus on the missing data
case. When there are missing data, ideally we would like to have some external information about the
selection process, e.g. through a follow-up survey of a sample of non-respondents. In practice, though,
such information is rarely collected or available. However, information about the marginal distribution
of Y is often readily available from secondary sources and can alleviate problems of selection bias. The
following simple numerical example illustrates this idea. The data in Table 1 consist of 200 cases with
complete data on both X and Y and 100 cases having data only on X. Let p�y, x, r� � pr�Y � y, X � x,
R � r�. The parameter of main interest concerns the association between Y and X, and it is natural to
parameterize this association in terms of the log-odds ratio

 � log

�
p�1, 1, �� p�0, 0, ��
p�1, 0, �� p�0, 1, ��

�
,

where p�1, 1, �)� p�1; 1; 0� � p�1; 1; 1�, etc. Since  can be expressed as a non-linear function of p�y, x,
r�, assessing its sensitivity to non-response can be regarded as a non-linear optimization problem,
subject to the linear equality constraints imposed by the observed proportions in the contingency table
(Fitzmaurice et al., 1996). This yields a parameter window for  of (ÿ0.077, 3.245). Clearly,  is a
parameter that is very sensitive to non-response. Because the range of non-identi®able values for  
includes 0, the association between Y and X could be explained in terms of selection bias. However,
suppose that additional information is available concerning p�y, �, ��, e.g. from a previous study it is
known that p�1, �, �� � p�0, �, �� � 0:5. This imposes an additional linear equality constraint, i.e. p�1,
0, 0� � p�1, 1, 0� � p�1, 0, 1� � p�1, 1; 1)=0.5, and the parameter window for  reduces to (1.099, 2.398).
With this supplementary information, selection bias can no longer explain the association between Y
and X.

E. A. Molina (Universidad SimoÂ n BolõÂ var, Caracas): This is an important contribution to the study of
the e�ect of treatment assignment and selection on statistical inference. The approach is model based.
There are, however, many assumptions that should be explicit, since they limit the type of non-
randomness that is permissible under the models to a very particular kind of non-informativeness. An
example is the assumptions of independent and identical distribution behind expression (14), which
imply other aspects of random allocation (or selection).

In general, observational studies encompass at least three activities: selection of the units, allocation of
the treatments and measurement of the responses. The selection mechanism of sample units is absent
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from the models. This leaves us with models whose relationship with the populations is neither explicit
nor veri®able. The presentation in Section 1 may lead to the impression that models for treatment
allocation (or selection) may be inspired by the observed data solely. Allocation (or selection) are
activities that lead to the observed data and is that activity which the statistician should attempt to
model if he wishes to extend the validity of its conclusions beyond the range of the observed data. It is at
the heart of Fisher's argument that selection models should be probabilistic, which is granted under
random selection.
It is impressive (and an important contribution from the authors) how, despite all the restrictions in

the models, just a lack of non-informativeness leads to very misleading inferences. The paper also shows
the need for a theory of selection, including the subject of the estimation of selection probabilities. This
is particularly relevant to observational studies, where these probabilities are usually not considered, as
opposed to the survey literature, where they are paramount.
Suppose that we have a ®nite population and let Ip and Is respectively denote the vector of random

indicators of selection and its observed value under a probabilistic mechanism of selection p. Let �p and
�s denote the associated diagonal matrices and let Y denote the vector of responses under a model �.
The observed data are �s y. If � is based on the observed data only, we have a model conditional on the
observations, e.g. E���pYj�p � �s� � �s�. Then E��pY� � Ep E���pYj�s� � ���, where �� is the
diagonal matrix of selection probabilities �i. This says that the conclusions of the analysis should be
weighted if we wish to extend them to the population.

A. J. Lawrance (University of Birmingham): This paper has presented an enlightening view of the
often implicit assumption of randomness in some form in validating statistical analysis. The basic model
is an elegantly simple perturbation of the ordinary regression model in an important respect. I enjoyed
learning something new about the paired t-test! One way in which the basic model might be used is for a
perturbation scheme in local in¯uence diagnostics. In this respect we would be looking for cases of the
data which seem to have responded in a way which has given them an unusual amount of in¯uence on
the estimates of the regression parameters. It is then for the investigator to deduce whether this is
actually due to some selection or allocation e�ect. With the local in¯uence approach to diagnostics
(Cook (1986) initiated this), we have a di�erent perturbation for each case, with a surface formed from
them, and we work with the geometry of this surface. There is no estimation of perturbations per se. In
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the familiar case of perturbation to the constant variance assumption in the linear model, the local
in¯uence diagnostics point up the ordinary residuals. It would be nice to apply similar ideas to the
selection perturbations and to ®nd intuitively supported results, although this seems a tall order without
doing some work.

Sander Greenland (University of California, Los Angeles): Copas and Li reach the conclusion that `at
least some kind of sensitivity analysis is essential when analysing observational data'. I applaud thisÐ it
is, after all, that reached by many others, including me (Greenland, 1990) and Rosenbaum (1995).
None-the-less, I must admit discomfort with the approaches developed by Copas and Li and
Rosenbaum. As their examples demonstrate, these approaches are capable of alerting us to sensitivity of
inferences to randomization assumptions. But there is an aspect of the work that seems like an attempt
to salvage a failing modelÐ experimental statistics applied to observational dataÐby adding more
unknowns to the model.

Both approaches begin by assuming that randomization has occurred conditionally on certain
covariates, albeit by an unknown mechanism (the `propensity score' in Rosenbaum's work; the
`selection equation' here) that is a very simple function of the covariates. Copas and Li assume that the
covariates `are always ®xed and observed' (Section 2). In my ®eld (epidemiology) there are usually many
unobserved covariates that are associated with everything of interest; this renders �2 of model (5)
correlated with x and with y given x, �1. Copas and Li (in Section 4) and Rosenbaum address this
problem by allowing a `hidden' covariate to a�ect allocation, but only through a very strict parametric
model.

