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Abstract
Frequency matching is commonly used in epidemiological case control stud-
ies to balance the distributions of the matching factors between the case and
control groups and to improve the efficiency of case-control designs. Applied
researchers have held a common opinion that unconditional logistic regression
should be used to analyze frequency matched designs and conditional logistic
regression is unnecessary. However, the justification of this view is unclear. To
compare the performances of ULR and CLR in terms of simplicity, unbiasedness,
and efficiency in a more intuitive way, we viewed frequency matching from the
perspective of weighted sampling and derived the outcome models describing
how the exposure and matching factors are associated with the outcome in the
matched data separately in two scenarios: (1) only categorical variables are used
for matching; (2) continuous variables are categorized for matching. In either
scenario the derived outcome model is a logit model with stratum-specific inter-
cepts. Correctly specified unconditional logistic regression can be more efficient
than conditional logistic regression, particularly when continuous matching
factors are used, whereas conditional logistic regression is a more practical
approach because it is less dependent on modeling choices.
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1 INTRODUCTION

Matching is commonly implemented in epidemiological case-control studies to balance the distributions of confounding
variables between the case and control samples and improve the studies’ efficiency, particularly when the matching
factors are strong confounders.1 Matching in case-control studies can be done in two different ways: individual matching
or frequency matching. In an individually matched case-control study, each case is matched to one or multiple controls
having similar matching factor values (eg, caliper matching to controls within±5 years of the case’s age). A main drawback
of individual matching is that caliper matching on continuous factors could fail to find controls for every case and result
in unmatched cases. Alternatively, frequency matching forms subgroups based on categorical or categorized matching
factors and randomly selects controls in proportion to the number of cases from each subgroup. Thus, the distributions of
matching factors are the same among cases and matched controls. While matching is intended to control for confounding,
there is some disagreement on whether it can do so in case-control studies.2

Abbreviations: CLR, conditional logistic regression; ULR, unconditional logistic regression.
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Applied researchers have held a common opinion that individually matched case-control designs should be analyzed
using conditional logistic regression (“CLR”) but unconditional logistic regression (“ULR”) should be used for analyzing
frequency-matched designs.3 However, the literature has not been consistent with this conclusion.4-7

When matching cases and controls individually on continuous matching factors (eg, age) or nominal factors with
many categories (eg, neighborhood or sibship), the number of matching pairs is usually high and the number of par-
ticipants per matching pair is low. The ULR adjusting for many matched pairs as dummy regressors (“stratum specific
intercepts”) is not appropriate in this setting because maximum likelihood estimation can yield highly biased point esti-
mates when the number of stratum specific intercepts is large. By contrast, CLR does not need to estimate stratum-specific
intercepts and is a more robust choice.4 To circumvent this limitation of ULR, controlling matching factors directly in
ULR as regressors has been suggested as a more efficient alternative to CLR.5 Wan et al7 derived the outcome model
for the individually matched design with continuous matching factors and demonstrated that fitting an ULR may need
more complex modeling of continuous matching factors and model mis-specification can lead to biased estimates of the
exposure effect. By contrast, CLR cancels out complex regression terms involving continuous matching factors in the
likelihood function and is less dependent on modeling choices.

Since the number of participants per stratum is generally high for frequency-matched case control designs, some have
argued that adjusted ULR, with matching factors included as covariates, is appropriate in frequency matching designs
and the use of CLR is not necessary.3 While this argument appears to address the limitations of the ULR that includes
many matching pairs as dummy regressors, it does not directly clarify how we should adjust for matching factors in ULR.
For example, is it adequate to only adjust for categorized matching factors in ULR or should we include these matching
factors in their continuous forms? To examine this argument further and to compare ULR and CLR in a more intuitive
way, we will first derive the outcome model describing how the exposure and matching factors are associated with the
outcome in frequency matched designs. Individual matching in the case-control study can make the relationship between
the outcome and continuous matching factors more complicated than their relationship in the source population.7,8 It
remains unclear how frequency matching may alter the relationship between the outcome and matching factors, which
poses uncertainty on how we model matching factors appropriately.

To clarify these uncertainties in analyzing frequency matched designs, we derived the outcome models in the matched
data separately in two different scenarios: (1) all matching factors are categorical variables; (2) some matching factors
are continuous but categorized for matching. With the derived models, we assessed the relative complexity of using ULR
verse CLR to estimate the exposure effect. We designed simulation studies to compare the potential biases and efficiency
of various commonly used ULR and CLR models and to recommend the most appropriate analytic approach for the
frequency matched design.

2 ASSUMPTIONS AND METHOD

2.1 Matching factors are categorical variables

Suppose we use the frequency matched case-control design to assess the association between a rare disease outcome Y
(Y = 1 for a case; Y = 0 for a control) and a binary exposure variable E (E = 1 if exposed; E = 0 if not exposed) in the
source population. For simplicity, we assume X1 and X2 denote two categorical confounding factors. Specifically, X1 has
I levels with each level denoted by x1i,∀ i = 1, 2,… I. X2 has J levels with each level denoted by x2j,∀ j = 1, 2,… J. We can
model X1 using I − 1 dummy variables D1 = (D11,D12,… ,D1(I−1)), where D1i is defined as follows:

D1i =

{
1, if X1 = x1(i+1)

0, otherwise
, i = 1, 2,… , I − 1,

and x11 is the reference level. Similarly, we can model X2 using J − 1 dummy variables D2 = (D21,D22,… ,D2(J−1)), where
D2j is defined as follows:

D2j =

{
1, if X2 = x2(j+1)

0, otherwise
, j = 1, 2,… , J − 1,
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and x21 is the reference level.
We let X = {X1,X2} and further assume the following logit model that describes how E and X influence Y in the source

population:

logitP(Y = 1|E,X) = logitP(Y = 1|E,D1,D2)
= 𝛽0 + 𝛽1E + 𝜷2D1 + 𝜷3D2 + 𝜷4D1D2

= 𝛽0 + 𝛽1E +
I−1∑
i=1

𝛽2,iD1i +
J−1∑
j=1

𝛽3,jD2j +
I−1∑
i=1

J−1∑
j=1

𝛽4ijD1iD2j, (1)

where 𝛽1 denotes the conditional exposure effect, 𝜷2 = (𝛽21, 𝛽22,… , 𝛽2(I−1)) is (I − 1) × 1 coefficient vector for D1, 𝜷3 =
(𝛽31, 𝛽32,… , 𝛽3(J−1)) is (J − 1) × 1 coefficient vector for D2, and 𝜷4 = (𝛽41, 𝛽42,… , 𝛽4(I−1)(J−1)) is (I − 1)(J − 1) × 1 coefficient
vector for the D1 by D2 interaction. Under the rare outcome assumption the logit model (1) can be approximated by a
log-linear model.

The relationship between E and X in the source population is specified as follows:

logitP(E = 1|X) = logitP(E = 1|D1,D2)
= 𝛼0 + 𝜶1D1 + 𝜶2D2 + 𝜶3D1D2

= 𝛼0 +
I−1∑
i=1

𝛼1,iD1i +
J−1∑
j=1

𝛼2,jD2j +
I−1∑
i=1

J−1∑
j=1

𝛼3ijD1iD2j, (2)

where 𝜶1 = (𝛼11, 𝛼12,… , 𝛼1(I−1)) is the (I − 1) × 1 coefficient vector for D1, 𝜶2 = (𝛼21, 𝛼22,… , 𝛼2(J−1)) is the (J − 1) × 1 coef-
ficient vector for D2, and 𝜶3 = (𝛼31, 𝛼32,… , 𝛼3(I−1)(J−1)) is the (I − 1)(J − 1) × 1 coefficient vector for the D1D2 interaction.

