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Regression analysis is often challenged by the fact that some covariates are not completely observed.
Among other approaches is a newly developed semiparametric maximum likelihood (SML) method
that requires no parametric specification of the selection mechanism or the covariate distribution and
that yields efficient inference, at least in some specific models. In this paper, we propose an EM
algorithm for finding the SML estimate and for variance estimation. Simulation results suggest that
the SML method performs reasonably well in moderate-sized samples. In contrast, the analogous
parametric maximum likelihood method is subject to severe bias under model mis-specification, even
in large samples.

1. Introduction

Parametric regression models such as generalized linear models are commonly used to assess
the effect of a vector X of covariates on an outcome variable Y . Under such a model, the
conditional distribution of Y given X is known up to a finite-dimensional regression parameter
θ . Based on a random sample from (X, Y ), θ can be estimated using any of the standard
methods such as maximum likelihood.

Quite often, however, a portion of X is unobserved for some subjects, either by design or
by happenstance. Write X = (W, Z), where W is always observed and Z is possibly missing.
Assume that Z is missing at random (MAR) in the sense of Rubin [1], that is, the conditional
probability given (X, Y ) that a subject is selected for full observation does not depend on Z.
If the conditional distribution of Z given W is known can be parametrically modeled, it is
straightforward to estimate θ by maximizing the likelihood for the observed data. A Monte
Carlo EM algorithm has been proposed by Ibrahim et al. [2] for computing the maximum
likelihood estimator (MLE). The resulting estimate is efficient if the covariate distribution is
correctly specified, but can be biased under model mis-specification.

In practice, it is often difficult to specify a model for the covariate distribution that is nearly
correct. When W is (finitely) discrete, it is possible to maximize a semiparametric likelihood
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where the conditional distribution of Z given W is left unspecified [3, 4]. The resulting semi-
parametric maximum likelihood estimator (SMLE) is efficient in the semiparametric sense,
at least in some specific models. This paper is concerned with the implementation and finite
sample performance of a restricted version of the SMLE, restricted in the sense that the con-
ditional distribution of Z given W = w is required to concentrate on the observed Zi with
Wi = w. We propose an EM algorithm for finding the SMLE and for variance estimation,
and conduct simulation experiments to compare the SMLE with analogous MLEs in terms of
robustness and efficiency.

The rest of the paper is organized as follows. In section 2, we formulate the problem and
introduce the SMLE. In section 3, we derive an EM algorithm and discuss variance estimation.
Simulation results are reported in section 4. An application is presented in section 5. The paper
concludes with a discussion in section 6.

2. The (restricted) SMLE

Let X be a vector of covariates and Y be a response variable. The conditional distribution of
Y given X = x is specified through the conditional density f (·|x; θ) with respect to some
fixed measure. Here f is a known function and θ is an unknown d-dimensional regression
parameter. Suppose that a portion of X is unobserved on some subjects. Write X = (W, Z),
where W is always observed and Z is possibly missing. Denote by G(·|w) the conditional
distribution of Z given W = w. Let R = 1 if Z is observed, 0 otherwise. It is assumed that Z

is missing at random, that is,

E(R|X, Y ) = E(R|W, Y) =: π(W, Y ). (1)

The function π specifies the conditional probability of selecting a subject for complete obser-
vation, and will be refered to as the selection mechanism. Let (Xi, Yi, Ri), i = 1, . . . , n, be
independent copies of (X, Y, R); however, we only observe (Ri, Wi, RiZi, Yi), i = 1, . . . , n.

Suppose for the moment that the conditional distribution G(·|w) can be parameterized, with
conditional density g(·|w; γ ) with respect to a fixed measure ν. Then the likelihood for (θ, γ )

is given by

n∏
i=1

[f (Yi |Xi; θ)g(Zi |Wi; γ )]Ri

[∫
f (Yi |Wi, z; θ)g(z|Wi; γ ) dν(z)

]1−Ri

, (2)

and an EM algorithm has been proposed by Ibrahim et al. [2] to maximize this likelihood. Note
that expression (2) does not involve the selection mechanism π , by the MAR assumption (1).
However, the validity of inference based on expression (2) does require correct modeling of
G, which can be quite difficult in practice.