Both approaches produce a spectrum of p-values. I can only interpret these as representing the results
of a spectrum of conditionally randomized experiments, one of which might have been performed. In
much of epidemiology, however, I see no basis for assuming that any randomized experiment was
performed. Even if I believed that some sort of randomized experiment was performed, I see no basis for
assuming or testing that the experiment was in the spectra used by Copas and Li or Rosenbaum. These
assumptions especially strain my credulity when (for example) I examine observational data concerning
�-carotene and lung cancer, and I consider the enormous and unknown complexities that must char-
acterize the relationships between health habits, diet, taste preferences, genetics, nutrient absorption,
nutrient metabolism and cancer.

Copas and Li and Rosenbaum propose methods that are better than what is usually done (which,
essentially, is to assume simple randomization conditional on observed covariates). I just fear that their
methods will be misinterpreted as fully addressing the non-randomized nature of observational studies.
Indeed, Greenland (1996) and Poole and Greenland (1997) argue that the presentations by Rosenbaum
(1995) and Gastwirth et al. (1994) are misleading for precisely this reason. I commend Copas and Li for
their more restrained interpretations, but how would they interpret a result like that of the medical
example if the `treatment' was (say) vegetarian diet and the outcome was mortality rate?

The following contributions were received in writing after the meeting.

Chris Chat®eld (University of Bath): The theory of statistical inference generally assumes that data
are random samples taken from some known population. In practice this is rarely the case, whether in
sample surveys or in experiments. Thus I welcome this paper for starting to look at whether, and when,
it is possible to make inferences from non-random samples. If we know from external contextual
considerations that data are missing completely at random or are censored or, as in this paper, that it is
reasonable to assume a linear selection equation as in the authors' equation (5), then it is possible to
make some progress. However, equation (5) constitutes a fairly substantial assumption and it needs to
be clearly understood that inference is not possible when the analyst has no idea how the probability of
selection is related to the observed variables.

I have recently been brought ®rmly back down to earth by helping to organize a survey of households
in my local area for our parish church. We achieved a 1 in 3 response rate which is very good for this
type of survey. However, we will not try to pretend that we can say much, if anything, about the
remaining two-thirds of households who did not respond. A descriptive, rather than inferential, analysis
is indicated, and I suspect that this is more often the case in practice than the statistical literature
implies.

At the other extreme to the above `one-o�' situation, scienti®c relationships are often formulated, not
from a single sample, but by taking a series of samples under (slightly) di�erent conditions to check for
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example that a result holds this month as well as last month, in the UK as well as in the USA, and so on.
This may obviate the need to make potentially dubious assumptions about randomness in a single
sample.

Peter J. Diggle (Lancaster University): The authors note a connection between their models and those
of Diggle and Kenward (1994) for informative drop-out in longitudinal studies. A closer connection is
with the models of Wu and Carroll (1988), who assumed that the response Y and the indicator variable
Z > 0 are linked through an underlying random e�ects model. Speci®cally, the authors' equations (4)
and (5) can be re-expressed as

Y � � Tx� �U� ��
and

P�Z > 0jU� � ��
Tx� �U�
where U and � are mutually independent standard normal variates. Thus, the dependence of the indica-
tor Z > 0 on Y is imparted indirectly, via the unobserved U, whereas the kind of model considered in
Diggle and Kenward (1994) would correspond to assuming that

P�Z > 0jY� � ��
Tx� �Y�:
At least in the longitudinal setting, it might be worthwhile to embed both of these kinds of model within
a wider setting, say

P�Z > 0jU, Y� � ��
Td� �U� �Y�, �34�
and to note explicitly that di�erent explanatory variables, x and d, might be used in the respective
models for Y and Z conditional on Y.
I agree with the authors that, for models of this kind, the data typically give very little information

about at least one parameter (the authors' �); yet it can be grossly misleading to ignore the missing data
mechanism (i.e. to assume that � � 0). See also Fitzmaurice et al. (1996). The authors' proposed
sensitivity plots represent one very sensible way of dealing with this dilemma; another, admittedly not
very original, is to let the practical context inform the choice of model. When dealing with drop-out in
longitudinal studies, it might be reasonable to use contextual knowledge to decide whether drop-out of a
subject should be modelled through explanatory variables, or as a direct consequence of their response
history or as an indirect consequence of their latent characteristics, these being represented in equation
(34) by the variables d, Y and U respectively. It would be rather optimistic to assume that the essence of
the non-randomness in the underlying sampling can always be encapsulated in a single parameter.

A. S. C. Ehrenberg (South Bank University, London): As so often, I am totally ba�ed by what some
of my statistical colleagues get up to, and why they do so.
Copas and Li start by noting that `randomization . . . justi®es the use of standard signi®cance tests

and other methods of normal inference'. But is it not the other way roundÐthat a strict random sample
requires inference to its population?
If the data are not a probabilistic sample, no inference to a population is required because there is no

de®ned population. (The so-called `sample' is simply a complete minipopulation.) Any attempt at
broader inference (for instance to Fisher's unde®ned `superpopulations') is usually dealt with quite
di�erently, by checking out empirically whether the result generalizes to any other, di�erent popu-
lations. There is no probabilistic short-cut to that, for arguing from one population to another, as far as
I know.
The authors, however, suggest that we can allow statistically for any `non-randomness' in our dataÐ

such as a 60% response rate in a surveyÐby estimating a `non-randomness' parameter �. But in their
conclusion they warn that `great caution is needed' in this. Less euphemistically, they are therefore
saying that it does not work.
How could it? Surely one cannot make purely probabilistic inferences about the non-respondents in a

survey. They might all be `deceased', or `have moved', or simply be `not interested' or whatever.
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When we empirically investigated `non-co-operators' in on-going panel operations some years ago
(Ehrenberg, 1960), they di�ered from the co-operators in virtually only one respect: they were not
interested in co-operating. They did not di�er in what they bought, or in what they said when they were
probed in many other ways (including by psychologists). That does not mean that these non-co-
operators were `random' in any way, and hence that they either justi®ed or required any kind of
probabilistic inference. Instead, the data showed merely that they were not systematically biased.