Frequency matching forms I × J unique strata by each {X1,X2} category combination, i = 1, 2,… , I, j = 1, 2,… , J. We
denote the kth combination (x1i, x2j) by xk, k = 1, 2,… , I × J. We let n1k and n0k denote the number of cases and controls in
the stratum formed by xk. We have n1k ≤ n0k because the outcome is a rare disease. Next, we select all cases and controls
in proportion to the number of cases in each stratum. Since cases are over-sampled and controls are under-sampled, the
population that the frequency matched sample represents is different from the source population. Therefore, the outcome
model for the matched data could be different from model (1) for the source population. We let S denote the selection
process in the frequency matched design, in which S = 1 indicates that a subject is being randomly selected into the
matched data and S = 0 indicates that this subject is not selected. The outcome model in the matched data can be derived
as follows (Details in the Appendix A.1):

P(Y = 1|E,X = xk, S = 1) = 1
1 + P(Y=1|X=xk)

P(Y=0|X=xk)
e−𝛽0−𝛽1E−𝜷2D1−𝜷3D2−𝜷4D1D2

= 1
1 + e−c(xk)−𝛽1E , (3)

or equivalently in a logit form,

logitP(Y = 1|E,X = xk, S = 1) = c(xk) + 𝛽1E,

where c(xk) is a complex stratum specific intercept term for each matching stratum. When the disease outcome is rare,
c(xk) ≈ − log

(
e𝛽1−1

1+e−𝛼0−𝜶1D1−𝜶2D2−𝜶3D1D2

)
. c(xk) is a nuisance term because it does not contain the exposure variable. P(Y=1|X=xk)

P(Y=0|X=xk)
is actually the probability of randomly selecting n1k controls from all n0k controls in the matching stratum of X = xk,
whereas for cases, this probability is 1 because every case will be selected.

By comparing models (1) and (3), we can observe the following: (i) There is a new nuisance term c(xk) in the logit
outcome model (3) and 1

1+e−𝛼0−𝜶1D1−𝜶2D2−𝜶3D1D2
in c(xk) comes from the exposure model (2). c(xk) is introduced into model

(3) through P(Y=1|X=xk)
P(Y=0|X=xk)

. (ii) All regressors from the outcome model (1) are canceled out in model (3), except the exposure

variable. This cancellation is also attributable to P(Y=1|X=xk)
P(Y=0|X=xk)

(details in Appendix A.1). The interpretation of (i) and (ii) is
that matching in frequency matched case-control designs balances the distributions of X between cases and controls and
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thus ensures no “marginal” (unconditional) association between the matching factors and the outcome (ie, all regressors
in model (1) are removed from model (3)). However, the case-control sampling in the design introduces a new term c(xk).
X is associated with E and model (3) shows X is “conditionally” associated with Y via c(xk) conditioning on E in the
matched data. Thus, X is confounder by definition in the matched data and still needs to be controlled for in the analysis.9
Unadjusted ULR can result in an omitted-variable bias in the logistic regression model when c(xk) is not accounted for.
In general, unadjusted ULR tends to bias towards the null hypothesis and underestimates the true association between
the exposure and the outcome. This bias is attributable to a mixture of confounding and the non-collapsibility of the odds
ratio in a logit model.10-12 Variability of c(xk) determines the size of bias.

The outcome model (3) in frequency matched designs is an ULR with stratum-specific intercepts c(xk). There are four
different ways to model c(xk):

Method 1: We can use dummy variables to model the stratum-specific effects. We first create dummy variables Tt, t =
1, 2,… , I × J − 1 as follows:

Tt =

{
1 if in the t + 1th stratum formed by xt+1

0 otherwise
,

where the stratum of x1 is the reference level. Model (3) can be re-parametrized as following:

logitP(Y = 1|E,Tt, S = 1) = 𝛾0 +
I×J−1∑

t
𝛾tTt + 𝛽1E, (4)

where 𝛾0 = c(x1) and 𝛾t = c(xt+1) − c(x1), t = 1, 2,… , I × J − 1.
Method 2: We can include dummy variables of the categorical matching factors X and their interaction directly as
covariates as follows:

logitP(Y = 1|E,X, S = 1) = logitP(Y = 1|E,D, S = 1)

= 𝛽0 + 𝛽1E +
I−1∑
i=1

𝛾̃2,iD1i +
J−1∑
j=1

𝛾̃3,jD2j +
I−1∑
i=1

J−1∑
j=1

𝛾̃4,i,jD1iD2j. (5)

Of note, c(xk) can be expressed as a combination of 𝛾̃0, 𝛾̃2’s, and 𝛾̃3’s. For example, 𝛾̃0 = c(x1), 𝛾̃2,i + 𝛾̃3,j + 𝛾̃4,i,j = c(xt+1) −
c(x1), t = 1, 2,… , I × J − 1; i = 1, 2,… , I − 1; j = 1, 2,… , J − 1. Methods (1) and (2) are mathematically equivalent.
Method 3: If we ignore the interaction terms, we have the main effect model as follows:

logitP(Y = 1|E,X, S = 1) = ̃̃𝛾0 + ̃̃𝛽1E +
I−1∑
i=1

̃̃𝛾2,iD1i +
J−1∑
j=1

̃̃𝛾3,jD2j. (6)

If the population exposure model (2) contains the interaction terms, models (4) and (5) are correctly specified but model
(6) is misspecified. If the interaction effect is not ignorable, we would expect that ̃̃𝛽1 ≠ 𝛽1. If there exists no interact
effect in model (1), all three models are unbiased in estimating 𝛽1 but model(6) is more efficient because it does not
estimate redundant interaction terms.
Method 4: We normally have no interest in estimating stratum-specific intercepts. CLR avoids the model misspecifi-
cation problem by cancelling out the nuisance term c(xk) in the likelihood function. In this case, we just fit a CLR
including the exposure variable only.

2.2 Continuous variables are categorized for matching

When matching factors are continuous, we need to categorize them first and then perform matching using categorized
values. For simplicity, we will demonstrate using a single continuous confounder X . The outcome and exposure models
(1) and (2) are simplified as:

logitP(Y = 1|E,X) = 𝛽0 + 𝛽1E + f (X; 𝜷2),
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and

logitP(E = 1|X) = 𝛼0 + g(X;𝜶1),

where f (⋅) and g(⋅) are arbitrary functions of X so that X can take arbitrary functional forms. For example, if X is only
linearly associated with the outcome and the exposure in logit scale, f (X; 𝜷2) = 𝛽2X and g(X;𝜶) = 𝛼1X . If such associations
are quadratic, f (X; 𝜷2) = 𝛽21X + 𝛽22X2 and g(X;𝜶1) = 𝛼11X + 𝛼12X2.

We categorize X into I distinct categories using I − 1 knots xi, i = 1, 2,… , I − 1 such that C = ck,where ck =
[xk, xk+1),∀ k = 1, 2,… ,K. We can model C with I − 1 dummy variables D = (D1,D2,… ,DK−1) as follows:

Dj =

{
1, if C = cj+1 or equivalently, xj+1 ≤ X < xj+2

0, otherwise
,

for j = 1, 2,… , I − 1. [x1, x2) or c1 is the reference category.
Since we match cases and controls using categorized variable C, not continuous variable X , the probability of selecting

a case or control with a given x ∈ [xk+1, xk+2) is actually determined by ck. As usual, the probability for selecting a case
in any category does not depend on its exposure status. Every case will be selected and the probability of selecting a case
with a given value x is

P(S = 1|Y = 1,E,X = x) = P(S = 1|Y = 1,C = ck)
= 1.

