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On the efficiency of two-stage
response-adaptive designs
Holger Dette,a*† Björn Bornkampb and Frank Bretzb

In this paper, we investigate the efficiency of response-adaptive locally optimum designs. We focus on two-stage
adaptive designs, where after the first stage the accrued data are used to determine a locally optimum design for
the second stage. On the basis of an explicit expansion of the information matrix, we compare the variance of the
maximum likelihood estimates obtained from a two-stage adaptive design and a fixed design without adaptation.
For several one-parameter models, we provide explicit expressions for the relative efficiency of these two designs,
which is seen to depend sensitively on the statistical problem under investigation. In particular, we show that in
non-linear regression models with moderate or large variances the first-stage sample size of an adaptive design
should be chosen sufficiently large in order to address variability in the interim parameter estimates. These
findings support the results of recent simulation studies conducted to compare adaptive designs in more complex
situations. We finally present an application to a real clinical dose-finding trial aiming at the estimation of the
smallest dose achieving a certain percentage of the maximum treatment effect by using a three-parameter Emax
model. Copyright © 2012 John Wiley & Sons, Ltd.

Keywords: dose estimation; dose finding; mean squared error; optimal design; maximum likelihood estimation;
non-linear regression

1. Introduction

It is well known that good study designs can substantially improve the efficiency of statistical analyses,
and numerous authors have worked on the problem of constructing optimal designs for regression
models. Optimal designs for non-linear regression models usually depend on the unknown model
parameter, leading to so-called locally optimal designs [1]; see also [2–5] among many others. Locally
optimal designs require a specification of the unknown model parameter at the planning stage of a study
and might thus be sensitive with respect to an initial misspecification of that parameter. More advanced
design strategies have been developed instead to overcome this sensitivity, such as Bayesian or other
robust designs; see [6–9] among others.

Sequential designs are an attractive alternative that update the information about the unknown
parameter sequentially after each observation; see [10–12] for early references. Several authors
have proved efficiency of sequentially optimal designs in the sense that sequential designs converge
asymptotically to the locally optimal designs and that the corresponding parameter estimates are
asymptotically efficient; see [13–16] among others. However, these results usually refer to specific
models, and fully sequential designs are often not feasible in practice because of logistic restrictions
(necessity of real-time data capture, automated data analyses, highly flexible drug supply, etc.).

Response-adaptive designs with several cohorts of subjects (adaptive designs, in short) are often
used instead: After each stage, the accumulated data of the ongoing study are used to update the
initial guess of the underlying model parameters [17–19]. These designs continue to gain popularity
in biopharmaceutical applications. For example, in clinical studies addressing dose-finding objectives,
trial designs that enable adaptations based on accrued data of an ongoing trial can be more efficient than
fixed designs without adaptations [20]. Several adaptive designs have been introduced in the recent past;
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see, for example, [21–24] for approaches in the context of dose-finding clinical trials. In order to
investigate the operating characteristics of a given adaptive design, in particular in comparison with
a traditional fixed design, extensive simulations are typically necessary [25]. Theoretical comparisons
often fall short because of the complicated structure in the data generating process of adaptive
(or sequential) designs. As pointed out by [24], the main reason for the lack of theoretical results is
that sequential and adaptive designs generate dependent observations. Consequently, the precision of the
estimators cannot be measured by the Fisher information matrix as formally done in classical statistical
theory (which requires independent observations).

In this paper, we compare the asymptotic efficiency of two-stage adaptive designs with fixed designs.
To this end, we derive an explicit expression for the (asymptotic) Fisher information of these designs.
These results are used for a comparison of the variances of the maximum likelihood estimates (MLE)
obtained from adaptive and fixed designs. We derive explicit expressions for the relative efficiency
comparing these two designs for several one-parameter models. We illustrate the methodology with
several examples and demonstrate that the approximations derived by the asymptotic theory are accurate
for realistic sample sizes. Moreover, we show that, in non-linear regression models with a moderate
variance of the responses, the first-stage sample size of an adaptive design should be chosen sufficiently
large in order to address variability in the interim parameter estimate. In particular, we demonstrate
that the superiority of an adaptive or a fixed design depends sensitively on the statistical problem under
investigation. These findings support the results of recent simulation studies comparing several adaptive
designs in more complex situations [20, 25].

Accordingly, this paper is organized as follows. In Section 2, we present the main asymptotic results.
In particular, we give an explicit expression for the relative efficiency comparing adaptive designs with
fixed designs for one-parameter models. In Section 3, we illustrate these expressions for the exponential,
logistic, and Poisson regression models. In Section 4, we present an application to a real clinical dose-
finding trial aiming at the estimation of the smallest dose achieving a certain percentage of the maximum
treatment effect using a three-parameter Emax model. We give concluding remarks in Section 5.