It is therefore important to consider relaxing the parametric assumptions on G.According to
Zhang and Rockette [3, 4], G can be treated nonparametrically within the maximum likelihood
framework if W is discrete. Assume that W takes values in the finite set {w1, . . . , wJ }. Without
specifying a model for G, consider the semiparametric likelihood

L(θ, G) =
n∏

i=1

[f (Yi |Wi, Zi; θ)G({Zi}|Wi)]Ri

[∫
f (Yi |z, Wi; θ)G(dz|Wi)

]1−Ri

. (3)

It is natural to maximize L(·, ·) over the entire parameter space, which consists of all possible
values of θ and all possible conditional distributions G. This turns out to be asymptoti-
cally equivalent to a simpler maximization with the restriction that G(·|w) be supported
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by the observed values of Z on subjects with W = w ([3, Theorem 10]). Computation-
ally, the global maximization is infinite-dimensional, whereas the restricted maximization
is finite-dimensional. Therefore we focus on the restricted SMLE:

(θ̂ , Ĝ) = argmax(θ,G): G(Dj |wj )=1, j=1,...,J Ln(θ, G),

where Dj := {Zi : Wi = wj, Ri = 1}, j = 1, . . . , J .
It was shown in Zhang and Rockette ([4, Theorem 4.3]) that

√
n(θ̂ − θ) is asymptoti-

cally normal with mean 0 and variance I−1
e , where Ie is the efficient information for θ with

G unspecified. This result applies to such popular models as logistic, normal, and Poisson
regression models. It appears difficult to estimate Ie directly using the usual plug-in method.
Fortunately, a consistent estimator can be obtained by perturbing the profile log-likelihood for
θ as described below. For each θ , let

l̃(θ) = log max{L(θ, G): G(Dj |wj) = 1, j = 1, . . . , J }. (4)

Then any quadratic form vTIev can be consistently estimated by

−2
l̃(θ̂ + unvn) − l̃(θ̂ )

nu2
n

, (5)

provided vn
P→v, un

P→0 and (
√

nun)
−1 = OP (1) ([4, Theorem 5.2]).

3. The EM algorithm

We now consider how to compute θ̂ and its standard error. Suppose a sample of size n has
been drawn. Call a subject a complete case if the corresponding value of Z is observed,
or an incomplete case otherwise. Stratify the sample into J strata according to the value of
W(= w1, . . . , wJ ). Denote by zj1, . . . , zjKj

the distinct values of Z observed in stratum j , with
respective multiplicities nj1, . . . , njKj

, j = 1, . . . , J . Let nj0 denote the number of incomplete

cases in stratum j , so that nj := ∑Kj

k=0 njk is the size of stratum j , j = 1, . . . , J . Let (j, k, l),
j = 1, . . . , J, k = 1, . . . , Kj , l = 1, . . . , njk , provide the index (in the original sample) of
the lth complete case in stratum j taking the value zjk . Thus we have R(j,k,l) = 1, W(j,k,l) =
wj, Z(j,k,l) = zjk if k ≥ 1. Similarly, write (j, 0, l) for the index of the lth incomplete case in
stratum j .

With W discrete, G is essentially a vector of distributions (G1, . . . , GJ ) with Gj :=
G(·|wj), j = 1, . . . , J . In computing the restricted SMLE, the likelihood will be maximized
with the Gj supported by the observed values of Z in each stratum. Thus each Gj is iden-
tified with a probability vector (gj1, . . . , gjKj

), where gjk := Gj({zjk}), k = 1, . . . , Kj , j =
1, . . . , J . Under this identification, the likelihood (3) can be rewritten as

J∏
j=1







Kj∏
k=1

[
g

njk

jk

njk∏
l=1

f (Y(j,k,l)|wj, zjk; θ)

]


nj0∏
l=1


 Kj∑

k=1

gjkf (Y(j,0,l)|wj, zjk; θ)





. (6)

Direct maximization of expression (6) with respect to (θ, G) is a constrained maximization
problem of dimension d + ∑J

j=1 Kj , with each Gj constrained to a Kj -dimensional unit sim-
plex. Under a suitable transformation of the Gj , this can be transformed into an unconstrained
maximization problem of dimension d − J + ∑J

j=1 Kj . Therefore a Newton-type algorithm
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is applicable, at least in principle. But note that, as the sample size n increases, the Kj increase
at the same rate, unless Z truly has a finite support. Thus in a relatively large sample, Newton’s
method may be difficult, if not impossible, to carry out.