The probability of selecting a control with x ∈ [xk, xk+1] is

P(S = 1|Y = 0,E,X = x) = P(S = 1|Y = 0,C = ck)

= P(Y = 1|C = ck)
P(Y = 0|C = ck)

.

To compute P(Y |C), we need to compute P(Y |E,C) first and thus we need to derive a population outcome model
adjusting for E and C. When we replace X with dummy variables D in the outcome and exposure models, the exposure
and outcome models become:

logitP(Y = 1|E,D) = 𝛽0 + 𝛽1E + 𝛽2D,

where 𝛽2 = (𝛽21, 𝛽22,… , 𝛽2(I−1)), and

logitP(E = 1|D) = 𝛼̃0 + 𝛼̃1D,

where 𝛼̃1 = (𝛼̃21, 𝛼̃22,… , 𝛼̃2(I−1))
Next, we have

P(Y = 1|C = ck)
P(Y = 0|C = ck)

=
(

e𝛽1 − 1
1 + e−𝛼̃0−𝛼̃1(k−1)

+ 1
)

e𝛽0+𝛽2(k−1) .

Thus, the outcome model in the matched data is

P(Y = 1|E,X = x, S = 1) = 1
1 + P(S=1|Y=0,E,x)

P(S=1|Y=1,E,x)
e−𝛽0−𝛽1E−f (x;𝜷2)

= 1
1 + P(Y=1|C=ck)

P(Y=0|C=ck)
e−𝛽0−𝛽1E−f (x;𝜷2)

= 1
1 + e−c(k)−𝛽1E−f (X;𝜷2)

. (7)
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Its equivalent logit form is

logitP(Y = 1|E,X = x, S = 1) = c(k) + 𝛽1E + f (X; 𝜷2).

We can derive the approximate expression for the stratum specific term c(k) = − log
((

e𝛽1−1
1+e−𝛼̃0−𝛼̃1(k−1)

+ 1
)

e𝛽0+𝛽2(k−1)

)
+

𝛽0 (details in the Appendix A.2). We can make the following observations from the above derived results:
(i) The outcome model (7) is a logit model with the stratum specific intercept term c(xk); (ii) the match-
ing variable X is still retained in the model (7) instead of being canceled out. The interpretation of (i) and
(ii) is that when a continuous matching factor is categorized and matching is not exact, the case-control sam-
pling introduces a complex nuisance term c(k) but inexact matching can not cancel out the confounding term
f (X; 𝜷2).

Fitting a regular ULR including X could result in biased estimates of 𝛽1 because this model only assumes a constant
intercept and does not model c(xk) properly. Fitting an unadjusted stratified model, which includes c(k) only in ULR
to accounts for stratum-specific intercepts, is also biased because this model fails to incorporate X as a regressor. This
misspecified model could result in biased estimate of 𝛽1 due to a mixture of confounding and non-collapsibility of the
logistic regression model. The bias was determined by the size of 𝜷2. By contrast, a CLR with X as a regressor is a simpler
way to estimate 𝛽1 because it cancels out c(k) and we only need to model X properly. It should be emphasized that if we do
not model f (X; 𝜷2) properly, the functional form of X , either CLR or ULR can still be biased. When there are more than
one matching factor, the general form of the outcome model (7) in the frequency matched data follows the rules listed
below:

(i) There is a term for stratum-specific intercepts. If categorical or categorized factors form K strata, the stratum specific
intercept is generally expressed as c(k) = − log

(
P(Y=1|C=k)
P(Y=0|C=k)

)
+ 𝛽0, k = 1, 2,… ,K. One way to model this term is to

include categorical or categorized matching factors and their interactions as regressors.
(ii) Continuous matching factor needs to be included as covariate in its continuous form. It has the same functional form

as in the population outcome model.
(iii) If the population outcome model contains categorical matching factors and their interactions, we do not need

include them again as covariates in model (7) because these terms are already included in stratum-specific
intercepts.

(iv) If the population outcome model has the interaction terms involving continuous matching factors, we need to include
these interaction terms again in model (7).

(v) In more general scenarios in which the population outcome model (1) may include some confounders that are not
used in matching and the interaction terms between the exposure and covariates, these terms will also be retained
in the outcome models (3) or (7) for the matched data (details in Appendix A.3).

For example, when we have two matching factors X1 (continuous) and X2, and the outcome model in the source
population is:

logitP(Y = 1|E,X1,X2) = 𝛽0 + 𝛽1E + 𝛽2X1 + 𝛽3X2
1 + 𝛽4X2 + 𝛽4X1X2,

If X2 is continuous, all the regression terms involving X1 and X2 in the population outcome model are retained in the
outcome model for the matched data. The outcome model in the matched data becomes

logitP(Y = 1|E,X1,X2, S = 1) = c(k) + 𝛽1E + 𝛽2X1 + 𝛽3X2
1 + 𝛽4X2 + 𝛽4X1X2,

If X2 is a binary dummy variable, its main effect term in the population outcome model will not be included in
the new model because this effect is already included in the intercepts. Thus, the outcome model in the matched data
becomes

logitP(Y = 1|E,X1,X2, S = 1) = c(k) + 𝛽1E + 𝛽2X1 + 𝛽3X2
1 + 𝛽4X1X2.
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3 SIMULATION

3.1 Simulation design

In this simulation study, we aimed to validate the derived theoretic results and to assess the potential biases of some
commonly used ULR and CLR in analyzing frequency matched designs. We designed three separate simulation studies
as follows:

3.1.1 Assess the closed form expression of c(xk) when matching factors are categorical variables

To examine the closed form expression of c(xk) in model (3), we generated one discrete random variable Z ∼ P(Z = z) =
1
3
, z = 1, 2, 3 and a Bernoulli random variable X ∼ Bernoulli(0.5). We created two dummy variables for Z, D1, and D2 with

z = 1 as the reference level. We generated the exposure variable E and outcome variable Y using the following exposure
and outcome models:

logitP(E = 1|X ,D1,D2) = 0 + 0.928D1 − 0.371D2 − 0.5X − 0.6D1X + 0.6D2X ,

and

logitP(Y = 1|E,X ,D1,D2) = −4.5 + E + 0.894D1 + 0.447D2 − 0.5X .

Next, we did a cross-tab of the outcome and two confounders Z and X . For each combination of Z and X , we select all
cases and randomly select equal number of controls. Last, we fit an ULR including matching strata as dummy variables
and the exposure variable in the frequency-matched samples. We performed 10 000 simulations and 10 000 observations
were generated for each simulation.

3.1.2 Assess the derived outcome model when matching factors are continuous variables

To examine the closed-form expression of c(xk) and functional form of continuous matching factor in model (7), we
first generated the continuous confounder Z ∼ N(0, 5) and then categorized it into a discrete variable with six levels
(< −4; [−4,−2); [−2, 0); [0, 2); [2, 4);≥ 4). We next generated the exposure and outcome variables as follows:

logitP(E = 1|Z) = 2 − 0.8Z − 0.2Z2,

and

logitP(Y = 1|E,Z) = 𝛽0 + E + 0.2Z,

where 𝛽0 = −4 for approximately 5% disease prevalence rate and 𝛽0 = −2.5 for approximately 15% disease prevalence rate.
Next, we performed 10 000 simulations and generated 10 000 observations per simulation. In each simulation, we

performed frequency matching based on categorized matching factor and fit an ULR including the matching strata as
dummy variables in each matched sample. To get the estimates of 𝛼̃’s and 𝛽’s, we generated 10 million observations and
fit the exposure and outcome logit models including dummy variables for categorized Z.