2. Main results

In this section, we present the main results for comparing the asymptotic efficiency of two-stage adaptive
designs with fixed designs. In Section 2.1, we introduce the basic notation used throughout this paper.
In Section 2.2, we describe the two design options and state the main asymptotic efficiency result. We
give a sketch of the proof in the Appendix and refer to a Technical Report for the extensive but relatively
standard asymptotic expansions. Finally, we give in Section 2.3 an explicit expression for the relative
efficiency comparing adaptive designs with fixed designs for one-parameter models.

2.1. Notation

For the sake of concreteness, we describe the methods and examples in the context of clinical dose-
finding studies, although the results of this paper remain valid for other applications. We consider a
clinical outcome Y observed at dose level d 2 D. The variable Y may represent efficacy or safety,
and the dose range is given by D D Œd ; d �, where d and d denote the lowest and highest doses under
investigation, respectively. In many cases, d D 0 is the placebo dose. Assume that Y has the density
f .y; d; �/, where � 2 ‚ denotes the finite dimensional unknown parameter vector. We further assume
that N independent observations Y1; : : : ; YN are available and denote by O� the MLE based on the full
sample. Finally, let

� D

�
d1 : : : dk
w1 : : : wk

�

denote an experimental design with relative patient allocation wi at dose di ; i D 1; : : : ; k. Following
[26], the weights wi > 0, with

Pk
iD1wi D 1, are not necessarily multiples of 1=N . In practice, for a

given total sample sizeN , a design � is implemented by rounding the quantities wiN to integers, say ni ,
with

Pk
iD1 ni DN .
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The statistic
p
N
�
O� � �

�
is, under standard regularity assumptions, asymptotically normal dis-

tributed with mean 0 and covariance matrix M�1.�; �/, where

M.�; �/D

Z Z �
@

@�
logf .y; d; �/

�T �
@

@�
logf .y; d; �/

�
f .y; d; �/dyd�.d/ (1)

denotes the information matrix of the given design � . The matrix M.�; �/ can be interpreted as a
precision measure of the parameter estimate O� based on the design � . ‘Larger’ values ofM.�; �/ indicate
better (i.e., more precise) estimates of � . A locally optimal design maximizes an appropriate functional
of this matrix, the so-called optimality criterion; see [27, 28] among others. Finally, let

I.�; �/ WDM.�� ; �/ (2)

denote the information matrix of the locally optimal design �� for the parameter � 2 ‚ if the ‘true’
parameter is given by � .

2.2. Asymptotic efficiency

We now introduce two major design options: a fixed, that is, non-adaptive, design �F , where observations
are taken at pre-specified doses, and a two-stage adaptive design �A, where after the first stage the accrued
data are used to determine the second-stage design. In the following, let �0 denote a preliminary guess
for the unknown parameter � . In the context of clinical dose-finding trials, such preliminary information
is often available from previous trials (animal studies, proof-of-concept studies, etc.) to generate a best
guess �0.

(F) Fixed design �F : Take all N observations according to the locally optimal design ��0 based on the
best guess �0. The resulting estimate of � is denoted by O�F .

(A) Two-stage adaptive design �A: Split the total sample N in two parts and proceed as follows.
� Take N0 observations according to the locally optimal design ��0 . For the asymptotic

considerations in the following text, we let p0 D
N0
N

and assume that limN!1N0=N 2 Œ0; 1/
is a fixed constant.

� Estimate the parameter � by maximum likelihood (ML) estimation from theseN0 observations,
resulting in O�1.

� Take N1 D N � N0 observations according to the locally optimal design � O�1 and estimate
the parameter � by ML estimation from all N D N0 C N1 observations. The final estimate
is denoted by O�A and depends on the first-stage data through the random variable O�1, that is,
O�A D O�A

�
O�1

�
. Finally, we define p1 D

N1
N

and note that p0C p1 D 1.

In the following, we provide an analytical comparison of the two design options. Note that under standard
assumptions in non-linear regression the variance of the MLE is of the order O.1=N/, whereas the
squared bias is of the order O.1=N 2/ [29], which implies that the mean squared error is dominated by
the variance. Therefore, we approximate the mean squared error (MSE) of the MLE by its variance,
that is,

MSE
�
O�
�
DE

��
O� � �

� �
O� � �

�T �
� Var

�
O�
�
: (3)

We aim at deriving asymptotic expansions for the variances Var
�
O�F

�
and Var

�
O�A

�
in order to compare

the two design options �F and �A for a given statistical problem.