D. A. Freedman (University of California, Berkeley): Selection bias is an endemic problem in social
science research. Few samples are random, and data are often missing. One solution is to model the
biases and to correct for them, as in Heckman (1979)Ða paper that has been surprisingly in¯uential.
Heckman's model, however, does not ¯ow from any real understanding of the mechanisms by which
respondents are included in surveys, or excluded. The assumptions behind the model are therefore
speculative, at least to some degree. If these assumptions remain in doubt, so do the merits of the
corresponding procedures for estimating biases.

In their paper, Copas and Li make the following major points.

(a) Estimates based on models for selection bias are often remarkably sensitive to modelling
assumptions.

(b) These assumptions can seldom be validated by examining the data.
(c) Even if the model is granted, conventional asymptotics take hold only with very large samples.

These points ring true, and the analysis is likely to help anyone wanting clari®cation of the selection bias
literature.

In Section 1, Copas and Li allude to the somewhat problematic `as if by randomization' assumptions
underlying many statistical analyses. For a recent exchange on this topic, see Humphreys and Wojcicki
(1995). There are, of course, other models for selection bias, non-compliance in clinical trials and similar
problems, not covered in the present paper. Such models may be grist for a future essay by Copas and
Li, and a general discussion postponed until then. Hierarchical logistic regression models for missing
data, to mention one example, played some role in recent arguments over adjustments to the US census
of 1990: see Breiman et al. (1994), pages 469, 489, 536. The US Supreme Court recently decided that the
census would not be adjustedÐwithout reaching the issue of imputation models.

Els Goetghebeur (Rijksuniversiteit Limburg, Maastricht) and Krista Lapp (University of Tartu): Our
discussion draws on the related problem of estimating the e�ect of selective treatments when exposure
to a treatment or placebo is randomized, but the level of exposure within the treatment group is
generated from partial compliance which is possibly selective.

Using causal terminology, the e�ect of observed exposure on the gain from treatment is
E�YT

i ÿ YP
i jCT

i �, where YP
i and YT

i represent the possible response of subject i on the placebo or
treatment arm respectively and CT

i is the exposure resulting from partial compliance with the treatment.
A simple `causal' model is

YT
i � YP

i � �CT
i � �Ti with E��Ti jCT

i � � 0; var��Ti jCT
i � � �2YT; �35�

with selective CT
i

YP
i � �� 
CT

i � �Pi with E��Pi jCT
i � � 0; var��Pi jCT

i � � �2YP: �36�
�CT

i , Y
T
i � and YP

i are observed in di�erent arms only.
Exposure is random when 
 � 0 and its e�ect � is then consistently estimated from a structural mean

model (SMM) (Robins, 1994), from ordinary least squares (OLS) regression, or, given a parametric
distribution for �Pi , �

T
i and CT

i , from maximum likelihood estimation (MLE). Under correct distri-
butional assumptions, MLE is asymptotically the most e�cient and SMM least.

When � � corr�CT
i , Y

P
i � 6� 0, SMM remains unbiased, but not OLS or MLE ignoring selection.

Conditionally on CT
i , we calculated exact mean-squared errors (MSEs) for the SMM and OLS

approaches. For OLS, the bias depends linearly on �. With parameters mimicking a blood pressure
reduction trial, the ratio of MSEs for SMM versus OLS is shown in Fig. 7.
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SMM wins when j�j is large, but relies heavily on the linear form (35). A likelihood incorporating �
(through 
 6� 0 in model (36)) is overparameterized when �YP

i , C
T
i , Y

T
i � are jointly modelled through

normal (error) distributions and the structure described in models (35) and (36).
In practice, the analysis choice can combine prior beliefs in modelling assumptions (including (base-

line) covariates) and the e�ect of their violation on results. Whereas Copas and Li studied violations of
� � 0, the parametric model and normal errors were not tested. It would be worthwhile to investigate
the relative importance of the three types of violation. Then, a weighted average of the di�erent
estimators could be chosen, which minimizes the MSE under prior beliefs. In practice, this involves
much work. A prior investigation into extreme case scenarios can provide bounds on the parameters of
interest (as in Balke and Pearl (1994)) and may indicate whether it is worth the trouble or whether we
should rather seek external information on the selection mechanism.

Nicholas T. Longford (De Montfort University, Leicester): I subscribe to the view that the value of �,
which, for a two-groups comparison, characterizes the informativeness of the allocation to the groups,
is fundamentally unknowable in the sense that the data (X, y) contain no information about �.
Certainly, the assumptions of the Heckman (or a similar) model are contrived and cannot be
substantiated in the analysis of the Coventry skills audit or the national hearing survey (or in similar
settings). I would be concerned more about global sensitivity, as emphasized by Rosenbaum (1995),
than about local sensitivity. Intuition suggests that the addition of salient x-variables leads to a
reduction of j�j. But when do we have all the xs?

Published analyses of observational studies deal with this issue by ubiquitous statements calling for
`caution in interpreting the results' (including Lockheed and Longford (1991)). The authors' approach
is a much more satisfactory way of addressing this issue, not presenting a miracle solution, but
formulating the issue in a way that promotes thinking about the uncertainty additional to that
emanating from the experimental-design-based analysis.

Geert Molenberghs (Limburgs Universitair Centrum, Diepenbeek): The paper uni®es the well-known
attemps of econometricians to entertain selectivity bias and the related but relatively recent quest of
statisticians for models that accommodate non-ignorable missingness. They rightly argue that in general
inference is complicated by for instance very ¯at likelihoods and go on to conclude that a sensitivity
analysis should be preferred over identifying a single model or carrying out a single hypothesis test. For
this a sensitivity parameter is included in their model.
However, a major concern remains the sensitivity to model speci®cation. This was noted by many

discussants to Diggle and Kenward (1994). One can suspect that the sensitivity analysis might be driven
by the particular choice of a selection model, whether it is a logistic regression as in Diggle and Kenward
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(1994) or a joint normal model for y and z as proposed by the authors. This is the price to pay for
apparent identi®ability in selection models, as opposed to pattern mixture models (Glynn et al., 1986;
Little, 1994), where a sharp distinction exists between identi®able and unidenti®able parameters.
Arguably, the choice of a correlation coe�cient to describe the degree of informativeness might
determine the conclusions (see equations (15) and (16)). Therefore, it is necessary to broaden the
sensitivity analysis from a mere sensitivity parameter to a range of plausible parametric representations.