3.1.3 A comparison of ULR and CRL in different scenarios

To compare the performances of ULR vs CLR, we simulated the data under the following two settings:

(1) Matching on categorical variables: We first generated two discrete confounders: one discrete random variable Z ∼
P(Z = z) = 1

3
, z = 1, 2, 3 and one binary random variable X ∼ Bernoulli(0.5). We created two dummy variables D1 and
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D2 for Z with 1 as reference category. We then generated the binary exposure and outcome variables as follows:

logitP(E = 1|X ,D1,D2) = 0 + 0.928D1 − 0.371D2 − 0.5X + 𝛼31D1X + 𝛼32D2X ,

and

logitP(Y = 1|E,X ,D1,D2) = −4.5 + 0.8E + 0.894D1 + 0.447D2 + 0.5X .

We set (𝛼31, 𝛼32) to be (0, 0), (−0.8, 0.8), (−1.6, 1.6) to represent different levels of interaction effects. Note that we
allow the potential ZX interaction in the population exposure model. This is to induce the ZX interaction in the
derived outcome model for the matched data even though there is no ZX interaction in the population outcome
model.

(2) Matching on categorized continuous variable: We considered two different scenarios: (a) one categorical variable X ∼
Bernoulli(0.5) and one continuous variable Z ∼ N(0, 5); (b) two continuous variables X and Z ∼ N(0, 5). We generated
the exposure and outcome variables using the following two models:

logitP(E = 1|X ,Z) = 𝛼0 + 𝛼1Z + 𝛼2Z2 + 𝛼3X + 𝛼4ZX ,

and

logitP(Y = 1|E,X ,Z) = 𝛽0 + 𝛽1E + 𝛽2Z + 𝛽3Z2 + 𝛽4X + 𝛽5ZX .

For each setting, we set the regression coefficients as follows:

(1) (𝛼0, 𝛼1, 𝛼2, 𝛼3, 𝛼4) = (0.5,−0.8, 0,−0.5, 0) and (𝛽0, 𝛽1, 𝛽2, 𝛽3, 𝛽4, 𝛽5) = (−4, 0.8, 0.2 , 0,−0.2, 0). Z and X are linear in
the exposure and outcome models and there are no Z by X interaction terms in both models.

(2) (𝛼0, 𝛼1, 𝛼2, 𝛼3, 𝛼4) = (0.5,−0.8, 0.1,−0.5, 0.2) and (𝛽0, 𝛽1, 𝛽2, 𝛽3, 𝛽4, 𝛽5) = (−4, 0.8, 0.2 , 0.1,−0.2, 0.1). Z and X have
quadratic and interaction terms in the exposure and outcome models.

Values of 𝛽0 were chosen to have less than 10% cases in all scenarios. For each scenario, we generated
20 000 observations for each sample and repeated 10 000 times. We analyzed each matched sample as
follows:

(i) In the setting where Z and X are categorical variables, we first selected all cases and randomly selected the equal
number of controls from each stratum formed by Z and X . We then fit unadjusted ULR (“ULR(E)”), ULR con-
trolling for Z and X (“ULR(E,X ,Z)”), and ULR including additional ZX interaction terms (“ULR(E,Z,X ,ZX)”),
unadjusted CLR using matched sets as stratifying variable (“CLR(E)”).

(ii) In the setting in which X is discrete and Z is continuous, we grouped Z into six categories: (−∞,−4], (−4,−2],
(−2, 0], (0, 2], (2, 4], (4,+∞) when performing matching.

(a) When Z has only a linear term but there is no ZX interaction in the outcome model, we fit ULR(E,Z,X),
CLR(E), and CLR(E,Z). We also fit ULR(DZ,X ,E), which includes categorized Z, and the correctly specified
model ULR(DZ,X ,DZX ,E,Z), which uses DZ,X ,DZX to model stratum-specific intercepts and Z again to
model its linear term.

(b) When Z has a quadratic term and there is a ZX interaction in the outcome model, we fit ULR(E,Z,X),
ULR(E,Z,Z2,X ,ZX), CLR(E), CLR(E,Z), CLR(E,Z,Z2), and CLR(E,Z,Z2,ZX). Next we fit two models
using DZ only, ULR(E,DZ,X) and ULR(DZ,X ,DZX ,E), and the correct model ULR(DZ,X ,DZX ,E,Z,Z2,ZX).

(iii) When X and Z are both continuous variables, we grouped both variables into four categories: (−∞,−3], (−3, 0],
(0, 3], (3,+∞) when performing matching.

(a) When Z has only a linear trend but there is no ZX interaction in the outcome model, we fit ULR(E,Z,X),
CLR(E), and CLR(E,Z,X). We next fit ULR(DZ,DX ,E), which includes categorized variables only, and the
correct model ULR(DZ,DX ,DZDX ,E,Z,X).
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(b) When Z has a quadratic term and there is a ZX interaction in the outcome model, we fit ULR(E,Z,X),
ULR(E,Z,Z2,X ,ZX), CLR(E), CLR(E,Z,X), CLR(E,Z,Z2,X), and CLR(E,Z,Z2,X ,ZX). We next fit
ULR(DZ,DX ,E) and ULR(DZ,DX ,DZDX ,E), and the correct model ULR(DZ,DX ,DZDX , E,Z,Z2,X ,ZX).

For every ULR and CLR, we computed the averaged estimate of 𝛽1, the model-based and empirical SEs, and root mean
square errors.

3.2 Simulation results

Tables 1 and 2 list the comparison results for the simulation studies outlined in Sections 3.1.1 and 3.1.2. We can observe
that the values of each stratum specific parameter for the nuisance term computed via the formula and their estimates
via ULR are very close when matching factors are categorical (Table 1), and when continuous matching factors are cat-
egorized (Table 2). Table 2 also shows that the coefficients of the other regression terms in model (7) are close to their
estimates and the derived model is correct.

Table 3 compares the performances of ULRs and CLRs under three different settings:

• In the setting where both Z and X are categorical variables, CLR(E) and correctly specified ULR, which is ULR(E,Z,X)
if there is no ZX interaction or ULR(E,Z,X ,ZX) if there is interaction, are both unbiased. ULR(E) always underesti-
mates 𝛽1 (Scenarios 1-3). In presence of the interaction effect, ULR(E,Z,X) is misspecified without including ZX but
the bias is minimal unless the interaction effect is very large (Scenario 3).

• In the setting where Z is continuous and X is binary (Scenarios 4 and 5), misspecifying either continuous matching
factors or intercepts in ULRs are biased. When Z is linear and there is no ZX interaction in Scenario 4, CLR(E) is

T A B L E 1 A comparison of analytic results and estimates of the nuisance term c(Xk) when matching factors are categorical

Stratum Z X Analytic value Averaged estimate

1 1 0 −0.6201145 −0.6260918

2 2 0 −0.8027216 −0.8098322

3 3 0 −0.5314581 −0.5332618

4 1 1 −0.5 −0.5061444

5 2 2 −0.5797767 −0.5832976

6 3 3 −0.5557626 −0.5608431

T A B L E 2 A comparison of analytic results and estimates of the nuisance term and regression terms when continuous
matching factor is categorized

Coefficient
Analytic value
(𝜷0 = −4)

Averaged estimate
(𝜷0 = −4)

Analytic value
(𝜷0 = −2.5)

Averaged estimate
(𝜷0 = −2.5)