In general, the explicit calculation of the variances Var
�
O�F

�
and Var

�
O�A

�
for a given non-linear

model is very cumbersome. However, an asymptotic expansion can be calculated using computer
algebra systems such as MATHEMATICA or MATLAB. First note that the discussion at the beginning
of this section shows that the variance of an estimator O� from the total sample can be approximated by

Var
�
O�
�
� M�1.�; �/=N , where M.�; �/ is the information matrix defined in (1). In Appendix A, we
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provide a sketch of a proof for the following main results. The variance of the MLE from the fixed design
�F using the locally optimal design ��0 can be approximated by

Var
�
O�F

�
�
1

N
M.�F ; �/;

where the information matrix of �F satisfies

M.�F ; �/� I.�; �0/C
1
p
N0
K.�; �0/C

1

N0
L.�; �0/; (4)

and the matrices K and L depend on the specific model under consideration as well as the initial guess
�0 for the unknown parameter � . Furthermore, we obtain for the variance of the MLE from the adaptive
design �A the approximation

Var
�
O�A

�
�
1

N
M.�A; �/

where

M.�A; �/�H.�; �0/C
1
p
N0
NK.�; �0/C

1

N0
NL.�; �0/; (5)

with H.�; �0/ D p0I.�; �0/C p1I.�; �/ and appropriate matrices NL; NK. Note that the matrix H.�; �0/
is a weighted average of the information matrices corresponding to the locally optimal designs ��0 and
�� . Therefore, this matrix can be interpreted as a mixture of information matrices corresponding to two
locally optimal designs: one for the ‘true’ parameter � and another one for the preliminary guess �0.
The weights p0 and p1 in this mixture correspond to the relative proportions of subjects treated in the
first and second stages, respectively. Consequently, for ‘small’ values of p0, the dominating term in
(5) becomes ‘close’ to the Fisher information matrix of the locally optimal design �� . Similarly, the
adaptive design �A is approximately given by �A � p0��0 C p1�� , and the remainder corresponds to
the error in these approximations. Note that the expansion (5) refers to an asymptotic analysis where we
assume the first-stage sample size N0 to be of the same order as the total sample size N !1, that is,
limN!1N0=N 2 .0; 1/.

In general, the matrices K; NK and L; NL in (4) and (5) are neither positive nor negative definite, and
therefore it is not clear whether for finite sample sizes the matrix M.�A; �/ is smaller (with respect
to the Loewner ordering) than M.�F ; �/ corresponding to the locally optimal design �� . Because
H.�; �0/ > I.�; �0/, however, it follows that asymptotically the adaptive design �A is always better
than the fixed design �F . For finite sample sizes, we have to factor in the correction terms of order
1=
p
N0 and 1=N0, and the relationship is not obvious anymore.

The prior arguments remain valid for any differentiable optimality criterion �. To be precise, assume
that a (locally) �-optimal design minimizes �.M.�; �// in the class of all designs. When comparing the
efficiency of the two designs �F and �A, this gives

eff�.�F ; �A/D
�.M.�F ; �//

�.M.�A; �//
�

�.I.�; �0//

�.p0I.�; �0/C p1I.�; �//
C

c
p
N0
C

d

N0
(6)

for the �-efficiency of the fixed design �F with respect to the adaptive design �A, where no information
regarding the sign of the constants c and d is available in general. If eff.�F ; �A/ < 1, the design �F is
preferable as it yields smaller values of the optimality criterion. If eff.�F ; �A/ > 1, the opposite is true,
and the design �A is preferable. In general, a conclusion about the superiority of a design depends on
the underlying regression model; see Section 3 for examples. A common application is the problem of
estimating a function of the unknown parameter � , say  .�/. For example, a frequent problem in dose
response studies is the estimation of relevant target doses as a function of the parameters of a regression
model; see [30, 31] among others. In such situations, the asymptotic variance of the canonical estimate
O D  

�
O�A

�
from a two-stage design �A is given by

Var. O /�r .�/M�1.�A; �/.r .�//
T

�r .�/H�1.�; �0/.r .�//
T C

1
p
N0
QK.�; �0/C

1

N0
QL.�; �0/

with appropriate constants QK, QL and where rg denotes the gradient of a real valued function g. Note
that we can extend (6) accordingly. We come back to these results when estimating the smallest dose,
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achieving a certain percentage of the maximum treatment effect using a three-parameter Emax model
in Section 4.

2.3. Efficiencies for one-parameter models

If the parameter � in the non-linear regression model from Section 2.1 satisfies � 2 ‚ � R, the
formulae simplify substantially, and we can explicitly give the constants in (6). In this case, the
information matrix of a given design � is one-dimensional, and an optimal design maximizes this matrix
(or minimizes its inverse). Assume that for each � 2 ‚ a one-point design, say �� , maximizes M.�; �/
in the class of all designs on the dose range D. Let d.�/ denote the corresponding support point of the
locally optimal design �� , which we assume to be an interior point of the dose range D �R. In this case,
we can give an explicit expression for the asymptotic efficiency of a fixed design �F compared with an

adaptive design �A as the ratio of the asymptotic variances Var
�
O�F

�
and Var

�
O�A

�
(see Appendix B for

some details). Because the mean squared error is dominated by the variance, it follows from (3) that

eff.�F ; �A/D
MSE

�
O�F

�
MSE

�
O�A

� � Var
�
O�F

�
Var

�
O�A

� � � I.�; �0/
H.�; �0/

� p1
g.�/.5p0I.�; �0/C p1I.�; �/

2N0H 3.�; �0/

	�1
: (7)

Note again that in (7) the dominating term I.�; �0/=H.�; �0/ < 1, because H.�; �0/ D p0I.�; �0/C
p1I.�; �/ > I.�; �0/. Therefore, for large first-stage sample sizes N0, we have eff.�F ; �A/ > 1 and
expect the adaptive design �A to be more efficient than the fixed design �F . However, the second term in
(7) is positive, and this contribution may be substantial for finite sample sizes as illustrated with examples
in the following section.

