
CLINICAL
TRIALS

ARTICLE Clinical Trials 2014; 11: 19–27
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Background New targeted anticancer therapies often benefit only a subset of

patients with a given cancer. Definitive evaluation of these agents may require phase

III randomized clinical trial designs that integrate evaluation of the new treatment and

the predictive ability of the biomarker that putatively determines the sensitive subset.

Purpose We propose a new integrated biomarker design, the Marker Sequential

Test (MaST) design, that allows sequential testing of the treatment effect in the bio-

marker subgroups and overall population while controlling the relevant type I error

rates.

Methods After defining the testing and error framework for integrated biomarker

designs, we review the commonly used approaches to integrated biomarker testing.

We then present a general form of the MaST design and describe how it can be used

to provide proper control of false-positive error rates for biomarker-positive and

biomarker-negative subgroups. The operating characteristics of the MaST design are

compared by analytical methods and simulations to the sequential subgroup-specific

design that sequentially assesses the treatment effect in the biomarker subgroups.

Practical aspects of MaST design implementation are discussed.

Results The MaST design is shown to have higher power relative to the sequential

subgroup-specific design in situations where the treatment effect is homogeneous

across biomarker subgroups, while preserving the power for settings where treat-

ment benefit is limited to biomarker-positive subgroup. For example, in the time-to-

event setting considered with 30% biomarker-positive prevalence, the MaST design

provides up to a 30% increase in power in the biomarker-positive and biomarker-

negative subgroups when the treatment benefits all patients equally, while sustain-

ing less than a 2% loss of power against alternatives where the benefit is limited to

the biomarker-positive subgroup.

Limitations The proposed design is appropriate for settings where it is reasonable

to assume that the treatment will not be effective in the biomarker-negative patients

unless it is effective in the biomarker-positive patients.

Conclusion The MaST trial design is a useful alternative to the sequential

subgroup-specific design when it is important to consider the treatment effect in

the biomarker-positive and biomarker-negative subgroups. Clinical Trials 2014; 11:

19–27. http://ctj.sagepub.com

Introduction

Many new anticancer therapies are molecularly tar-
geted and therefore may only benefit a subgroup of

a histologically defined population. Efficient devel-
opment of these agents depends on the availability
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of predictive biomarkers that can identify a sensitive
subpopulation. Based on the earlier development of
the agent (e.g., a phase II trial [1]), if one is confi-
dent that the biomarker-negative patients will not
be helped by the targeted therapy, then an enrich-
ment phase III trial design, which randomizes only
biomarker-positive patients, is appropriate [2,3].
However, at the time the definitive phase III trial is
designed, there is often uncertainty about whether
the treatment benefit, if any, extends to biomarker-
negative patients. In this case, the phase III trial
design should integrate treatment and biomarker
evaluation [4,5].

A clinically useful predictive biomarker differenti-
ates the patient population into a subgroup that
benefits from the therapy versus the remaining
population where the benefit is insufficient for the
therapy to be recommended. Integrated phase III
designs should provide reliable assessment of the
risk-to-benefit ratio in each of the biomarker-
defined subgroups to allow informed treatment
recommendations for each subgroup. A direct way
to address this is to use a parallel subgroup-specific
design that evaluates treatment effects separately in
the biomarker-positive and biomarker-negative
populations. When the biomarker can effectively
separate patients who sufficiently benefit versus
patients who do not, this approach provides direct
evidence on the clinical utility of the biomarker.
However, the subgroup-specific design has less
power (than a design that uses an overall compari-
son) for detecting treatment benefit when the treat-
ment effect is homogeneous across the biomarker
subgroups.

This relative lack of power against a homogeneous
treatment effect motivated use of designs that take
an indirect approach to integrating treatment/
biomarker evaluation by formally assessing treat-
ment benefit in the overall population and in the
biomarker-positive patients but not in the biomar-
ker-negative patients. These designs have improved
power under a homogeneous treatment effect and
may be useful when the evidence for the predictive
ability of the biomarker is weak. However, they may
have a high probability of recommending the treat-
ment for biomarker-negative patients when the
treatment has no benefit in that subgroup [6]. To
address this concern, Freidlin et al. [7] proposed an
alternative design that incorporates analyses of the
biomarker subgroups and overall population while
reducing the false-positive error rate for biomarker-
negative patients. In this article, we restrict atten-
tion to situations where it is appropriate to control
false-positive rates for both biomarker subgroups,
for example, when the evidence for the predictive
ability of the biomarker is relatively strong. Within
this framework, we define a general form of the
design proposed in Freidlin et al. [7], which we

denote as the Marker Sequential Test (MaST) design,
and describe how the MaST design can be used to
control false-positive error rates at a prespecified
level.