Clearly, goodness-of-®t tools cannot solve this problem since, as noted by Baker and Laird (1988), a
selection model for incomplete data not only spends earned degrees of freedom but also `predicts' data
pertaining to missing data degrees of freedom. Whereas two models might agree completely on the
former aspect, they can totally disagree on the latter, while this shows hardly or not at all in an
assessment of model ®t. The best that we can hope for with this fundamental untestability is that the
inference is fairly stable for a range of plausible parametric approaches.

James M. Robins (Harvard School of Public Health, Boston): The authors' stimulating paper raised
some provocative questions.

Question 1
If a model places no restriction on the law f (Y|X) of Y given X � �1, X0ÿ1�0, can we distinguish

selection bias �� 6� 0� from its absence �� � 0� in the probit selection model Pr�R � 1jX, Y� �
���X� �Y� � ���1 � �ÿ1Xÿ1 � �Y� with R � I �Z > 0�? When � 6� 0, it is necessary and su�cient
for non-distinguishability of � 6� 0 from � � 0 based on data (X, RY, R) that the observed law
f �Y, R � 1jX� � f �YjX����X� �Y� can be written as f *(Y|X) ���*X� with � f *(Y|X) dY � 1, i.e.

�*X � �ÿ1
��

f �YjX����X� �Y� dY
�
,

a su�cient (and essentially necessary) condition for which is that both �ÿ1 � 0 and Y and X are
independent, giving �*ÿ1 � 0 and �*1 � �ÿ1fE ����1 � �Y��g. This same condition is also su�cient for
non-distinguishability when � � 0.

Question 2
In the setting of question 1, can y be estimated at the usual

p
n-rate whenever � � 0 is distinguishable

from � 6� 0? Rotnitzky and Robins (1996a) give necessary conditions for
p
n-estimation in a class of

semiparametric non-ignorable missing data models. It follows from their propositions A1.6 and A2.6
that a necessary condition for

p
n-estimation of � is that h(X) be linearly independent of (g(X), Xÿ1 g�X��

where h�X� � E �Y ���X� �Y�jX�, g�X� � E ����X� �Y�jX� and � � �=� is the Mills ratio. If � � 0 and
E�YjX� � �1 � �ÿ1Xÿ1 is linear, then h�X� � f�1 � �ÿ1Xÿ1g g�X� and � is not

p
n estimable; the optimal

achievable rate when � � 0 is identi®ed (i.e. when Y and X are dependent and/or �ÿ1 is non-zero)
remains open.

Question 3
Are � and the selection law �(Y, X� � Pr�R � 1jY, X� identi®ed if we are given that

(a) Y follows the model Y � �X� � with � � N�0, 1),
(b) ��Y, X� is left totally unrestricted and
(c) 1 > c1 > ��Y, X� > c0 > 0 with probability 1 for constants �c0, c1�?

In this model, � and ��Y, X� are not identi®ed if and only if, for some �* 6� �, the observed law
f �Y, R � 1jX� � ��Yÿ �X� ��Y, X� equals ��Yÿ �*X� �*�Y, X� with

04 �*�Y, X� � ��X, Y�f��Yÿ �X�=��Yÿ �*X�g4 1 for all �Y, X�:
Since this is never true, � and ��Y, X� are identi®ed. (However, by a similar argument, in the larger
model with � � N�0, �2� and �2 unknown, � and ��Y, X� may not be identi®ed.)

Question 4
In the setting of question 3, can � be estimated at a

p
n-rate? Rotnitzky and Robins (1996b) show that

no parameter � of any model for f �YjX� can be estimated at a
p
n-rate when ��Y, X� is left unrestricted

and ��Y, X� < c1 < 1 with probability 1. Speci®cally, they show that the Fisher information for � is 0 in
the parametric submodel
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logitf��Y, X; ��g � logitf��Y, X�g ÿ ��SF
� �Y, X�=f��Y, X� ÿ 1g�:

SF
� � SF

� �Y, X� � @flog f �YjX; ��g=@� and SF
� � ÿ�Rÿ ��SF

�=f��Y, X� ÿ 1g are the scores at the truth
for � and � based on the full data �X, Y, R� and S� � E �SF

� jX, R, YR� and S� � E �SF
�jX, R, YR� are

observed data scores. Since

S� � S� � RSF
� ÿ �1ÿ R�E �SF

���Y, X�jX�=f1ÿ E ���Y, X�jX�g,

the Fisher information for � is 0.

Paul Rosenbaum (University of Pennsylvania, Philadelphia): Copas and Li argue that econometric
selection models are formally identi®ed, but barely so (Tukey, 1986), and are not robust to changes in
the model (Little, 1985), concluding that, if the models are used at all, they should be the basis for
sensitivity analysis rather than joint estimation of parameters. These ®ndings are, I believe, correct and
important, and they support the concern that excessive hopes for selection models may diminish e�orts
to collect data of high quality (Silber and Rosenbaum, 1996).
This comment restates the point abstractly. In Fig. 8, the curved segment S is a ridge of constant

maximized likelihood and the closed curve C is a set estimate of the parameter � � ��1, �2�. As the
sample size increases, S barely changes but C shrinks to wrap S closely.
It is often said that inferences require identi®ed models (e.g. Basu (1983)). Though not identi®ed,

yielding no consistent estimate of �, Fig. 8 contains information about �. It is clear that �2 > 1 and
unlikely that �2 > 2 if �1 > 2. A sensitivity analysis extracts this information and may or may not settle
practical questions. For instance, Corn®eld et al. (1959) found that, if smoking caused no increase in
lung cancer ��2 � 1�, the association being due to an unobserved binary attribute, then the attribute
must predict lung cancer almost perfectly and be �2 � 9 times more prevalent among smokers.
Nonparametric sensitivity analyses are an alternative approach that do not require assumptions

about the shapes of unobserved distributions (Rosenbaum, 1995).