3. Examples

In this section, we illustrate the asymptotic theory with three examples by considering an exponential, a
logistic, and a Poisson regression model.

3.1. Exponential regression model

We consider the one-parameter exponential regression model with homoscedastic errors,

EŒY jd�D �.d; �/D e��d ; Var .Y jd/D �2 > 0; (8)

where D D Œ0;1/ and � > 0. In this case, we have @
@�
�.d; �/ D �de��d , and the Fisher information

matrix at the point d is obtained from [32]. Numerous authors [33] have considered optimal design
problems for this model. In particular, the performance of two-stage sequential designs for this model
has also been investigated in [14]. These authors considered one strategy for the first step and two fixed
design strategies for the second step of the adaptive procedure and determined the optimal allocation of
the observations between the two stages. For this purpose, they introduced a prior distribution for the
unknown parameter and calculated a first-order approximation for the expected value of the optimality
criterion. In contrast to the work of this paper, our approach is based on maximum likelihood estimation
and additionally uses higher order expansions as considered in (4). The local D-optimal design for the
model (8) is a one-point design with d.�/D 1=� . Consequently,

I.�; �/D
1

�2
.e�/�2; I.�; �0/D

1

�2

�
e�=�0�0

��2
; and g.�/D�

2

�2



�2e

��2
:

Therefore, it follows from (7) that

eff.�F ; �A/�

8<
: 1

p0C .1� p0/
n
.�e/2



e�=�0�0

��4o�1

C
�2

e2N�4
1� p0

p0

5p0


e�=�0�0

��4
C 1�p0

.�e/2h
p0


e�=�0�0

��4
C .1� p0/f.�e/2g�1

i3
9>=
>;
�1

:

(9)
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Figure 1. Plots of the exponential model (8) for different values of � reflecting the degree of misspecification of
the true parameter value � D 1.

Note that the second term in this expression is always positive. This means that—because of the
adaptive structure of the design—there is a further contribution in the efficiency of order O.1=N/,
which is negligible for large N . In the following, we investigate this approximation in several concrete
finite sample scenarios. In Figure 1, we display the resulting exponential models if the parameter �
is underestimated (�0 D 0:8; 0:5; 0:3333 in the left panel) or overestimated (�0 D 1:25; 2; 3 in the
right panel). In both panels, we display the true exponential model with � D 1 as a solid line.

In Figure 2, we plot the approximated efficiency from (9) as function of p0 for �2 D 1; 0:1 and the
�0 values displayed in Figure 1, where the total sample size is N D 100 and the true parameter value
is � D 1. A ratio larger than 1 means that the adaptive design �A yields smaller MSEs and is there-
fore better than the fixed design �F . On the other hand, if the ratio is smaller than 1, the non-adaptive
design �F shows a better performance. In the top panels, we display the results for �0 < � , whereas
the case �0 > 0 is shown in the bottom panel. In the left panels of each row, we show the results for a
realistic signal-to-noise ratio with �2 D 1, whereas in the right panels, we display the results for a rather
unrealistically small variance �2 D 0:1.

Comparing the two designs �F and �A reveals that for large variances the fixed design �F has often a
competitive or even better performance for a broad range of p0 values. This observation can be nicely
explained by the fact that the term of order 1=N0 in the approximation (9) is always positive and
increasing with �2. Heuristically, a large error variance leads to a highly variable first-stage estimate
O�1 if the initial sample size N0 is not sufficiently large. Therefore, the corresponding design � O�1 used
in the second stage may not be efficient in some cases. On the other hand, for small variances or large
first-stage sample sizes, we can estimate the parameter � rather precisely from the data collected in the
first stage. Consequently, updating the initial parameter guess �0 based on the first-stage data will lead
to a better second-stage design and to an overall better performance for most p0 values. Note also that
the degree of initial misspecification of the parameter � (through �0) has only limited impact when the
variance is large. Overall, the differences between the designs �F and �A are small for the situations
considered here, except in the case of very small variances �2 and where the initial guess �0 deviates
substantially from � .