The article is structured as follows. First, we briefly
review existing integrated biomarker designs. Next,
we introduce the general form of the MaST design
and describe how to adjust its design parameters to
provide a proper control of the false-positive error
rate for both the biomarker-positive and biomarker-
negative subgroups. We then compare power char-
acteristics of the MaST and the subgroup-specific
designs. The handling of unavailable biomarker data
and interim monitoring of trial results using the
MaST design are then discussed. We end with a dis-
cussion of why the MaST design works well.

Goal of an integrated biomarker
clinical trial

The goal of an integrated biomarker clinical trial is
to establish whether the new treatment improves
clinical outcome in each biomarker subgroup. This
implies testing two subgroup-specific null hypoth-
eses H0+ : d+ =0 and H0� : d� =0 against the corre-
sponding subgroup-specific superiority alternative
hypotheses HA + : d+ .0 and HA� : d�.0, where d+

and d� are treatment effects in the biomarker-posi-
tive and biomarker-negative subgroups, respectively.
(The alternative treatment effects are parameterized
to have positive values correspond to benefit.) In
theory, there are three possible null hypotheses that
could be considered in the evaluation of a design
type I error structure: (1) global null: H0 = H0+ \ H0�,
(2) HA + \ H0�, and (3) H0+ \HA�. However, an
implicit assumption in the biomarker setting is that
when the new treatment does not work in biomar-
ker-positive patients, it also does not work in the
biomarker-negative patients (i.e., if H0+ is true then
H0� is true). Therefore, we will only require control
of type I error rate under the null hypotheses H0 and
HA + \H0� Specifically, we want (1) the probability
of rejecting either H0+ or H0� under the global null
hypothesis H0 to be �a and (2) the probability of
rejecting H0� under HA + \ H0� to be �a for all possi-
ble values of d + .

In addition to testing the two subgroup-specific
null hypotheses, one could consider, as part of an
analysis approach, using the overall study popula-
tion to test the global null hypothesis H0 against a
homogeneous alternative HA : d+ = d� = d .0, where
d denotes the overall treatment effect (as would be
done in a traditional trial that ignores the biomar-
ker). If this test rejected the null hypothesis, the
treatment would be recommended for all patients,
regardless of biomarker status.
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Commonly used biomarker designs

A direct way to provide integrated evaluation of a
new treatment and the corresponding biomarker is
to use a parallel subgroup-specific design that tests
treatment effect separately in the biomarker-positive
and biomarker-negative populations (sometimes
referred to as a biomarker-stratified design [4]). A
common approach to controlling the type I error at
level a in this design is to use a Bonferroni correc-
tion: allocate the a between the tests of the null
hypotheses of no treatment effect in each of the bio-
marker subgroups (e.g., with a = .025 one could use
.015 level for testing H0+ and .01 level for testing
H0�). As was mentioned above, in the biomarker set-
tings, it is typically assumed that if treatment does
not work in the biomarker-positive patients, then it
also does not work in the biomarker-negative
patients. Therefore, a sequential version of the sub-
group-specific design is often used to improve
design efficiency: first, test for the treatment effect
in the biomarker-positive patients using the signifi-
cance level a; if this test is significant, then test the
treatment effect in the biomarker-negative patients
using the same a [8].

It can be easily seen that for both the parallel and
sequential versions of the subgroup-specific design
(1) the probability of rejecting either H0+ or H0�
under the global null hypothesis and (2) the prob-
ability of rejecting H0� under HA + \H0� is less than
or equal to a. While it is not required here, it is use-
ful to note that subgroup-specific designs also pro-
vide a-level control of the probability of rejecting
H0+ under H0+ \HA�.