Stratum c(k)

c(1) 0.6647386 0.6713543 0.6754585 0.6871749

c(2) −0.3730167 −0.3829793 0.3662463 0.3634882

c(3) −0.7516625 −0.7794619 −0.7572519 −0.7537089

c(4) −0.981386 −1.0020258 −0.9834139 −0.9609605

c(5) −0.8037533 −0.8092525 −0.8119819 −0.7790259

c(6) −1.471726 −1.4942983 −1.418277 −1.4191985

𝛽1 1 1.0076145 1 1.0017728

𝛽2 0.2 0.2017952 0.2 0.2003608
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T A B L E 3 Simulation results of comparing ULR and CLR in frequency matched design

Setting 𝜷1 Scenario Model Averaged estimate Model s.e Empirical s.e Root MSE

Z ∼ P(Z = z) = 1
3

0.8 (1) No ZX ULR(E) 0.7407 0.1414 0.1361 0.1484

X ∼ Bernoulli(0.5) ULR(E,Z,X) 0.8047 0.1479 0.1483 0.1484

CLR 0.8014 0.1477 0.1494 0.1494

(2) 0.8ZX ULR(E) 0.7591 0.1408 0.1377 0.1437

ULR(E,Z,X) 0.7844 0.1433 0.1423 0.1432

ULR (E,Z,X ,ZX) 0.8070 0.1456 0.1467 0.1468

CLR(E) 0.8019 0.1452 0.1457 0.1457

(3) 1.6 ZX ULR(E) 0.7320 0.1397 0.1341 0.1504

ULR(E,Z,X) 0.7382 0.1403 0.1354 0.1488

ULR (E,Z,X ,ZX) 0.8073 0.1473 0.1484 0.1486

CLR(E) 0.8022 0.1468 0.1475 0.1475

Z ∼ N(0, 5) 0.8 (4) Linear Z ULR (E,Z,X) 0.9954 0.1743 0.1659 0.2563

X ∼ Bernoulli(0.5) No ZX ULR (DZ ,X ,E) 0.7144 0.1610 0.1615 0.1828

ULR (DZ ,X ,DZX ,E,Z) 0.8102 0.1623 0.1631 0.1634

CLR (E) 0.7130 0.1977 0.1995 0.2177

CLR(E,Z) 0.8023 0.1984 0.1995 0.1996

(5) Quadratic Z ULR (E,Z,X) 0.4360 0.0792 0.0750 0.3713

ZX ULR(E,Z,Z2,X ,ZX) 0.7591 0.0891 0.0864 0.0956

ULR (DZ ,X ,E) 0.5652 0.0720 0.0719 0.2455

ULR (DZ ,X ,DZX ,E) 0.5720 0.0724 0.0727 0.2393

ULR(DZ ,X ,DZX ,E,Z,Z2,ZX) 0.8030 0.0760 0.0762 0.0762

CLR(E) 0.5710 0.0887 0.0894 0.2458

CLR(E,Z) 0.5883 0.0891 0.0890 0.2297

CLR(E,Z,Z2) 0.7983 0.0933 0.0940 0.0940

CLR(E,Z,Z2,ZX) 0.8012 0.0935 0.0941 0.0941

Z ∼ N(0, 5) 0.8 (6) Linear Z ULR (E,Z,X) 0.7530 0.1255 0.1199 0.1290

X ∼ N(0, 5) No ZX ULR (DZ ,DX ,E) 0.6951 0.0971 0.0943 0.1411

ULR(DZ ,DX ,DZDX ,E,Z,X) 0.8056 0.1136 0.1140 0.1141

CLR(E,X) 0.7271 0.1222 0.1229 0.1429

CLR(E,Z,X) 0.8019 0.1390 0.1401 0.1401

(7) Quadratic Z ULR (E,Z,X) −0.0956 0.1024 0.1001 0.9010

ZX ULR (E,Z,Z2,X ,ZX) 0.9917 0.1249 0.1267 0.2301

ULR (DZ ,DX ,E) 0.2031 0.1077 0.1048 0.6060

ULR (DZ ,DX ,DZDX ,E) 0.2163 0.1112 0.1116 0.5942

ULR(DZ ,DX ,DZDX ,E,Z,Z2,X ,ZX) 0.8076 0.1344 0.1345 0.1347

CLR(E) 0.2151 0.1109 0.1109 0.5954

CLR(E,Z,X) −0.0121 0.12376 0.1315 0.8227

CLR(E,Z,Z2,X) 0.1304 0.1288 0.1458 0.6848

CLR(E,Z,Z2,X ,ZX) 0.8040 0.1340 0.1345 0.1337
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biased. CLR(E,Z), without including X , is unbiased. In Scenario 5 where Z has a quadratic effect and there is a ZX
interaction, CLR(E,Z,Z2,ZX) is unbiased. Not including Z2 and ZX in CLR(E,Z) produces large bias. Omitting ZX
only in CLR(E,Z,Z2) has minor impact on bias.

• In the setting where both Z and X are continuous, we can observe similar patterns. In Scenario 6, ULR(E,Z,X) is
biased because ULR wrongly fits a constant intercept. By contrast, CLR(E,Z,X) does not need to model stratum-specific
intercepts. In Scenario 7, ULR has large bias when quadratic and interaction terms are not included. Even when we
specify Z and X properly, ULR(E,Z,Z2,X ,ZX) is still biased. By contrast, CLR(E,Z,Z2,X ,ZX) is unbiased. However,
not including the interaction and quadratic terms in CLR leads to large biases.

• In Scenarios 1-6, the model-based SEs of ULRs and CLRs are generally very close to their empirical SEs even when
they are misspecified. This suggests model misspecification generally does not bias variance estimates in the frequency
matched design. However, in Scenario 7, the model-based SEs of CLR(E,Z,X) and CLR(E,Z,Z2,X) may underestimate
true SEs when the quadratic or interaction term of Z is misspecified.

• In Scenarios 1-3 and 7, correctly specified ULR(E,Z,X ,ZX) and CLR(E) have comparable variance estimates and root
MSE. In Scenarios 4-6, correctly specified ULRs tend to have smaller variance estimates and root MSE than correctly
specified CLRs.

The averaged estimates of coefficients of regressors involving continuous Z in Scenarios 5-7 are close to the true
parameters (the Supplementary Table 2). Thus, the functional forms of matching factors derived in model (7) are validated.

4 DATA APPLICATION

We reanalyzed the Environment and Genetics in Lung Cancer Etiology (EAGLE) study.13 EAGLE is a population-based
case-control study performed Italy to assess the association between exposure to outdoor particulate matter with aero-
dynamic diameter ≤ 10 𝜇m (PM10) and lung cancer risk. The study enrolled 2099 cases and 2120 controls. Cases and
controls are frequency-matched for area of residence (five areas), gender, and five-year age classes in the range 35-79
years. The annual average PM10 estimates at residence address in year 2000 are a surrogate of the etiologically relevant
exposure occurring many years before cancer diagnosis. We categorized continuous PM10 into a binary exposure variable
(1 if higher than the median-47.76; 0 if lower than the median). We fit the following ULR and CLR models:

(i) Unadjusted ULR including PM10 only;
(ii) ULR adjusting for matching strata as dummy regressors, with and without continuous age;

(iii) ULR adjusting for matching factors (gender, area of residence, age categories), with and without age. Comparing
to ULR in (ii), interactions between matching factors are ignored.

(iv) ULR adjusting for matching strata, additional confounders such as education level (none, elementary, middle, high,
university), and smoking variables including ever smoked cigarettes, mean-centered pack-years (linear, quadratic,
and cubic components), years since quitting (categorical: 0 for never/current smokers; otherwise, 0.5-0.9, 1-1.9,
2-4.9, 5-9.9, 10-19.9, 20-29.9, or 30+ years), ever smoking of other types of tobacco (cigars, cigarillos, pipe), and ever
exposed to environmental tobacco smoking (at home in childhood or in adult life at home or at workplace).