3.2. Logistic regression

Consider a logistic regression model, where the responses are independent Bernoulli random variables
with probability of success

p.d; �/DEŒY jd�D
1

1C ed��
;

and D D R. This model is sometimes called the one-parameter Rasch model and is used to model
the item characteristic curve in item response theory [34]. Several authors [10, 16, 35] have discussed

Copyright © 2012 John Wiley & Sons, Ltd. Statist. Med. 2013, 32 1646–1660
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Figure 2. Plot of the approximation defined in (9) for the MSE ratio as function of p0 under the exponen-
tial model (8) for N D 100, �2 D 1 (left panels), �2 D 0:1 (right panels), and different �0 values. Top:

�0 D 0:8; 0:5; 0:3333; bottom: �0 D 1:25; 2; 3.

sequential optimal designs for the Rasch model. It follows from [36] that the Fisher information matrix
for a one-point design ıd at the point d is given by

M.ıd ; �/D
ed��


1C ed��
�2 :

Standard calculation shows that the design concentrating its mass at the point d.�/ D � is locally
optimal. Therefore, we obtain

I.�; �/D
e���


1C e���
�2 ;

which implies

I.�; �/D
1

4
; g.�/D�

1

8
; and H.�; �0/D p0

e�0��

1C e�0��

�2 C p1 14 :
Consequently, it follows from (7) that

eff.�F ; �A/�

(�
p0C

p1.1C e
� /2

4e�

��1
C p1

.20p0e
� C p1.1C e

� /2/.1C e� /4

N0.4p0e� C p1.1C e� /2/3

)�1
; (10)
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Figure 3. Plot of the approximation (10) for the MSE ratio (solid line) and corresponding simulation results
(dashed line) as a function of p0 under the logistic model for different configurations of �; �0, and N .

where 	 D �0� � denotes the degree of initial misspecification of � through �0. In Figure 3, we plot the
approximation defined in (10) together with the corresponding simulation results as a function of p0 for
different values of �0; � , and N . In order to investigate the accuracy of the asymptotic results for finite
sample sizes, we have also performed simulations to calculate the MSE ratio for the MLEs obtained
from the designs �F and �A (dashed lines in Figure 3; based on 20,000 simulation runs). We observe a
rather precise approximation of the simulated MSE ratios by the asymptotic theory.

We observe that in most situations the adaptive design shows a better performance, although the
improvement remains small, except for large values of j	 j and N . We can explain these results by the
fact that the variance in the logistic regression model is relatively small. For example, if �0 � � D �1,
the variance of individual observations in the first stage is p.�0; �/.1� p.�0; �// D 0:197. As a conse-
quence, the parameter estimate O�1 obtained from the first stage is rather accurate, and the corresponding
design � O�1 is already close to the locally optimal design. If �0�� D�2, the variance of the observations
from the first stage is even smaller (roughly 0:105), which explains the superiority of the adaptive design
in this case.

3.3. Poisson regression model

In our final example, we consider the Poisson regression model

P.Y D kjd/D



e�d

�k
kŠ

e�e
�d

for d 2 Œ0;1/ and � 2 .�1; 0� [37]. A straightforward calculation shows that the Fisher information at
the point d is d2e�d . A locally optimal design based on the initial first guess �0 advises the experimenter
to take all observations at the point d.�0/D�2=�0. Consequently,

g.�/D�
8

�4e2
; I.�; �0/D

4

�20
e�2�=�0 ;

and it follows from (7) that for 	 D �=�0,

eff.�F ; �A/�

�
e�

p0e� C p1	�2
C

p1e
2.5p0e

�	2C p1/

4�4N0.p0e�	2C p1/3

	�1
: (11)
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Figure 4. Plot of the approximation defined in (11) for the MSE ratio (solid line) and corresponding simulation
results (dashed line) as a function of p0 under the Poisson model for different configurations of �; �0, and N .

In Figure 4, we plot the MSE ratio as a function of p0 for two parameter specifications: �0 D �1:5,
� D �1 and �0 D �1, � D �1:5. In both cases, we chose rather large sample sizes to avoid situations
where the interim MLE O�1 D 0 and the optimal design point for the second stage cannot be calculated.
The results are qualitatively similar to those for the logistic model discussed in Section 3.2. Again, the
simulated MSE ratio is approximated well by the asymptotic theory.

4. Clinical trial example to estimate the EDp

We now present an application to the clinical dose-finding study for an anti-anxiety drug described
in [38]. The primary endpoint is the change in an anxiety scale score from baseline at the end of the
study. In the following, we focus on the homoscedastic Emax model

EŒY jd�D �.d; �/D �0C �1
d

�2C d
; Var .Y jd/D �2 > 0:

Here, �0 denotes the placebo effect, �1 the asymptotic maximum treatment effect achieved at an
infinite dose, and �2 the ED50, that is, the dose that gives 50% of the maximum treatment effect. The
motivation to focus on the Emax model is its ubiquitous use in clinical practice. For example, it can
be justified on the relationship of drug–receptor interactions and therefore deduced from the chemical
equilibrium equation [39]. On the basis of clinical information available before the start of the study, [38]
assumed that the average placebo effect is �0 D 0, the maximum treatment effect within the dose range
D D Œd ; d � D Œ0 mg; 150 mg� under investigation is 0.4 (i.e., �1 D 0:467), and �2 D 25. Furthermore,
they assumed that all dose levels within D are safe.