A commonly used alternative design takes an
indirect approach to integrating treatment/biomar-
ker evaluation by testing the treatment effect in the
overall population and in the biomarker-positive
patients, but not in the biomarker-negative patients.
In a parallel version of this overall/biomarker-
positive approach, the treatment effect is assessed
in both the overall population and the biomarker-
positive patients, with type I error typically con-
trolled by allocating a between the tests of the null
hypothesis in the overall population and in the bio-
marker-positive subgroup [9]. There are two sequen-
tial versions of the overall/biomarker-positive
design. One is the fallback design [10]: first, test the
overall population using the reduced significance
level a1, if the test is significant, consider the treat-
ment effective in the overall population; if the over-
all test is not significant, then test the treatment
effect in the biomarker-positive subgroup using an
a2 = a 2 a1 level test. This design may be useful
when the rationale for the biomarker is weak (i.e.,
the treatment is expected to be broadly effective),
and the fallback analysis of the biomarker-positive

patients is designed to cover a less likely contin-
gency that the benefit is limited to a relatively small
biomarker subgroup (or when the biomarker is
developed only if the overall test is not significant
[11].). For the other sequential version, first test the
biomarker-positive subgroup using significance level
a; if the test is significant, then test the treatment
effect in the overall population using the same a

[12]. These overall/biomarker-positive designs con-
trol the probability of rejecting either H0+ or H0�
under the global null at level a. However, these
designs do not control the probability of rejecting
H0� when the treatment only works in biomarker-
positive patients (HA + \ H0�). In fact, the probabil-
ity of erroneously recommending the new treat-
ment for biomarker-negative patients can be very
large if the treatment works very well in the biomar-
ker-positive patients. Therefore, the overall/biomar-
ker-positive designs do not meet our type I error
requirement and will not be considered further
here.

MaST design

We consider settings where, a priori, one cannot rule
out possible treatment benefit in biomarker-negative
patients. In that context, the sequential subgroup-
specific design has less power to find any treatment
effect than a traditional overall test of the entire
population when the new treatment has similar
benefit across the biomarker subgroups. To improve
power for such homogeneous treatment effects,
while controlling the probability of false-positive
results in the biomarker-negative subgroup, the
MaST(a, a1) design has been proposed [7]. This
design sequentially tests the treatment effect in the
subgroups and the overall population. First, the bio-
marker-positive subgroup is tested at a reduced
level a1. (1) If it is significant, then the biomarker-
negative subgroup is tested at the level a. (2) If the
biomarker-positive subgroup test is not significant,
then the overall population is tested at the a2 = a 2

a1 level. For any choice of a1 (in [0, a]), the design
controls the probability of rejecting H0+ or H0�
under the global null at level a. Moreover, because
the MaST design only tests the overall popula-
tion when no significant effect is detected in the
biomarker-positive subgroup, the probability of erro-
neously concluding overall benefit when the overall
effect is driven by the biomarker-positive patients is
minimized. The probability of incorrectly rejecting
H0� depends on the choice of a1. Figure 1 presents
the upper bound (over all possible values of biomar-
ker-positivity prevalence and biomarker-positive
subgroup treatment effects d+ .0) of the probability
of rejecting H0� under HA + \H0� as a function of a1

for a = .025 and .05. Using a1 � .022 for a = .025
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controls the false-positive error rate for biomarker-
negative patients at .025, and using a1 � .04 for
a = .05 controls the false-positive error rate for bio-
marker-negative patients at .05. We recommend
using a1 = .022 for a = .025, MaST(.025,.022) in our
notation, and a1 = .04 for a = .05 (MaST(.05,.04)).

Comparison of MaST and sequential
group-specific design

To motivate advantages of the MaST approach, it is
instructive to consider the rejection regions for the
relevant designs. Figure 2 presents rejection regions
for the .025-level sequential subgroup-specific design
and the MaST(.025, .022) design. In the first stage,
the MaST(.025, .022) design uses a slightly reduced
significance level for testing the biomarker-positive
subgroup (.022 for MaST versus .025 for subgroup
specific) – this is reflected by the vertical border of
the H0+ rejection region for MaST design being
slightly to the right of that for the subgroup-specific
design (it will be shown below that this results in
negligible loss of power in settings where the benefit
is limited to the biomarker-positive patients). At the
same time, MaST’s sequential use of the overall test
(in cases where no strong benefit is detected in the
biomarker-positive subgroup) allows it to borrow
power across subgroups as is reflected by larger rejec-
tion region for H0+ and H0� that includes points
with moderate effect in both biomarker subgroups.