(v) Unadjusted CLR including PM10 only.
(vi) CLR adjusting for continuous age.

(vii) CLR adjusting for continuous age and additional confounders.

The analysis results are presented in Table 4. Both ULR adjusting for matching strata, age, and all other confounders
and CLR adjusting for age and all other confounders gave very similar estimates of both PM10 and age (and their SEs).
CLR adjusting for age and ULR adjusting for matching strata and age also produced very similar estimates of the exposure
effect and SEs. These results are expected because ULRs adjusting for matching strata takes the interactions among match-
ing factors into account and thus produce estimates equivalent to CLRs. The estimate of the exposure effect (0.150) using
ULR adjusting for main effects terms of matching factors and age is larger than the estimate of the exposure effect (0.136)
using ULR adjusting for matching strata (as dummies) and age. This difference could be explained by the fact that ULR
adjusting for matching factors ignored the interactions among these matching factors. Unadjusted ULR has the small-
est estimate because this model does not adjust for any confounders. Unadjusted CLR and CLR adjusting for age have
very similar estimates of the exposure effect because age is relatively a weak confounder (estimate=0.037, OR=1.037).
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T A B L E 4 Analysis of the Environment and Genetics in Lung Cancer Etiology study

Models Effect Estimate (SE) Odds ratio (95% CI)

Unadjusted ULR PM10 0.029 1.029

(0.068) [0.901,1.176]

ULR+matching stratum PM10 0.137 1.147

(0.086) [0.969,1.356]

ULR+matching factors PM10 0.151 1.163

(0.085) [0.984,1.374]

ULR+matching stratum+Age PM10 0.136 1.145

(0.086) [0.968,1.355]

Age 0.042 1.043

(0.024) [0.994,1.094]

ULR+matching factors+Age PM10 0.150 1.162

(0.085) [ 0.983,1.373 ]

Age 0.037 1.037

(0.024) [0.990,1.087]

ULR+matching stratum+Age PM10 0.193 1.213

+ all other confounders (0.102) [ 0.993, 1.483]

Age 0.039 1.039

(0.029) [ 0.982,1.100 ]

Unadjusted CLR PM10 0.135 1.145

(0.085) [ 0.969,1.353]

CLR+Age PM10 0.135 1.143

(0.085) [0.968, 1.351]

Age 0.041 1.042

(0.024) [0.994,1.092]

CLR+Age PM10 0.192 1.211

+ all other confounders (0.102) [0.993,1.478]

Age 0.037 1.037

(0.029) [0.981,1.097]

Including continuous age or not does not impact the estimates of the exposure effect in this case. Thus, correctly specified
ULR and CLR produce equivalent estimates but fitting CLR is a simpler approach relative to ULR because CLR avoids
the modeling of intercepts.

5 DISCUSSION

ULR with matching factors included as covariates is commonly suggested for analyzing the frequency matched design.
The justification is based on the argument that the number of matching strata is small relative to the number of subjects
and the potential bias of fitting ULR with many nuisance parameters is minimized.3 This recommendation may be rea-
sonable when matching factors are categorical variables. When continuous matching factors are categorized, CLR could
still be a more practical choice for applied researchers.

To determine which method, ULR or CLR, is a better choice, we derived the outcome model in the matched data
by viewing frequency matching as a weighted sampling design because frequency matching over-samples cases and
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under-samples controls. With the derived outcome model, we can make a more informed decision on which analytic
approach is a more practical choice.

When matching factors are all categorical variables, the outcome model for the matched data is an ULR includ-
ing stratum-specific intercepts and the exposure. We can include the categorical matching factors to account for
stratum-specific intercepts. When there is the interaction effect among matching factors in the population exposure
model, ULR controlling for matching factors and their interactions is appropriate to use in the matched data. Otherwise,
ULR without interaction is the correct model. By contrast, CLR is a simpler solution because it does not need to model
stratum specific intercepts. In this case, our simulation results show that there is no significant efficiency gain with using
ULR.

When continuous matching factors are categorized for matching, the outcome model for the matched data is an ULR.
In this case, correct modeling requires: (i) the inclusion of the stratum-specific intercepts. We can include categorical
or categorized matching factors to account for stratum-specific intercepts; (ii) modeling continuous matching factors
correctly. Continuous matching factors need to be controlled for in the model again. Therefore, ULR only controlling for
categorized matching factors is biased because it only accounts for intercepts, whereas ULR controlling for continuous
matching factors only is also biased because it has a constant intercept. By contrast, CLR offers a simpler solution. In
certain scenarios, ULR can provide more efficient estimates than CLR. It is also worthy of noting that when the number
of nuisance stratum-specific intercepts increases, even correctly specified ULR becomes susceptible to large bias.4

Matching in a cohort study by the treatment or exposure status could remove the confounding effect of matching fac-
tors and should also make the estimates of the exposure effect less sensitive to particular outcome model specifications.14

However, this is not true in case-control studies. We confirmed the previous conclusion that matching in case-control
design not only fails to remove confounding but also add selection bias.15 This selection bias can be controlled by the
inclusion of stratum-specific intercepts. Matching in frequency matched designs makes the estimates of the exposure
effect more sensitive to modeling choices. Thus, even though we conclude that CLR is a simpler and more practical choice
for applied researchers than ULR when analyzing a frequency matched design, caution should still be taken even when
fitting a CLR in the matched data. There are many well-established methods to assess the functional forms of contin-
uous matching factors and the potential interaction effects involving continuous matching factors in logistic regression
model.16
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APPENDIX A

A.1 Derivation of unconditional logit model in frequency matched data when matching factors are categori-
cal variables
In a matched case control study, we match the cases and the same number of controls using confounder X1 and X2. X1 has
I distinct values x1i, i = 1, 2,… , I. X2 has J distinct values x2j, j = 1, 2,… , J. Each distinct combination of values of X1 and
X2 forms a stratum and there are I × J distinct strata. For example, the kth stratum formed by the values of X = (X1,X2)
can be expressed as follows:

xk = (x1i, x2j), i = 1, 2,… , I; j = 1, 2,… , J; k = 1, 2,… , I × J,

We let n1k and n0k denote the number of cases and controls in the kth stratum formed by xk, k = 1, 2,… , I × J. n1k ≤ n0k
because the outcome is a rare disease. When forming the frequency matched case-control sample, we need to make sure
that the distributions of matching factors are balanced between the cases and controls by selecting a equal or a multiple
of number of cases for controls in each stratum. Within this matching stratum, we let S denote the selection process with
S = 1 for a subject being selected into the matched case control data and S = 0 for not being selected. Then, we can derive
the conditional probability of having a disease outcome for a subject selected into the kth matching stratum, in which
confounders of selected cases and controls are set to x1i and x2j, as follows:

P(Y = 1|E,X = xk, S = 1) = P(Y = 1,E,X = xk, S = 1)
P(E,X = xk, S = 1)

= P(Y = 1,E,X = xk, S = 1)
P(Y = 1,E,X = xk, S = 1) + P(Y = 0,E,X = xk, S = 1)

= 1
1 + P(Y=0,E,X=xk ,S=1)

P(Y=1,E,X=xk ,S=1)

= 1
1 + P(S=1|Y=0,E,X=xk)P(Y=0|E,X=xk)

P(S=1|Y=1,E,X=xk)P(Y=1|E,X=xk)

.