Andrea Rotnitzky (Harvard School of Public Health, Boston): I wish to thank the authors for an
insightful paper. They reference Little (1985) and Lee and Chesher (1986) regarding the poor asymptotic
behaviour of tests of � � 0 when 
ÿ1 � 0. In fact, when 
ÿ1 � 0 the information matrix is singular and
the standard

p
n asymptotic theory for maximum likelihood estimation does not hold. The asymptotic

distribution of the maximum likelihood estimate (MLE) of � (and of corrected Wald tests) is a corollary
to the following theorem proved in Rotnitzky and Robins (1996c).

Theorem. Suppose that a density f(Y;  ) indexed by a p� 1 parameter  with true value  * has
information matrix of rank pÿ 1 at  * so there exists a �pÿ 1� � 1 constant vector K1 satisfying for a
component of  , say  1, f@flog f(Y;  �g=@ 1gj � � KT

1 ÿ where ÿ is the score vector for  2,  3, : : : ,  p

at  * and E(ÿÿT) is non-singular. Suppose that there exist an integer s and (pÿ 1� � 1 (possibly null)
vectors K2, : : : , Ksÿ1 de®ned iteratively by

@ r

�
log f

�
Y;  ÿ

Xrÿ1
j�0

Aj� 1 ÿ  *1 � j
��

@ r
1  �

� KT
r ÿ
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where 14 r4 sÿ 1, K0 � 0, Aj � �0, KT
j �T for 04 j4 sÿ 1, such that


 �
@s

�
log f

�
Y;  ÿ

Xsÿ1
j�1

Aj� 1 ÿ  *1� j
��

@ s
1  �

is neither 0 nor a linear combination of the elements of ÿ. Then, under the smoothness conditions of
Rotnitzky and Robins (1996c),

n1=2
� ̂1 ÿ  *1�s

 ̂ÿ1 ÿ *ÿ1�
Xsÿ1
j�0

Kj� ̂1 ÿ  *1� j

0B@
1CA ÿ!L Z I�Z1 > 0� �U I�Z1 < 0� if s is even,

Z if s is odd,

�

where  � � 1,  
T
ÿ1�T, Z � �Z1, : : : , Zp�T � N�0, Cÿ1�, U � �0, WT�T, W � �W2, : : : , Wp�T � N�0,

�ÿ1� with C � Ef�
, ÿ� �
, ÿ�Tg=�s!)2 and � � E�ÿÿT�=�s!)2.
To illustrate how these results can be applied to test for selectivity bias, consider, for simplicity,

estimating (�, �, �1, �2) in the model Y � � � �, � � N�0, �2�, when Y is observed only if an always
observed binary indicator R is equal to 1 and P(R � 1|Y� � �f�1 � �2�Yÿ ��g. The case ��u� �
��u� corresponds to the model of the authors' equations (4) and (7) with x � x1 � 1, � � ��1, �1 �

1=�1ÿ �2�1=2 and �2 � ��ÿ1. To simplify the calculations, consider instead a logistic selection model
��u� � eu=�1� eu�. Similar results hold for a probit selection model. Using the theorem, one can verify
that when �2 � 0 and � � 1

n1=2

��̂ ÿ ��3

�̂ÿ 1ÿ ���1�f1ÿ ���1�gÿ1��̂ ÿ ��2

�̂1 ÿ �1 � f1ÿ 2���1�gf1ÿ ���1�gÿ2��̂ ÿ ��2

�̂2 � f1ÿ ���1�g��̂ ÿ ��

Lÿ!N�0, Cÿ1�

for a non-singular matrix C that I do not present here for lack of space. Thus, both �̂ and �̂2 converge at
rate Op(n

ÿ1=6) and both �̂ and �̂1 converge at rate Op(n
ÿ1=3). D. R. Cox (personal communication) earlier

derived, from ®rst principles, the asymptotic distribution of the MLE of (�, �1, �2) when �
2 is known. A

corrected Wald test for the null hypothesis �2 � 0 of no selection bias can be derived from the
asymptotic distribution of �̂2. However, this test will be sensitive to local (Pitman) departures from the
null hypothesis of order O�nÿ1=6� and not of order O�nÿ1=2�. Thus extremely large samples will be
required for the detection of small departures from the null hypothesis.

T. M. F. Smith (University of Southampton): I would like to congratulate the authors on a very
interesting paper. Of particular importance are the results on the sensitivity of standard procedures, such as
the paired t-test, to quite small selection e�ects, even when the underlying distributions are normal. In non-
normal cases the combined e�ects of model misspeci®cation and selection could be even more dramatic.

My main criticism of the paper is the title. I had expected to read a paper in which the process of
selecting units would feature and the samples of units would be selected by using non-random sampling
schemes. Sampling, in the sample survey sense, does not feature at all. The analysis is entirely model
based and the sampling scheme implicit in likelihoods such as equation (14) is simple random sampling
with replacement (independent and identically distributed). The paper tackles item non-response, which
is part of the measurement process, not the sample selection process, and the non-random allocation of
treatments to units in an observational study, not the selection of the units.

The paper also seems to imply that random sampling (random selection of units) and random
treatment allocation are identical in some sense. This is not true. In random sampling there is a well-
de®ned real ®nite population, samples are selected according to a speci®ed sampling rule and inferences
can be made about ®nite population parameters by using the randomization distribution. In random-
ization inference for experiments the set of experimental units comprises the population. There is
no selection of units from a larger ®nite population. The randomization distribution refers to the

 !
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hypothetical distribution corresponding to the allocation of di�erent treatments to the same ®xed unit;
it is not a real population. As demonstrated by Rubin (1978) the validity of a causal inference about
treatment e�ects depends not only on an ignorable allocation scheme such as randomization but also on
an untestable assumption about unit treatment additivity or the stable unit treatment value assumption.
Random sampling inference does not require this additional assumption.