To compare power characteristics of the sequential
subgroup-specific design and the proposed MaST

design, we tabulated powers of these tests under var-
ious treatment effect and biomarker prevalence sce-
narios. In Table 1, normally distributed outcomes
analyzed with z-statistic are assumed; the results are
obtained using numerical integration. (Note that
these results can be considered as an asymptotic
approximation for any setting that uses asymptoti-
cally normal tests.) The first two columns of Table 1
give the true treatment effects in biomarker-positive
and biomarker-negative subgroups. The effects are
given in units corresponding to an effect that gives
90% power in the biomarker-positive subgroup
assuming 50% biomarker-positive prevalence. The
next two columns give the probability of rejecting a
null hypothesis by a .025 level test in the biomarker-
positive and biomarker-negative subgroups. The
fifth column gives the power of a traditional overall-
effect design that compares the two treatment arms
without the use of the biomarker. Powers for reject-
ing H0+ and H0� are given for the sequential sub-
group-specific and MaST designs in the last four
columns. It can be seen that for situations where the
treatment effect is limited to the biomarker-positive
patients, the MaST design preserves the power to
detect the benefit in the biomarker-positive sub-
group relative to the sequential subgroup-specific
design (\2% reduction in power). At the same time,
the MaST design provides substantial improvement
in power when the treatment is efficacious in both
biomarker subgroups. For example, consider a set-
ting where the treatment effect is the same in all
patients with the effect magnitude corresponding to
60% power for a .025 test in each subgroup (row 8 of

Figure 1. The maximum probability of rejecting H0� under HA + \H0�, over all possible values of biomarker-positivity prevalence and

biomarker-positive subgroup treatment effects d+ .0, as a function of a1: (a) MaST(.025, a1), designs with a1 � .022 control the false-
positive error rate for biomarker-negative patients at .025 level and (b) MaST(.05, a1), designs with a1 � .04 control the false-positive

error rate for biomarker-negative patients at .05 level.
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Table 1). Use of the MaST design (compared to the
sequential subgroup-specific design) would increase
the power in the biomarker-positive subgroup from
60% to 74% and power in the biomarker-negative
subgroup from 36% to 51%. Table 1 also illustrates
that the MaST(.025,.022) design controls type I error
rates at the .025 level.

Many definitive phase III studies use a time-to-
event endpoint. To illustrate the relevance of the
asymptotic results in Table 1, Table 2 presents the
operating characteristics of the MaST and the sequen-
tial subgroup-specific design in this setting (obtained
by simulation). The results are presented for 30% bio-
marker positivity. Similar to the results of Table 1, the
MaST design is shown to preserve the power (less
than 2% loss) against alternatives, where the benefit
is limited to the biomarker-positive subgroup. At the
same time, the MaST design provides considerable
improvement in power when the treatment effect is
present in both biomarker subgroups. For example,
when the new treatment produces a 29% reduction
in the hazard of an event (hazard ratio = .71) regard-
less of biomarker status, then use of the MaST design
(relative to the subgroup-specific design) increases
the power from 60% to 92% in the biomarker-
positive subgroup and from 55% to 87% in the bio-
marker-negative subgroup (row 8 of Table 2).

Unavailable biomarker status

In many clinical trials, biomarker status will be una-
vailable in a fraction of study patients. This could be
because of logistical reasons (e.g., no specimen

submitted), technical reasons (e.g., inadequate speci-
men or assay failure), or clinical reasons (e.g., tumor
inaccessible or too small to be biopsied). The sub-
group-specific designs do not use these patients in
the analyses. For the MaST design, there are two
options: (1) do not include patients with unavailable
biomarker status or (2) include these patients in the
overall test. Option 1 is straightforward and does
not require any statistical adjustment (albeit it for-
goes some information). Option 2 is potentially
attractive because it allows some use of the informa-
tion from patients with unavailable biomarker sta-
tus. However, presence of such patients alters the
correlation structure between subgroup-specific and
overall tests and thus may inflate false-positive rate
for the biomarker-negative subgroup above the
nominal a level, even when biomarker status is miss-
ing completely at random. For example, when the
MaST(.025, .022) design is used with 50% biomarker
positivity, and 20% of patients have unavailable bio-
marker status, then, assuming a missing-completely-
at-random mechanism for biomarker unavailability,
the probability of rejecting H0� under HA + \H0�
could be as high as .030 instead of .025. (Note that
the probability of falsely rejecting H0+ is always con-
trolled under H0 in the MaST design.)