First, we have

P(Y = 0|E,X)
P(Y = 1|E,X)

= P(Y = 0|E,D1,D2)
P(Y = 1|E,D1,D2)

= e−𝛽0−𝛽1E−𝛽2D1−𝛽3D2−𝛽3D1D2 .
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Next, we need to show that

P(S = 1|Y = 0,E,X = xk)
P(S = 1|Y = 1,E,X = xk)

= P(Y = 1|X = xk)
P(Y = 0|X = xk)

.

One intuitive way to establish this equality is that within each stratum we will select all cases (selection probability=1)
and select the equal number of controls. Of note, this selection probability does not depend on subject’s exposure status.
Thus, we have

P(S = 1|Y = 1,E,X = xk) = P(S = 1|Y = 1,X = xk)
= 1,

and

P(S = 1|Y = 0,E,X = xk) = P(S = 1|Y = 0,X = xk)

= P(Y = 1|X = xk)
P(Y = 0|X = xk)

.

The last equation holds because P(S = 1|Y = 0,X = xk) is estimated by n1k
n0k

(we select n1k controls from a total of n0k con-

trols), which is equivalent to n1k∕(n0k+n1k)
n0k∕(n0k+n1k)

. The proportion of cases in the stratum n1k∕(n0k + n1k)
p
→ P(Y = 1|X = xk) and

the proportion of controls n0k∕(n0k + n1k)
p
→ P(Y = 0|X = xk) asymptotically as the sample size in this stratum increases.

Thus, n1k
n0k

converges to both P(S = 1|Y = 0,X = xk) and P(Y=1|X=xk)
P(Y=0|X=xk)

asymptotically and thus establishes the equality.
The alternative way is

P(S = 1|Y = 0,E,X = xk)
P(S = 1|Y = 1,E,X = xk)

= P(S = 1|Y = 0,X = xk)
P(S = 1|Y = 1,X = xk)

=
P(Y = 0|S = 1,X = xk)P(S = 1,X = xk)∕P(Y = 0|X = xk)P(X = xk)
P(Y = 1|S = 1,X = xk)P(S = 1,X = xk)∕P(Y = 1|X = xk)P(X = xk)

= P(Y = 1|X = xk)
P(Y = 0|X = xk)

.

Last equality holds because P(Y = 0|S = 1,X = xk) = P(Y = 1|S = 1,X = xk) = 1∕2 when we select equal number of
controls and cases in each matching stratum.

We then have

P(Y = 1|X = xk)
P(Y = 0|X = xk)

= P(Y = 1,E = 1|X = xk) + P(Y = 1,E = 0|X = xk)
P(Y = 0,E = 1|X = xk) + P(Y = 0,E = 0|X = xk)

= P(Y = 1|E = 1,X = xk)P(E = 1|X = xk)
P(Y = 0|E = 1,X = xk)P(E = 1|X = xk) + P(Y = 0|E = 0,X = xk)P(E = 0|X = xk)

+ P(Y = 1|E = 0,X = xk)P(E = 0|X = xk)
P(Y = 0|E = 1,X = xk)P(E = 1|X = xk) + P(Y = 0|E = 0,X = xk)P(E = 0|X = xk)

. (A1)

Note that P(Y |E,X = xk) and P(E|X) can be expressed using both the outcome and the exposure models defined by
Equations (1) and (2). It follows that

P(Y = 1|E,X = xk, S = 1) = 1
1 + ec(xk)−𝛽1E ,

where c(xk) is a very complex stratum specific term for each distinct value of xk. When the disease outcome is rare, the
logit model (1) can be approximated by a log-linear model and we can derive a simpler form of c(xk). It follows that

P(Y = 1|X)
P(Y = 0|X)
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≈
e𝛽1 e𝛼0+𝜶1D1+𝜶2D2+𝛼3D1D2

1+e𝛼0+𝜶1D1+𝜶2D2+𝜶3D1D2
+ 1

1+e𝛼0+𝜶1D1+𝜶2D2+𝜶3D1D2

e𝛼0+𝛼1D1+𝜶2D2+𝛼3D1D2

1+e𝛼0+𝛼1D1+𝛼2D2+𝛼3D1D2
+ 1

1+e𝛼0+𝜶1D1+𝜶2D2+𝜶3D1D2

× e𝛽0+𝛽2D1+𝛽3D2+𝛽3D1D2 .

Then we have c(xk) = log
(

e𝛽1−1
1+e−𝛼0−𝜶1D1−𝜶2D2−𝛼3D1D2

)
. When i = 1 and j = 1, all dummies are 0, c(xk) = log

(
e𝛽1−1

1+e−𝛼0

)
; when

i = 1 and j > 1, c(xk) = log
(

e𝛽1−1
1+e−𝛼0−𝛼2,j−1

)
; when i > 1 and j = 1, c(xk) = log

(
e𝛽1−1

1+e−𝛼0−𝛼1,i−1

)
; when i > 1 and j > 1, c(xk) =

log
(

e𝛽1−1
1+e−𝛼0−𝛼1,i−1−𝛼2,j−1−𝛼3,(i−1)(j−1)

)
.

A.2 Derivation of unconditional logit model in frequency matched data when the matching factor is a
continuous variable
For simplicity, we will use single continuous confounder X to illustrate the potential bias from categorization in this
scenario. We assume X is linear in the outcome model (1) and the exposure model (2). It follows that

logitP(Y = 1|E,X) = 𝛽0 + 𝛽1E + f (X; 𝜷2),

and

logitP(E = 1|X) = 𝛼0 + g(X;𝜶1),

where f (⋅) and g(⋅) are arbitrary functions of X so that X can take arbitrary functional forms. For example, if X is only
linearly associated with the outcome and the exposure in logit scale, f (X; 𝜷2) = 𝛽2X and g(X;𝜶) = 𝛼1X . If such associations
are quadratic, f (X; 𝜷2) = 𝛽21X + 𝛽22X2 and g(X;𝜶1) = 𝛼11X + 𝛼12X2.

We categorize X into K distinct intervals using K + 1 knots xi, i = 1, 2,… ,K + 1. We let C = ck ∀xk ≤ X < xk+1, k =
1, 2,… ,K denote the categorized variable. We can generate the following I − 1 dummy variables

D1j =

{
1, if xj+1 ≤ X < xj+2

0, otherwise
,

for j = 1, 2,… , I − 1. [x1, x2) or c1 is the reference category.
To derive the form of logistic model in frequency matched data, we have

P(Y = 1|E,X , S = 1) = 1
1 + P(S=1|Y=0,E,X)P(Y=0|E,X)

P(S=1|Y=1,E,X)P(Y=1|E,X)

= 1
1 + P(S=1|Y=0,E,X)

P(S=1|Y=1,E,X)
e−𝛽0−𝛽1E−f (X;𝜷2)

.

As usual, the probability for a subject being selected into matched data does not depend on its exposure status. Cases and
controls are matched on categorized variable. Every subject’s probability of being selected is directly determined by the
value of categorized variable C. For each categorized value ck, every case having this value will be selected. It follows:

P(S = 1|Y = 1,E,X = x) = P(S = 1|Y = 1,C = ck)
= 1.

The probability of being selected for a control with x ∈ [xk, xk+1] is

P(S = 1|Y = 0,E,X = x) = P(S = 1|Y = 0,C = ck)

= P(Y = 1|C = ck)
P(Y = 0|C = ck)

,



WAN 1039

P(Y=1|C=ck)
P(Y=0|C=ck)

actually can be presented by a logit model predicting the disease outcome using categorized variable C.
Since we will replace f (X; 𝜷2) with D, the dummy variables of C, it involves the projection of f (X; 𝜷2) onto E and D. We
let f (X; 𝜷2) = 𝛾0 + 𝛾1E + 𝜸2D + 𝜖, 𝜖 represents some random error from this projection.