Philip Young (University of York): I would like to comment on the dependence of the method
proposed by the authors on the assumed model. In epidemiology a common technique is to match
subjects with certain similar characteristics. However, this is clearly of limited value, unless we have a
vast sample of data, since with only a few factors matched on we shall soon have trouble ®nding suitable
matches. Therefore, as the authors have done, we are forced to ®t a model and to use this, in e�ect, to
`match' subjects. In essence this then becomes a problem of calibration. Of course, even if we detect no
treatment allocation bias, using the covariates that we have, we cannot know that there are no
di�erences for some other factors that we have not measured.
Instead of the situation considered by the authors, consider the following discriminant problem,

where subjects belong to one of two populations. One aspect that has received much attention in the
calibration literature is the way in which we consider the errors within any model. In this particular
situation we need to consider whether the errors lie in our ®nal allocation to a population or in the
covariates of interest. For example, if the populations are surviving and dead patients after a course of
treatment then we would sensibly attribute the errors to the covariates, and we might assume that
subjects in the two populations are distributed normally with identical covariance structures but
di�erent mean vectors; hence we use linear discriminant analysis. Yet if we were testing the e�ciency of
a new method of diagnosis we might assume that the errors lie in the technique and not the covariates,
and one way in which to model the data would be to use logistic discriminant analysis. I suspect that the
linear discriminant model is more appropriate since the very idea of a design matrix seems inappropriate
for many of the situations that the authors discuss.
Now, assume that we have two treatments A and B. This can then be incorporated into the linear

discriminant analysis by using the so-called location model. Some preliminary simulations that I have
done suggest that if we assume the location model, when the logistic model is correct, then we are much
more likely to conclude non-randomness in the treatment allocation when there is none. This must be a
feature of the misspeci®cation of the errors, because the way in which the covariates are handled is
identical.

The authors replied later, in writing, as follows.

Firstly we thank the discussants for their perceptive and constructive comments about our paper.
Several discussants note the slightly ironical nature of the title. If by `random' we mean the outcome

of some stochastic mechanism, then of course the whole paper is a contradictionÐour methods
amount to analysing `non-random' data by assuming that they are generated by a (albeit more
complicated) stochastic model. If by random we refer to selection from a population then, as Professor
Smith points out, the later parts of the paper are all about allocation and not selection. We hope that,
after reading the paper, our rather more super®cial use of `random' is su�ciently clear.

A major theme echoed by many discussants is the nature of the model in Section 2, the technical basis
of the whole paper. Professor Greenland writes `. . . no basis for assuming that any randomized
experiment was performed . . .'. Surely one could make the same comment about any non-experimental
application of statistical inferenceÐa model is a model and not necessarily a statement of reality. We
are sorry if Professor Ehrenberg is totally ba�ed by our paper; I think that we are equally ba�ed by his
opening remarks. We have not said that one can always allow statistically for any non-randomnessÐwe
have attempted throughout to be very constrained in our interpretations and have only advocated a
local approach (only small deviations from the standard randomness assumption). Regarding his
second paragraph, we are just quoting Fisher (1966), p. 21. Our main point is, if you are tempted to use
a conventional model (tacitly assuming � � 0), then pause and ask what happens to your conclusion if
� 6� 0. This can warn us if inference rests on essentially untestable assumptions. The paper stands or
falls, not on whether the model in Section 2 is realistic, but on whether it is a simple and useful way of
embedding the usual model to do sensitivity analysis.
Of course many other models are possible, as pointed out. Linking z to y via an independent

unobserved random U, as suggested by Professor Diggle (compare the Rosenbaum approach), is a
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useful way of thinking about our model, and, as Diggle points out, can be generalized in various ways.
This will be useful if we do have a richer data source such as in a longitudinal study where we have
extraneous information on reasons for drop-out. In particular, the suggested generalization allows the
covariates to be modelled in more detail at the di�erent model stagesÐ there is much discussion of such
issues in the econometrics literature (separate roles of x in the two Heckman stages). We agree with
Professor Raab that a general form of heteroscedasticity could be modelled without conceptual
di�culty. We surmise, however, that if a small non-zero � in our model makes a big change to inference
then it will also tend to do so in other families in which we embed the standard model.

In emphasizing the local approach we concur with Dr Chat®eld when he says that if the conventional
model is completely implausible then there is unlikely to be any useful stochastic model for the data. So,
as he says, we can only attempt a descriptive analysis. But then any inference on a population, or
statement of causality, must rest on other considerations and not just on the data. It is di�cult to hold
the line on thisÐwhether we like it or not the media will always report something like `Dr Blogg's
results show that . . .' rather than `In Dr Blogg's data, . . ., but this cannot be generalized outside the
particular cases he used'. (In our presentation of the paper we quoted some recent press headlines to
emphasize this point.)

Some discussants comment on the population, or lack of it. Although it is stated at the start of
Section 3 that the (complete) cases arise from simple random sampling, this is not really assumed in the
developmentÐwe are estimating �T �x and not �T E�x� where the expectation here is over the population
of possible xs. Following Professor Smith's comments, identity of random sampling and treatment
allocation is established in a technical sense within our model. Essentially, if we assume unit±treatment
additivity, then the treatment comparison is like two missing data problems in oneÐdata on A are like
the observed cases, and data about the responses the other units would give if given A are like the
unobserved cases, and vice versa for the cases on B. The mathematics of the selection models in Sections
4 and 5, based on additivity, turn out to be exactly the same as that for unit non-response in Section 3.
Again our argument is very localÐa minimal approach to trying to understand the extra uncertainty
caused by the (hopefully small number of) missing cases, or by the possibility that A and B cannot both
be given to our particular set of experimental units. Strictly, generalizing to a wider population is
beyond the scope of the paper.

Several discussants reinforce, and much more elegantly than we have done, the suggestion in the
paper that inference about � is di�cult. The results mentioned by Professor Chesher, and extended in
the theoretical results of Dr Robins and Dr Rotnitzky, show that without special assumptions the model
is unidenti®able. Equivalently, inference about � depends sensitively on such assumptions, as we have
seen in equations (15) and (16) which show that the shape of the likelihood function depends on the
shape of the sample, and hence on the assumption of normality. This also explains Professor Skinner's
`paradox', that weakening the assumption of � � 0 increases sensitivity, such as in Fig. 3. When � � 0
we have the simple su�cient statistics for normality, but when � 6� 0 these statistics are no longer
su�cient. We thank Professor Lawrance for his suggestionÐ if we are trying to estimate � then model
assumptions are crucially important, and we need good diagnostics; for example the shape of L*(�)
given in equations (4) and (5) is strongly a�ected by sample outliers. The idea of using local in¯uence
diagnostics rather than the Q±Q-plots mentioned in Section 6 is likely to be a good one.