Unlike [38], we consider the problem of estimating the smallest dose EDp achieving 100p%, 0 <
p < 1, of the maximum treatment effect in the observed dose range D. Let h.d; �/D �.d; �/� �.d ; �/
denote the effect difference at d 2 .d ; d � and d . Following [40], we define the EDp as

EDp D inf

�
d 2 .d ; d � W

h.d; �/

h.dmax; �/
> p

	
;
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where dmax D d . We estimate EDp by

bEDp D inf

8<
:d 2 .d ; d � W

h
�
d; O�

�
h
�
Odmax; O�

� > p
9=
; ;

where Odmax D argmaxd2.d;d�h
�
d; O�

�
denotes the dose corresponding to the observed maximum effect

difference in the interval .d ; d �.
In the following, we compare the two design options from Section 2.2 with respect to their relative

efficiency of estimating EDp , focusing on p D 0:9. Following [40], the optimal design for estimating
ED90 allocates one-fourth of the patients on each of d and d and the remaining one-half of the patients
on the intermediate dose

d.d C �2/C d.d C �2/

d C d C 2�2
:

In total, 100 patients will be allocated for each simulated trial.
In Figure 5, we plot the ratio of the simulated MSEs as a function of p0 for different configurations of

the true parameter �2, the initial guess � .0/2 , and � . As the ML parameter estimate might not always exist
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Figure 5. Relative efficiency in estimating the ED90 as a function of p0 for the Emax model for different
configurations of �2; �

.0/

2
, and � ; the total sample size was 100, and the results are based on 20,000 simulations.
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in the simulations, particularly at interim analyses with small p0, we bounded the �2 values by 0.015 and
1500 to ensure existence of the MLE. Similar to the results in Figure 2, one can observe that the benefit
of the adaptive design depends on the variability. A small variability results in a benefit for the adaptive
design, whereas for larger variability the benefit of an adaptive design diminishes.

5. Conclusions

A major motivation for this work was the observation from simulation studies that the benefit of adaptive
designs in terms of estimation efficiency is sometimes less in magnitude than intuitively expected and
crucially depends on the underlying models and assumptions [25]. This paper provides a theoretical
confirmation of these empirical results in a well-controlled situation, where we can safely ignore
additional factors. We derive analytic expansions for the MSE of the ML parameter estimates on the
basis of an adaptive design, which enables the analytical comparison of adaptive with fixed designs.

One main result of this paper is that one can theoretically expect a benefit of adaptive designs for
sufficiently large sample sizes for a broad class of non-linear regression models. When the sample size is
small, however, the remainder in (6) is non-negligible. This can lead to situations where the fixed design
outperforms the adaptive design, as illustrated with three practical examples. In some applications, we
can derive further general conclusions. For example, the efficiency ratio (9) reveals that adaptive designs
are always more efficient than fixed designs for sufficiently small variances. In practice, more complex
models than those considered in this paper are often used. The methodology presented in this paper
remains applicable in this case, but the calculations become very cumbersome.

In particular, we illustrate in the problem of estimating the smallest dose achieving a certain percentage
of the maximum treatment effect using a three-parameterEmax model that a sufficiently large sample size
is necessary in the first stage for a better performance of the adaptive two-stage design. Moreover, the
theoretical results enable us to understand the relationship of key factors impacting the relative efficacy
of adaptive designs compared with fixed designs. For example, in the logistic regression example from
Section 3.2, the relative efficiency depends only on three factors: the unknown degree of misspecification
	 and the two design parameters p0 and N0. Using analytical methods, closed form expressions can be
derived for the relationship between these factors, giving insight into their impact on efficiency
performance. By contrast, simulation studies, even if performed comprehensively, do not provide
theoretical explanations and are mainly used to provide empirical evidence.

Appendix A. Technical arguments

In this appendix, we give a sketch of a proof for the general expression (5). The representation (4) follows
by similar arguments. Some details can be found in [41]. In order to derive the asymptotic distribution

of
p
N0

�
O�1 � �

�
, we use a standard argument and the fact that the MLE O�1 based on the observations

.d1; Y1/; : : : ; .dN0 ; YN0/ is a solution of the equation 0 D
PN0
iD1

@
@�

logf
�
Yi ; di ; O�1

�
. Assume that

the observations are taken according to a design � with k > d different experimental conditions, say
t1; : : : ; tk , and positive weights w1; : : : ; wk . Because N0wi ! 1 .i D 1; : : : ; k/, it follows by the
strong law of large numbers that

1

N0

N0X
iD1

@2

@2�
logf .Yi ; di ; �/ �!