Expression (6) can be considered as a parametric likelihood under the working assumption
that each Gj is concentrated on {zjk: k = 1, . . . , Kj }. As such it can be maximized by using
the EM algorithm [5], which has been used in similar but different contexts [2, 6]. In the
present context, the complete data comprise {(Wi, Zi, Yi): i = 1, . . . , n} and the complete-
data log-likelihood is given by

lc(θ, G) =
n∑

i=1

[
log f (Yi |Wi, Zi; θ) + log G({Zi}|Wi)

]

=
J∑

j=1

Kj∑
k=1

{
njk log gjk +

njk∑
l=1

log f (Y(j,k,l)|wj, zjk; θ)

+
nj0∑
l=1

I (Z(j,0,l) = zjk)
[
log gjk + log f (Y(j,0,l)|wj, zjk; θ)

]}
,

where I (·) is the indicator function.
Let (θ(0), G(0)) be an initial guess. For example, one may take as θ(0) an estimate obtained

from a complete-case analysis, and set g
(0)
jk = njk/nj , j = 1, . . . , J, k = 1, . . . , Kj . Given

(θ(m), G(m)), m ≥ 0, we seek to maximize

E[lc(θ, G)|(Ri, Wi, RiZi, Yi)
n
i=1; θ(m), G(m)]

=
n∑

i=1

{Ri[log f (Yi |Wi, Zi; θ) + log G({Zi}|Wi)]

+ (1 − Ri)E[log f (Yi |Wi, Zi; θ) + log G({Zi}|Wi)|Wi, Yi; θ(m), G(m)]}

=
J∑

j=1

Kj∑
k=1

{
njk log gjk +

njk∑
l=1

log f (Y(j,k,l)|wj, zjk; θ)

+
nj0∑
l=1

h
(m)
jkl [log gjk + log f (Y(j,0,l)|wj, zjk; θ)]

}

=
J∑

j=1

Kj∑
k=1

[
(njk + h

(m)
jk ) log gjk +

njk∑
l=1

log f (Y(j,k,l)|wj, zjk; θ)

+
nj0∑
l=1

h
(m)
jkl log f (Y(j,0,l)|wj, zjk; θ)

]
, (7)

where

h
(m)
jkl := f (Y(j,0,l)|wj, zjk; θ(m))g

(m)
jk∑Kj

q=1 f (Y(j,0,l)|wj, zjq; θ(m))g
(m)
jq

and h
(m)
jk· :=

nj0∑
l=1

h
(m)
jkl .

Note that h
(m)
jkl is the conditional probability, given observed data and under current parameter

estimate, that Z = zjk for an incomplete case in stratum j ; that is,

h
(m)
jkl = P(Z(j,0,l) = zjk|W(j,0,l), Y(j,0,l); θ(m), G(m)).
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It follows that h
(m)
jk· is the expected number of zjk’s among the incomplete cases in stratum

j , conditional on observed data and under current parameter estimate. Because θ and G are
separated in equation (7), the maximizer is readily found to be

θ(m+1) = argmaxθ

J∑
j=1

Kj∑
k=1

[
njk∑
l=1

log f (Y(j,k,l)|wj, zjk; θ)

+
nj0∑
l=1

h
(m)
jkl log f (Y(j,0,l)|wj, zjk; θ)

]
, (8)

g
(m+1)
jk = (njk + h

(m)
jk· )

nj

, k = 1, . . . , Kj , j = 1, . . . , J. (9)

Here g
(m+1)
jk has the interpretation as the expected proportion of zjk’s among all cases in stratum

j , conditional on observed data and under current parameter estimates. Iterating equations (8)
and (9) until convergence yields the SMLE. In many examples, the maximizer in equation (8)
can be found by solving

J∑
j=1

Kj∑
k=1

[
njk∑
l=1

�̇(Y(j,k,l)|wj, zjk; θ) +
nj0∑
l=1

h
(m)
jkl �̇(Y(j,0,l)|wj, zjk; θ)

]
= 0

for θ , where �̇(y|x; θ) := ∂ log f (y|x; θ)/∂θ . The above equation can be solved analytically
for the normal linear model. In general, a Newton-type algorithm can be used. This application
of Newton’s method differs from the one mentioned earlier in that the dimension of the current
problem is d, regardless of n or the Kj .