In theory, if one is willing to assume amissing-com-
pletely-at-random mechanism for biomarker unavail-
ability (i.e., a simple random sample of patients in the
population have unavailable biomarker status), then
one could adjust the MaST design to control the H0�
type I error rate. For example, to approximately con-
trol this type I error, the following adjustment for the
significance level a2 could be used for the overall test
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Figure 2. Rejection regions on the standardized Z-scale: (a) sequential subgroup-specific .025-level design and (b) MaST(.025,.022)

design, assuming 50% biomarker-positive prevalence.
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where rUB is the proportion of unavailable biomarker
values and b* is the power of the overall test when
the treatment is effective only in the biomarker-
positive patients with 90% power in that subgroup.

However, this adjustment results in a design with
power characteristics very similar to option 1, which
does not use patients with unavailable biomarker
values. Moreover, the missing-completely-at-
random assumption cannot generally be verified,
and if it is violated, the adjustment does not control
the error rate. Therefore, we would generally not

Table 1. Operating characteristics of the sequential subgroup-specific design versus the MaST(.025,.022) design: normally distributed

data

True treatment

effects in subgroupsa
Powers

Individual .025 level

tests

Overall test

ignoring

biomarker

Sequential

subgroup-specific

design

MaST(.025,.022)

BM+ BM2 BM+ BM2 BM+ BM2 BM+ BM2

Biomarker-positive prevalence 50%

0 0 .0250 .0250 .0250 .0250 .0006 .0233 .0018

1 0 .9000 .0250 .6301 .9000 .0225 .8916 .0237

.683 0 .6000 .0250 .3465 .6000 .0150 .5829 .0185

.443 0 .300 .0250 .1724 .3000 .0075 .2859 .0114

1 1 .9000 .9000 .9957 .9000 .8100 .9976 .8885

1 .683 .9000 .6000 .9711 .9000 .5400 .9399 .5838

1 .443 .9000 .3000 .9110 .9000 .2700 .9119 .2888

.683 .683 .6000 .6000 .8790 .6000 .3600 .7366 .5050

.683 .443 .6000 .3000 .7324 .6000 .1800 .6438 .2385

.443 .443 .3000 .3000 .5280 .3000 .0900 .3607 .1637

Biomarker-positive prevalence 25%

0 0 .0250 .0250 .0250 .0250 .0006 .0241 .0027

1.414 0 .9000 .0250 .3672 .9000 .0225 .8916 .0236

.966 0 .6000 .0250 .1967 .6000 .0150 .5831 .0186

.626 0 .3000 .0250 .1071 .3000 .0075 .2866 .0121

1.414 1.414 .9000 1 .9999 .9000 .8999 .9999 .9998

1.414 .966 .9000 .9695 .9986 .9000 .8726 .9926 .9655

1.414 .626 .9000 .7007 .9652 .9000 .6307 .9536 .6871

.966 .966 .6000 .9695 .9932 .6000 .5817 .9613 .9436

.966 .626 .6000 .7007 .9032 .6000 .4204 .7992 .6259

.626 .626 .3000 .7007 .8189 .3000 .2102 .6087 .5244

Biomarker-positive prevalence 75%

0 0 .0250 .0250 .0250 .0250 .0006 .0224 .0009

.816 0 .9000 .0250 .8016 .9000 .0225 .8909 .0230

.558 0 .6000 .0250 .4828 .6000 .0150 .5807 .0162

.362 0 .3000 .0250 .2368 .3000 .0075 .2832 .0088

.816 .816 .9000 .4647 .9627 .9000 .4183 .9139 .4374

.816 .558 .9000 .2476 .9314 .9000 .2228 .9006 .2308

.816 .362 .9000 .1290 .8965 .9000 .1161 .8949 .1195

.558 .558 .6000 .2476 .7243 .6000 .1486 .6063 .1707

.558 .362 .6000 .1290 .6448 .6000 .0774 .5910 .0867

.362 .362 .3000 .1290 .3812 .3000 .0387 .2940 .0488

BM: biomarker; MaST: Marker Sequential Test.
aTreatment effects are given in units corresponding to treatment effect that has 90% power for biomarker-positive subgroup assuming 50% biomarker-posi-

tive prevalence.
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recommend using patients with unavailable biomar-
ker values in the MaST design.