Z Z
@2

@2�
log f .y; d; �/f .y; d; �/dy d�.d/;

and a standard argument shows that the right-hand side is equal to the matrix �M.�; �/, where M.�; �/
is defined in (1). A Taylor expansion yields

0�
p
N0

�
O�1 � �

� 1

N0

N0X
iD1

@2

@2�
logf .Yi ; di ; �/C

1
p
N0

N0X
iD1

@

@�
logf .Yi ; di ; �/:

This gives for any design � with positive masses at k > d points

p
N0

�
O�1 � �

�
�M�1.�; �/

1
p
N0

N0X
iD1

@

@�
log f .Yi ; di ; �/:
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On the right-hand side, we have a sum of independent random variables, and the central limit theorem
shows that it has an asymptotic (d -dimensional) normal distribution with mean 0 and covariance matrix
M�1.�; �/. Therefore, it follows using the locally optimal design ��0 and observing the definition of the

matrix I.�; �/ in (2) that
p
N0

�
O�1 � �

�
� I�1=2.�; �0/ �Z0;N0 , where

Z0;N0 D
1
p
N0

I�1=2.�; �0/

N0X
iD1

@

@�
logf .Yi ; di .�0/; �/

D
�!Nd .0; Id /: (12)

The MLE O�A from the total sample depends on the sample from the first stage through the random

variable O�1, that is, O�A D O�A
�
O�1

�
, and satisfies

0D

N0X
iD1

@

@�
logf

�
Yi ; di .�0/; O�A

�
C

N0CN1X
iDn0C1

@

@�
logf

�
Yi ; di

�
O�1

�
; O�A

�
;

where dN0C1
�
O�1

�
; : : : ; dN0CN1

�
O�1

�
are the design points from the second stage (which depend on

the parameter estimate O�1 obtained in the first stage). The same argument as in the first part of the
proof yields

0�
1

N

N0X
iD1

@2

@2�
logf .Yi ; di .�0/; �/

p
N
�
O�A � �

�
C

1
p
N

N0X
iD1

@

@�
logf .Yi ; di .�0/; �/

C
1

N

N0CN1X
iDN0C1

@2

@2�
logf

�
Yi ; di

�
O�1

�
; �
�p

N
�
O�A � �

�
C

1
p
N

N0CN1X
iDN0C1

@

@�
logf

�
Yi ; di

�
O�1

�
; �
�

��
�
p0 I.�; �0/Cp1 I

�
�; Q�1

��p
N
�
O�A � �

�
C
p
p0 I

1=2.�; �0/Z0;N0C
p
p1 I

1=2
�
�; Q�1

�
Z1;N1 ;

where Q�1 D �1C 1p
N0
I�1=2.�; �0/Z0;N0 and Z0;N0 and Z1;N1 are defined by (12) and

Z1;N1 D
1
p
N1

I�1=2
�
�; Q�1

� N0CN1X
iDN0C1

@

@�
logf

�
Yi ; di

�
Q�1

�
; �
�
;

respectively. Note that we have used the fact that the design points di .�/ and the density f of the locally
optimal design are continuously differentiable with respect to � and x, respectively. This gives

p
N
�
O�A � �

�
� .p0I.�; �0/C p1I

�
�; Q�1

��1 �p
p0I

1=2.�; �0/Z0;N C
p
p1I

1=2
�
�; Q�1

�
Z1;N1

�
:

The variance of the random variable
p
N O�A can be calculated using the variance decomposition formula

Var
�p

N O�A

�
D E

h
Var

�p
N O�A j Y1; : : : ; YN0

�i
CVar

�
E
hp
N O�A j Y1; : : : ; YN0

i�
; (13)

and from the calculations of the previous paragraph, we obtain for the conditional expectation and
variance given Y1; : : : ; YN0

E
hp
N O�A j Y1; : : : ; YN0

i
�
�
p0I.�; �0/C p1I

�
�; Q�1

���1p
p0I

1=2.�; �0/Z0;N0 ;

Var
�p
N O�A j Y1; : : : ; YN0

�
�p1

�
p0I.�; �0/C p1I

�
�; Q�1

���1
I
�
�; Q�1

��
p0I.�; �0/Cp1I

�
�; Q�1

���1
:

Here, we used the fact that EŒZ1;N1 jY1; : : : ; YN0 � D 0; Var.Z1;N1 jY1; : : : ; YN0/ D Id and that Q�1
depends only on Y1; : : : ; YN0 .
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Next, we consider a Taylor expansion of the function I
�
�; Q�1

�
, which gives for the element in the

position .i; j / of the matrix I.�; � C �/

.I.�; � C �//ij D .I.�; �//ij Cr.I.�; �//ij � C
1

2
�Tr2.I.�; �//ij � C o



�2
�
; (14)

where the derivatives are taken with respect to the second argument of the matrix I.�; �/ and evaluated
at � D � . Writing the expansion (14) in matrix form and using the notation � D 1p

N0
I�1=2.�; �0/Z0;N0

yields

I
�
�; Q�1

�
� I.�; �/C

1
p
N0
D1.�; Z0;N0/C

1

2N0
D2.�;Z0;N0/C op

�
1

N0

�
D I.�; �/CR.�;Z0;N0/;

where

R.�;Z0;N0/D
1
p
N0
D1.�;Z0;N0/C

1

2N0
D2.�; Z0;N0/;