In reacting to many of the comments we repeat that in our examples only a local sensitivity approach
is used, for which it seems that these assumptions, such as assumption (a) in Dr Fitzmaurice's comment,
are much less critical (compare Figs 3 and 4). The sensitivity approach (the multiplier A in Section 6)
does, however, depend on the model connecting z with x, or equivalently on Dr Fitzmaurice's
assumption (b). We mentioned in Section 6 the assumed monotonicity of the dependence of P(z>0|y, x)
on y. If this was U shaped, people with unusually high or low incomes both being more likely to refuse
to respond in the survey, then the sensitivity calculation would be quite di�erent.

We agree with Professor Molenberghs that an advantage of the pattern mixture approach is that, by
having separate models for f(y|z>0) and f(y|z<0) rather than deriving both of them from a single
model as we have done, it is made explicit that the selection mechanism is unidenti®able. However, we
®nd the selection modelling approach more natural for the kinds of example that we are consideringÐ
one starts with the income and then determines whether or not to respond, rather than the other way
round.

Several discussants refer to the importance of outside information on selectivity, and we agree. Dr
Armstrong makes a very fair comment, but we only advance our approach as one way of looking at
local sensitivity. Of course there are other less formal considerationsÐany information on the reasons
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for non-response or the factors behind self-selection will be more important than any formal analysis
ignoring such information. Professor Raab mentions a formal Bayes approach, but we comment in
Section 6 on the problem of sensitivity to prior assumptionsÐyou always obtain an answer even if the
data tell you nothing at all about the parameter of interest! How to use data on survey recalls to provide
information about � is an interesting problem for research. The example of follow-up information
discussed by Professor Ehrenberg is interestingÐ suggesting in this case that � is not too large.
Some of the examples used in the discussion are about discrete data (Professor Rosenbaum and Dr

Fitzmaurice) and so are quite di�erent from the models in the paper. Suppose that y is known always to
lie in (0, 1), and that in a sample of 100 cases we have 50 missing observations. Suppose that the 50
observed ys add to 25. Then we know for certain that the sum of all 100 ys cannot be less than 25 or
more than 75. With normally distributed data no such bounds are possible, and ranges of uncertainty
have to depend on the model rather than on the geometry of the relevant spaces. This is related to
Professor Rosenbaum's approach with the bounds on the hidden covariate u, but, as he has pointed out
in a separate communication, this requirement is relaxed somewhat in Section 4 of Rosenbaum (1987)
by putting a bound on the number of cases with values of u outside a ®nite interval.

Dr Sugden and Professor Chambers discuss non-response in the more usual survey sampling
framework. Surely the main point in Dr Sugden's notation is that the Is are not usually ancillary, and
that is the problem. In Professor Chambers's notation, stage I of Heckman's method is essentially
modelling the �s. If D is small Heckman's stage II fails, warning us that the model is almost
unidenti®ed. But, if there is little evidence of variation in the �s (as appears to be the case in Section 3.3),
then the estimated �s will be almost constant and so the HaÂ jeÁ k estimate will be close to the sample
mean, i.e. assumes that � is close to 0. Surely this is not sensible. We would prefer a model relating the �s
to the other variables including y, and seeing how sensitive inference is to varying the coe�cients in this
model. This is essentially what we have done, but within a completely di�erent framework.

The role of the covariates in selection is emphasized by Professor Hand and Dr Longford. In
Professor Hand's application (consumer credit) the screening is done by a deterministic zÐessentially
this is the case of large 
 (so that �2 is relatively unimportant). Surely these other variables used in
making the ®rst screening would be known, so ignorability is not an issue in our technical sense. But,
more interestingly, the problem of ignorability will come in at the next stage, in that applicants may be
o�ered a loan but not actually take it up. On his question of model misspeci®cation, small � asymptotics
seem robust to normality but depend on linearity of the structure linking z to y, as we have already
remarked. Identi®cation of � is non-robust, but we are not trying to do that in the examples in the
paper. In response to Dr Longford's comment, adding more xs does not necessarily `reduce j�j', but
increasing D (the size of 
) does reduce the dependence of equation (7) on y. We say little about global
sensitivity, but Fig. 4, for example, suggests that the linear local approximation is useful for quite
large �.
We ended our presentation at the meeting by remarking that we make no great technical claims for

the paper but hope that we have contributed to awareness of the practical importance of these selection
issues. The discussion has shown the diversity of models and interpretations that are possible in this
area, but surely all are agreed on one thingÐ that this is a very important practical problem for
statisticians.

REFERENCES IN THE DISCUSSION

Baker, S. G. and Laird, N. M. (1988) Regression analysis for categorical survey variables with outcome subject to
nonignorable nonresponse. J. Am. Statist. Ass., 83, 62±69.

Balke, A. and Pearl, J. (1994) Non-parametric bounds on causal e�ects from partial compliance data. Technical
Report R-199-J. Computer Science Department, University of California, Los Angeles.

Basu, A. P. (1983) Identi®ability. In Encyclopedia of Statistical Sciences (eds S. Kotz and N. Johnson), vol. 4, pp. 2±6.
New York: Wiley.

Breiman, L., Freedman, D., Wachter, K., Belin, T. R. and Rolph, J. E. (1994) Three papers on the census adjustment.
Statist. Sci., 9, 458±537.

Chamberlain, G. (1986) Asymptotic e�ciency in semi-parametric models with censoring. J. Econometr., 32, 189±218.
Chesher, A. D. and Spady, R. H. (1991) Asymptotic expansions of the information matrix test statistic.

Econometrica, 59, 787±816.
Cook, R. D. (1986) Assessment of local in¯uence (with discussion). J. R. Statist. Soc. B, 48, 133±160.
Corn®eld, J., Haenszel, W., Hammond, E., Lilienfeld, A., Shimkin, M. and Wynder, E. (1959) Smoking and lung

cancer: recent evidence and a discussion of some questions. J. Natn. Cancer Inst., 22, 173±203.