Then, the outcome model including E, D, and 𝜖 becomes

logitP(Y = 1|E,X) = logitP(Y = 1|E,D, 𝜖)
= 𝛽0 + 𝛽1E + (𝛾0 + 𝛾1E + 𝜸2D + 𝜖)
= (𝛽0 + 𝛾0) + (𝛽1 + 𝛾1)E + 𝜸2D + 𝛽2𝜖.

Next, when we omit unobservable 𝜖 from the model, we have

logitP(Y = 1|E,D) = 𝛽0 + 𝛽1E + 𝛽2D,

where 𝛽2 = (𝛽21, 𝛽22,… , 𝛽2(I−1)). This change in regression coefficients is due to omitting a variable (ie, 𝜖) from a
non-collapsible logit model.11,12

Similarly,

logitP(E = 1|D) = 𝛼̃0 + 𝛼̃1D,

where 𝛼̃1 = (𝛼̃21, 𝛼̃22,… , 𝛼̃2(I−1)).
Since Di(k−1) = 1 if xk ≤ X < xk+1 or C = ck, we have

P(Y = 1|C = ck)
P(Y = 0|C = ck)

=
(

e𝛽1 − 1
1 + e−𝛼̃0−𝛼̃1(k−1)

+ 1
)

e𝛽0+𝛽2(k−1)

P(Y = 1|E,X = x, S = 1) = 1
1 + P(S=1|Y=0,E,X)

P(S=1|Y=1,E,X)
e−𝛽0−𝛽1E−f (X;𝜷2)

= 1
1 + e−c(k)−𝛽1E−f (X;𝜷2)

.

We can derive the approximate expression for the stratum specific term c(k) = − log
((

e𝛽1−1
1+e−𝛼̃0−𝛼̃1(k−1)

+ 1
)

e𝛽0+𝛽2(k−1)

)
+ 𝛽0.

Thus, we need to fit a stratified logistic regression including continuous confounder X as covariate in a frequency-matched
case-control study when continuous matching factors are categorized.

If we have multiple matching factors,

logitP(Y = 1|E,X) = 𝛽0 + 𝛽1E + f (X; 𝜷2),

where X is a vector of matching factors, f (⋅) denotes some arbitrary function (eg, quadratic form, interaction term). If all
matching factors are continuous and their categorized values form K strata, the general form of the outcome model in
the frequency matched design becomes

logitP(Y = 1|E,X, S = 1) = c(k) + 𝛽1E + f (X; 𝜷2),

where c(k) = − log
(

P(Y=1|C=k)
P(Y=0|C=k)

)
+ 𝛽0, k = 1, 2,… ,K. Thus, the outcome model in the frequency-matched data will take

the same form as the outcome model in the source population except it has stratum-specific intercepts instead of a constant
intercept. If some X ’s are categorical, their main effect terms and pairwise interaction terms do not need to be included
because c(k) contains all categorical or categorized matching factors and their interaction terms.

For example, we have two matching factors X1 (continuous) and X2. The outcome model in the source population is:

logitP(Y = 1|E,X1,X2) = 𝛽0 + 𝛽1E + 𝛽2X1 + 𝛽3X2
1 + 𝛽4X2 + 𝛽4X1X2,
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If X2 is continuous, the outcome model in the matched data becomes

logitP(Y = 1|E,X1,X2) = c(k) + 𝛽1E + 𝛽2X1 + 𝛽3X2
1 + 𝛽4X2 + 𝛽4X1X2,

If X2 is a binary dummy variable, the outcome model in the matched data becomes

logitP(Y = 1|E,X1,X2) = c(k) + 𝛽1E + 𝛽2X1 + 𝛽3X2
1 + 𝛽4X1X2,

The main effect term of X2 is not included because c(k) contains its main effect term.

A.3 Heterogeneous exposure effect and unmatched confounders
In the case that there is a heterogeneous exposure effect (eg, interaction) and there are unmatched confounders,
X1 denotes the confounders used in matching and X2 denotes the unmatched confounders. The outcome model
becomes

logit(P(Y = 1|E,X1,X2)) = 𝛽0 + f (E,X1,X2),

where f (⋅) is an arbitrary function, which could contains interaction terms among E, X1, and X2.

logit(P(E = 1|E,X1,X2)) = 𝛼0 + g(E,X1,X2).

When X1 includes only categorical variables, we can derive the outcome model in the matched sample using the approach
outlined in Appendix A.2 as

P(Y = 1|E,X1 = x1k,X2 = x2k, S = 1)

= 1
1 + P(S=1|Y=0,E,X1=x1k ,X2=x2k)P(Y=0|E,X1=x1k ,X2=x2k)

P(S=1|Y=1,E,X1=x1k ,X2=x2k)P(Y=1|E,X1=x1k ,X2=x2k)

= 1
1 + P(S=1|Y=0,E,X1=x1k)P(Y=0|E,X1=x1k ,X2=x2k)

P(S=1|Y=1,E,X1=x1k)P(Y=1|E,X1=x1k ,X2=x2k)

∵
X2 is not used in matching and does not
impact the selection probability

= 1
1 + e−c(k)−𝛽0−f (E,X1,X2)

c(k) takes a very complex form.
Similarly, when X1 includes continuous variables, we can derive the outcome model in the matched sample using the

approach outlined in Appendix A.3 as

P(Y = 1|E,X1 = x1k,X2 = x2k, S = 1) = 1
1 + e−c(k)−𝛽0−f (E,X1,X2)

.

Some general rules:

(1) When the matching confounders X1 includes only categorical variables, the main effect and interaction terms of X1
in f (E,X1,X2) do not need to be included because the stratum specific intercept term c(k) already includes these
terms. However, their interaction terms with E and X2 should be included.

(2) The main effect and interaction terms involving X2 needs to be included. If X2 contains continuous variables, their
proper functional forms, same as their forms in the outcome model in the unmatched study population, should be
used.

We designed a simulation study to validate the general rules above. We generated one discrete random variable Z ∼
P(Z = z) = 1

3
, z = 1, 2, 3 and a Bernoulli random variable X1 ∼ Bernoulli(0.5) as matching factors. We created two dummy

variables for Z, D1, and D2 with z = 1 as the reference level. We generated two additional normally distributed variables
X1 and X2 ∼ N(0, 1). We generated the exposure variable E and outcome variable Y using the following exposure and
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outcome models:

logitP(E = 1|X ,D1,D2) = 0 + 0.928D1 − 0.371D2 − 0.5X1 − 1.6D1X1 + 1.6D2X1 + 0.2X2;

and

logitP(Y = 1|E,X ,D1,D2) = −4.5 + 0.8E + 0.894D1 + 0.447D2 − 0.5X1 − 0.1X2 + 0.02X2
2

+ 0.1EX1 − 0.05EX3 + 0.2ED1 + 0.05ED2 + 0.01X2
3 ;

In this outcome model the exposure effect is not homogeneous. There are EX1 and EX3 interaction terms. Next, we did
a cross-tab of the outcome and two confounders Z and X1. For each combination of Z and X1, we select all cases and
randomly select equal number of controls. Last, we fit a CLR(E,X2,X2

2 ,X2
3 ,ED1,ED2,EX1,EX3) in frequency-matched

samples to validate the regression terms. We performed 10 000 simulations and 10 000 observations were generated
for each simulation. The simulation result is listed in the Supplemental Table 1. The averaged estimates of regression
coefficients are the same as the regression coefficients in the population outcome model.