A slightly modified version of this EM algorithm can be used to evaluate the profile
likelihood for θ . For each θ , let Ĝ(θ) be any maximizer in equation (4), so that l̃(θ) =
log L(θ, Ĝ(θ)). For a given θ , Ĝ(θ) can be found by iterating until convergence a simpler ver-
sion of equation (9) with θ(m) in the definition of h

(m)
jkl replaced by θ . In light of the discussion

in Section 2, a consistent estimate of the efficient information Ie is now available. Consider
first the diagonal elements Ie(s, s), s = 1, . . . , d. Let es be a d-vector with 1 as the sth element
and 0 everywhere else. Set vn ≡ v = es and un = an−1/2 for some constant a > 0. Then a
consistent estimate of Ie(s, s) is obtained from expression (5) as

2a−2
[
l̃(θ̂ ) − l̃(θ̂ + an−1/2es)

]
.

This can be interpreted as a numerical second-order partial derivative. Naturally the desired
derivative can be approximated from the opposite direction as well. In other words, es can be
replaced by its negative to yield

2a−2
[
l̃(θ̂ ) − l̃(θ̂ − an−1/2es)

]
.

Common wisdom then suggests taking the average of the two and estimating Ie(s, s) by

a−2
[
2l̃(θ̂ ) − l̃(θ̂ + an−1/2es) − l̃(θ̂ − an−1/2es)

]
.

For an off-diagonal element Ie(s, t), s �= t , let est = es + et . Then a consistent estimate of
eT
st Ieest = Ie(s, s) + Ie(t, t) + 2Ie(s, t) is given by

a−2
[
2l̃(θ̂ ) − l̃(θ̂ + an−1/2est ) − l̃(θ̂ − an−1/2est )

]
.
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It follows that Ie(s, t) can be consistently estimated by

1

2a2

[
l̃(θ̂ + an−1/2es) + l̃(θ̂ − an−1/2es) + l̃(θ̂ + an−1/2et ) + l̃(θ̂ − an−1/2et )

−2l̃(θ̂ ) − l̃(θ̂ + an−1/2est ) − l̃(θ̂ − an−1/2est )
]
.

Inverting the estimate of Ie gives a consistent estimate of the asymptotic variance of θ̂ .

4. Simulation studies

Simulation experiments are conducted under a normal linear model and a Poisson regression
model. In each model, W is assumed empty and Z one-dimensional. Then G is just the
marginal distribution of Z and the selection mechanism π is a function of y only. Under the
linear model, data are generated according to the following mechanism:

Z ∼ Beta (α, 1), (10)

Y |Z = z ∼ Normal (β0 + β1z, σ
2), (11)

logit[π(y)] = y + γ, (12)

where α ∈ {0.5, 1, 2}, β0 = 0, β1 ∈ {0, 5}, σ 2 = 1, and γ is chosen such that E(R) = 0.5. A
sample consists of n = 100 or 200 independent copies of (Z, Y , R). For each sample size, 1000
replicates (samples) are generated under each of the six scenarios (combinations of parameter
values).

Given a sample, θ = (β0, β1, σ
2) is estimated using the following five methods. FD (full

data) is the usual least-squares procedure applied to {(Zi, Yi): i = 1, . . . , n}, as if they were
all observed. This is not a competitor method for missing covariates. Rather, it serves as
an indicator for the total amount of information about θ contained in the data generated. CC
(complete case) is the least-squares procedure applied to {(Zi, Yi): Ri = 1}, as if they were the
original sample. Under an outcome-dependent selection mechanism, this approach is invalid. It
is included in this study to illustrate the potential bias and loss of efficiency and also to provide
initial parameter values for the iterative procedures. ML0 is the standard maximum likelihood
procedure under the parametric model defined by expressions (10) and (11). The relative
(in)efficiency of ML0 to FD indicates the amount of information lost due to missing values ofZ,
with G known up to a finite-dimensional parameter. On the other hand, the Fisher information
for θ in this model (or any other correct parametric model) is larger in the sense of non-negative
definiteness than the efficient Fisher information for θ in the semiparametric model where G

is unspecified. Therefore ML0 is expected to be more efficient than a semiparametric method.
Of interest to us is the amount of efficiency gain that comes with a detailed knowledge of
the covariate distribution. In practice, it is often difficult to specify a parametric model that
is nearly correct. In the present setting, a data analyst without sufficient information about G

might simply specify a normal model:

Z ∼ Normal (ν, τ 2), (13)

which may be called common practice. Denote by ML1 the maximum likelihood procedure
under (11) and (13). We would like to quantify the bias of ML1 due to model mis-specification
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and hence the robustness achieved by sparing a parametric specification of G. Lastly, SML is
the semiparametric maximum likelihood method defined earlier.