Interim monitoring

Most large randomized clinical trials incorporate
interim monitoring for early evidence of efficacy or
futility/inefficacy. For the MaST design, interim
monitoring could be conducted as follows. For effi-
cacy monitoring, first test the biomarker-positive
subgroup to see if the efficacy boundary is crossed
in that subgroup. If the biomarker-positive efficacy
boundary is crossed, then test whether biomarker-
negative subgroup efficacy boundary is crossed. If
the biomarker-positive subgroup efficacy boundary
is not crossed, the biomarker-negative subgroup is
not evaluated for efficacy stopping at that time
point. We recommend truncated O’Brien–Fleming
[13] boundaries using the Lan–DeMets [14] spend-
ing function approach, with a1 and a levels for the
biomarker-positive and biomarker-negative sub-
groups, respectively. In theory, to mimic the MaST
testing sequence, one could consider adding interim
monitoring on the overall population if the biomar-
ker-positive subgroup did not cross its efficacy
boundary. However, we would not generally recom-
mend this because it may interfere with validating
clinical utility of the biomarker.

For futility/inefficacy monitoring, the biomarker
subgroups should be monitored separately as fol-
lows. If the biomarker-positive subgroup crosses its

inefficacy boundary, then the entire study should
be stopped. If the biomarker-negative subgroup
crosses its inefficacy boundary, then that subgroup
is stopped. In each subgroup, the inefficacy bound-
ary should be chosen based on the power and signif-
icance level used in that subgroup using, for
example, using the approach described in Freidlin
et al. [15].

Discussion

When the MaST design is compared to the sequen-
tial subgroup-specific design, there is a minor (and
arguably negligible) loss of power under the alterna-
tives where the treatment benefit is limited to the
biomarker-positive patients. In addition, while both
designs control the probability of falsely rejecting
H0� at the designated level a, the sequential sub-
group-specific design typically has a smaller prob-
ability of rejecting H0� (when H0� true) compared
to the MaST design, especially under the global null
H0 (e.g., .006 versus .018 in first row of Table 1).
This conservativeness of sequential subgroup-speci-
fic design, which is due to its sequential nature, is
contributing to MaST’s advantage. This can be seen
by considering the rejection regions in Figure 2,
where the MaST design trades a small vertical strip
for rejecting H0+ for a much larger triangular region
that rejects both H0+ and H0�. We are not aware of
any simple way of making the sequential design less
conservative without relinquishing control of the

Table 2. Power of the sequential subgroup-specific design versus MaST(.025,.022) design, with 30% biomarker-positive prevalence:

time-to-event dataa

True treatment

effects in subgroups:

hazard ratio

(experimental/control)

Powers

Individual .025 level

tests

Overall test

ignoring

biomarker

Sequential

subgroup-specific

design

MaST(.025,.022)

BM+ BM2 BM+ BM2 BM+ BM2 BM+ BM2

1 1 .0256 .0257 .0249 .0256 .0007 .0241 .0025

.60 1 .902 .0253 .469 .902 .023 .894 .024

.71 1 .600 .0252 .243 .600 .015 .584 .019

.80 1 .301 .0255 .125 .301 .007 .288 .012

.60 .60 .902 .998 1 .902 .901 .999 .998

.60 .71 .902 .930 .997 .902 .839 .985 .923

.60 .80 .902 .624 .960 .902 .563 .947 .611

.71 .71 .600 .920 .981 .600 .552 .921 .874

.71 .80 .600 .608 .870 .600 .365 .759 .531

.80 .80 .301 .596 .748 .301 .178 .533 .417

BM: biomarker; MaST: Marker Sequential Test; HR: hazard ratio.
aThe trial designs assume accrual rate of 20 patients per month with accrual continuing until 250 biomarker-positive patients are enrolled. Median survival

in the control arm is 10 months regardless of biomarker status. The trial is analyzed when 164 events are observed in biomarker-positive subgroup (164

events give 90% power at .025 one-sided significance level for the HR .60 in the biomarker-positive subgroup). Results are based on 100,000 simulations.
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probability of rejecting H0� under HA + \H0�. (In
particular, use of parallel subgroup-specific design
that allocates the a between the subgroup-specific
tests does not improve subgroup-specific design per-
formance in the relevant settings). It should also be
noted that, in theory, by manipulating the shapes
of the rejection regions for H0+ and for H0+ and
H0� in Figure 2(b), one could further optimize
power against a specific family of alternatives. This,
however, would likely result in a complex design
with no simple clinical motivation.