94 DISCUSSION OF THE PAPER BY COPAS AND LI [No. 1,



Dawid, A. P. and Dickey, J. M. (1977) Likelihood and Bayesian inference from selectively reported data. J. Am.
Statist. Ass., 72, 845±850.

Diggle, P. and Kenward, M. G. (1994) Informative drop-out in longitudinal data analysis (with discussion). Appl.
Statist., 43, 49±93.

Efron, B. and Tibshirani, R. J. (1993) An Introduction to the Bootstrap. London: Chapman and Hall.
Ehrenberg, A. S. C. (1960) A study of some potential biases in the operation of a consumer panel. Appl. Statist., 9,

20±27.
Fisher, R. A. (1966) Design of Experiments, 8th edn. Edinburgh: Oliver and Boyd.
Fitzmaurice, G. M., Heath, A. F. and Cli�ord, P. (1996) Logistic regression models for binary panel data with

attrition. J. R. Statist. Soc. A, 159, 249±263.
Gastwirth, J., Krieger, A. and Rosenbaum, P. (1994) How a court accepted an impossible explanation. Am. Statistn,

48, 313±315.
Glynn, R. J., Laird, N. M. and Rubin, D. B. (1986) Selection modeling versus mixture modeling with non-ignorable

nonresponse. In Drawing Inferences from Self-selected Samples (ed. H. Wainer), pp. 115±142. New York: Springer.
Greenland, S. (1990) Randomization, statistics, and causal inference. Epidemiology, 1, 421±429.
Ð(1996) Review of ``Observational Studies'' by P. Rosenbaum. Statist. Med., 15, in the press.
Hand, D. J. and Henley, W. E. (1993) Can reject inference ever work? IMA J. Math. Appl. Bus. Indstry, 5, 45±55.
Ð(1994) Inference about rejected cases in discriminant analysis. In New Approaches in Classi®cation and Data

Analysis (eds E. Diday, Y. Lechevallier, M. Schader, P. Bertrand and B. Burtschy), pp. 292±299. Berlin: Springer.
Heckman, J. (1979) Sample selection bias as a speci®cation error. Econometrica, 47, 153±161.
Humphreys, P. and Wojcicki, R. (1995) Found. Sci., 1, 19±83.
Lee, L.-F. and Chesher, A. (1986) Speci®cation testing when score test statistics are identically zero. J. Econometr.,

31, 121±149.
Little, R. J. A. (1985) A note about models for selectivity bias. Econometrica, 53, 1469±1474.
Ð(1994) A class of pattern-mixture models for normal incomplete data. Biometrika, 81, 471±484.
Lockheed, M. E. and Longford, N. T. (1991) School e�ects on mathematics achievement gain in Thailand. In

Schools, Classrooms and Pupils: International Studies of Schooling from a Multilevel Perspective (eds S. W.
Raudenbush and J. D. Willms). London: Academic Press.

Poole, C. and Greenland, S. (1997) How a court accepted a possible explanation. Am. Statistn, 50, in the press.
Powell, J. L. (1994) Estimation of semiparametric models. In Handbook of Econometrics (eds R. F. Engle and D. L.

McFadden), vol. IV, ch. 41. Amsterdam: Elsevier Science.
Robins, J. M. (1994) Correcting for noncompliance in randomized trials using structural nested mean models.

Communs Statist. Theory Meth., 23, 2379±2412.
Rosenbaum, P. R. (1987) Sensitivity analysis for certain permutation inferences in matched observational studies.

Biometrika, 74, 13±26.
Ð(1995) Quantiles in nonrandom samples and observational studies. J. Am. Statist. Ass., 90, 1424±1431.
Rotnitzky, A. and Robins, J. M. (1996a) Analysis of semiparametric regression models with non-ignorable non-

response. Statist. Med., to be published.
Ð(1996b) Semiparametric regression for repeated outcomes with non-ignorable non-response. To be published.
Ð(1996c) The asymptotic distribution of the maximum likelihood estimator when the information matrix is

singular. Technical Report. Department of Biostatistics, Harvard School of Public Health, Boston.
Rubin, D. B. (1978) Multiple imputations in sample surveys: a phenomenological Bayesian approach to nonresponse.

Proc. Surv. Res. Meth. Sect. Am. Statist. Ass., 20±34.
Rubin, D. B., Stern, H. S. and Vehovar, V. (1995) Handling `don't know' survey responses: the case of the Slovenian

plebiscite. J. Am. Statist. Ass., 90, 822±828.
Silber, J. and Rosenbaum, P. R. (1995) Letter: Measuring the quality of hospital care. J. Am. Med. Ass., 273, 21.
Skinner, C. J. (1994) Sample models and weights. Proc. Surv. Res. Meth. Sect. Am. Statist. Ass.
Smith, T. M. F. (1988) To weight or not to weight that is the question. In Bayesian Statistics 3 (eds J. M. Bernardo,

M. DeGroot, D. V. Lindley and A. F. M. Smith), pp. 437±451. Oxford: Oxford University Press.
Stefanski, L. A. (1985) The e�ects of measurement error on parameter estimation. Biometrika, 72, 583±592.
Sugden, R. A. and Smith, T. M. F. (1984) Ignorable and informative designs in survey sampling inference.

Biometrika, 71, 495±506.
Tukey, J. (1986) Comments. In Drawing Inferences from Self-selected Samples (ed. H. Wainer), pp. 58±62, 108±110.

New York: Springer.
Wadsworth, J., Johnson, A. M., Wellings, K. and Field, J. (1996) What's in a mean?Ðan examination of the

inconsistency between men and women in reporting sexual partnerships. J. R. Statist. Soc. A, 159, 111±123.
Wu, M. C. and Carroll, R. J. (1988) Estimation and comparison of changes in the presence of informative right

censoring by modeling the censoring process. Biometrics, 44, 175±188.

1997] DISCUSSION OF THE PAPER BY COPAS AND LI 95