D1.�;Z0;N0/D
�
r.I.�; �//ij I

�1=2.�; �0/Z0;N0

�d
i;jD1

;

D2.�;Z0;N0/D
�
ZT0;N0I

�1=2.�; �0/r
2.I.�; �//i;j I

�1=2.�; �0/Z0;N0

�d
i;jD1

(15)

and rg and r2g denote the gradient and the Hessian matrix of a real valued function g. Assuming
A;B 2Rd�d with detA¤ 0 and letting "! 0, we use the expansion

.AC "B/�1 D


Id C "A

�1B
��1

A�1 D A�1


Id � "BA

�1C "2BA�1BA�1
�
C o



"2
�

and obtain

E
hp
N O�A j Y1; : : : ; YN0

i
�H�1.�; �0/

˚
Id � p1R.�;Z0;N0/H

�1.�; �0/C p
2
1S.�;Z0;N /

�
�
p
p0I

1=2.�; �0/Z0;N0 ;
(16)

Var
hp
N O�A j Y1; : : : ; YN0

i
� p1H

�1.�; �0/
˚
Id � p1R.�;Z0;N0/H

�1.�; �0/C p
2
1S.�;Z0;N /

�
� fI.�; �/CR.�;Z0;N0/g

�
˚
Id � p1R.�;Z0;N0/H

�1.�; �0/C p
2
1S.�;Z0;N /

�T
H�1.�; �0/;

(17)

where the matrix S.�;Z0;N0/ is given by

S.�;Z0;N0/D
1

N0
D1.�;Z0;N0/H

�1.�; �0/D1.�; Z0;N /H
�1.�; �0/: (18)

The general structure of the information in (5) now follows from (13), observing the definition of the
matrices R and S in (15) and (18), respectively.

Appendix B

For a proof of (7), we have to find the asymptotic variances of the estimators from the adaptive and fixed
designs. For the fixed design, we have Var.

p
N O�F /� I

�1.�:�0/. In order to obtain a similar expression
for the MLE under the adaptive design, we observe the representation

I.�; �/D

Z �
@

@�
logf .y; d.�/; �/

�2
f .y; d.�/; �/dy; (19)

where we have used the fact that �� is a one-point design supported at the point x.�/. For each � 2 ‚,
a one-point design, say �� , maximizes M.�; �/, and the corresponding support point d.�/ is an interior
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point of the dose range D �R. Consequently, it follows from (1) that for each � 2‚, the point d.�/ is a
solution of the equation

@

@d

Z
f .y; d; �/

�
@

@�
logf .y; d; �/

�2
dy D 0: (20)

This yields for the derivative of the first order in (14)

rI.�; �/

ˇ̌̌
ˇ
�D�

D
@

@d

Z
f .y; d; �/

�
@

@�
logf .y; d; �/

�2
dy

ˇ̌̌
ˇ
dDd.�/

�
@

@�
d.�/

ˇ̌̌
ˇ
�D�

D 0;

where the last identity follows from (20). Similarly, we obtain for the second derivative

g.�/ WD r2I.�; �/

ˇ̌̌
ˇ
�D�

D
@2

@2d

Z
f .y; d; �/

�
@

@�
logf .y; d; �/

�2
dy

ˇ̌̌
ˇ
dDd.�/

�

�
@

@�
d.�/

ˇ̌̌
ˇ
�D�

�2
;

where g.�/ < 0 because d.�/maximizes the function in (19). Consequently, we haveD1.�; Z0;N0/D 0,
S.�;Z0;N0/D 0 and obtain for the matrix R.�;Z0;N0/ defined by (15)

R.�;Z0/D
1

2N0

g.�/Z20;N0
I.�; �0/

;

which, together with (16) and (17), yields as approximation for the variance of

Var
�p

N O�A

�
D Var

�
E
hp
N O�A j Y1; : : : ; YN0

i�
CE

h
Var

�p
N O�A j Y1; : : : ; YN0

�i

�E

2
4p0Z20;N0I.�; �0/

H 2.�; �0/

 
1�

p1g.�/Z
2
0;N0

2N0I.�; �0/H.�; �0/

!235

C p1E

2
4 1

H 2.�; �0/

 
1�

p1g.�/Z
2
0;N0

2N0I.�; �0/H.�; �0/

!2  
I.�; �/C

Z20;N0g.�/

2N0I.�; �0/

!35

D
p0I.�; �0/

H 2.�; �0/

�
1�

3p1g.�/

N0I.�; �0/H.�; �0/

�

C
p1I.�; �/

H 2.�; �0/

�
1C

g.�/.p0I.�; �0/� p1I.�; �//

2N0I.�; �0/H.�; �0/I.�; �/

	

D
1

H.�; �0/
�
g.�/p1.5p0I.�; �0/C p1I.�; �//

2N0H 3.�; �0/I.�; �0/
:

Calculating the ratio of the two asymptotic variances proves (7).
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