In the settings considered here, when the a priori
evidence for the predictive ability of the biomarker
is relatively strong, sample size considerations are
driven by the need to have sufficient number of bio-
marker-positive patients to detect a clinically mean-
ingful effect in that subgroup. Therefore, a standard
sample size calculation can be used for MaST design.
If one is willing to accept the minor loss of power
(when benefit is limited to the biomarker-positive
subgroup), then one can use the same calculation
that would be used to size a sequential subgroup-
specific design. In particular, the size of the biomar-
ker-positive subgroup is determined using a and the
desired power for a clinically meaningful treatment
effect. Alternatively, to achieve the desired power
exactly, one can calculate sample size of the biomar-
ker-positive subgroup using a1 (instead of a). This
results in only a minor increase in sample size com-
pared to the corresponding sequential subgroup-spe-
cific design: for example, for a = .025, there is less
than a 4% increase in sample size. (Note that sample
size for the overall trial can be calculated as the sam-
ple size calculated for the biomarker-positive sub-
group divided by biomarker-positivity prevalence.)

It should be noted that the MaST design was
developed to increase the power against alternatives
where the treatment effect is homogeneous across
the biomarker subgroups (while controlling the
appropriate false-positive error rates), rather than to
decrease the sample size of the study (which it does
not do). For example, in the time-to-event setting
with 30% prevalence of biomarker positivity (Table
2), both the MaST and sequential subgroup-specific
procedures could be designed targeting a hazard
ratio .60 in the biomarker-positive subgroup with
90% power and a = .025: this can be achieved by
continuing accrual until 250 biomarker-positive
patients have been enrolled (with an average of 583
biomarker-negative patients enrolled). In this case,
use of the MaST design would provide a dramatic
improvement in the study ability to detect treat-
ments that benefit all patients while preserving
power for treatments that benefit only the biomar-
ker-positive patients.

Typically, when a trial is being designed, there is
some uncertainty about the prevalence of the

biomarker positivity. Therefore, the MaST procedure
is designed to control the false-positive error rates
for the biomarker-negative subgroup over all possi-
ble prevalence values. Theoretically, if one can nar-
row the range of possible prevalence values, then a
smaller value of a1 could be used. However, the
decrease in a1 would be small unless the prevalence
range could be restricted to extreme values (\20%
or .80%).

As we stated earlier, a key assumption inherent in
the biomarker designs is that when a new treatment
does not work in the biomarker-positive patients,
then it also does not work in the biomarker-negative
patients. This assumption is central in justifying our
requirement for type I error control: controlling the
false-positive error rate under the global null and
the false-positive error rate under HA + \H0�, but
not controlling the false-positive error rate under
H0+ \ HA�. This requirement is satisfied by the sub-
group-specific designs, and we show that it is also
satisfied by the MaST design with a proper choice
of a1. However, it is instructive to note that unlike
the subgroup-specific designs, the MaST design does
not control type I error under H0+ \HA�. While we
believe that this is acceptable in the biomarker set-
tings considered here, it may be an important con-
sideration in other applications. An alternative
approach to integrating treatment and biomarker
evaluation while minimizing type I error rates in
the biomarker-positive and biomarker-negative sub-
groups is proposed by Karuri and Simon [16] using a
two-stage Bayesian design.

To summarize, the MaST approach structures
sequential evaluation of biomarker subgroups and
the overall study population to limit testing of the
overall population to situations where no strong sig-
nal is observed in the biomarker-positive subgroup.
This improves the power of MaST as compared to
the subgroup-specific design in situations where the
treatment effect is homogeneous by allowing bor-
rowing power across biomarker subgroups. At the
same time, the MaST design is shown to preserve
the power for settings where treatment benefit is
limited to biomarker-positive subgroup and to con-
trol the relevant type I error rates.
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