ML0 and ML1 are both implemented using an EM algorithm similar to the Monte Carlo EM
algorithm of Ibrahim et al. [2]. Preliminary simulation results suggest that, even for ML0 and
ML1, the EM algorithm is more stable than a quasi-Newton algorithm where variable scaling
can be a serious problem. In the implementation of ML0, the conditional expectation in the
E-step has no closed form and is evaluated via numerical integration. In the implementation
of ML1, (θ(m+1), ν(m+1), τ (m+1)) can be found in closed form.

Each method gives for each regression parameter a point estimate, a standard error (standard
deviation estimate), and a Wald confidence interval. The only exception here is that, under
the least-squares approach, inference about σ 2 is based on a χ2 distribution and does not
involve variance estimation. Empirical bias and standard deviation (SD) of a point estimate
are calculated using knowledge of the true parameter value and standard formulas applied to
the different replicates. Standard errors (SEs) are averaged across replicates and compared
with the empirical standard deviation. Empirical coverage probabilities (CPs) are calculated
for (intended) 95% confidence intervals.

Tables 1 and 2 summarize numerical results obtained under different scenarios (described
earlier) at n = 100, 200. In all scenarios studied here, CC is associated with a large bias.

Table 1. Linear regression with n = 100.

Scenario Bias (×1000) SD (×1000) SE (×1000) CP (×100)

β1 α Method β0 β1 σ 2 β0 β1 σ 2 β0 β1 σ 2 β0 β1 σ 2

0 0.5 FD −4 5 −2 149 339 134 150 337 95 94 96
CC 416 8 −170 197 457 166 196 443 43 94 89
ML0 24 −52 −31 203 522 141 194 495 141 93 92 93
ML1 8 7 −38 207 552 133 199 520 141 92 91 93
SML 7 8 −37 209 555 133 200 521 141 93 91 93

1 FD 1 5 −3 202 347 144 201 347 94 95 95
CC 408 7 −172 265 470 173 261 451 64 94 86
ML0 18 −5 −34 294 547 142 278 518 141 93 93 91
ML1 9 11 −39 297 560 143 284 531 141 92 92 91
SML 10 10 −38 298 562 143 285 532 140 92 92 91

2 FD −4 8 −4 302 428 140 300 425 94 94 96
CC 410 7 −171 406 572 168 392 555 80 94 88
ML0 18 −7 −26 461 665 137 447 652 143 93 93 94
ML1 12 3 −39 475 695 140 446 651 141 92 93 92
SML 11 4 −39 473 694 140 445 651 141 92 93 92

5 0.5 FD 1 1 −7 141 340 142 149 338 96 94 95
CC 644 −683 −132 257 473 172 252 445 29 65 92
ML0 −4 14 −30 169 370 165 175 380 170 96 95 92
ML1 178 −353 −100 200 375 182 215 385 187 86 86 87
SML −8 13 −24 176 382 172 177 374 170 95 94 93

1 FD 7 −19 4 203 358 149 201 348 95 95 94
CC 795 −752 −134 383 551 189 371 536 42 68 89
ML0 −12 7 −28 260 402 193 260 418 192 95 96 91
ML1 −70 52 −4 349 484 239 314 464 219 93 94 91
SML −47 54 −9 332 482 217 272 431 191 89 92 90

2 FD −14 15 5 304 428 149 303 429 95 95 94
CC 950 −793 −144 584 736 182 576 730 61 79 89
ML0 −31 44 −20 414 562 219 422 565 212 96 95 90
ML1 −438 502 89 565 710 259 482 652 242 85 87 95
SML −177 197 33 568 713 240 438 598 210 86 89 91
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Table 2. Linear regression with n = 200.

Scenario Bias (×1000) SD (×1000) SE (×1000) CP (×100)

β1 α Method β0 β1 σ 2 β0 β1 σ 2 β0 β1 σ 2 β0 β1 σ 2

0 0.5 FD 2 −3 1 108 234 101 106 239 95 95 94
CC 419 −13 −168 136 309 123 137 309 13 95 76
ML0 3 −5 −14 140 355 98 137 350 100 94 94 93
ML1 11 −15 −17 142 371 101 141 368 100 94 94 93
SML 11 −15 −17 143 372 101 142 368 100 94 94 93

1 FD −2 −3 2 141 249 101 142 246 96 94 95
CC 416 −5 −167 190 331 116 184 319 38 94 79
ML0 22 −25 −21 211 396 99 197 367 99 92 92 93
ML1 6 −7 −16 212 401 99 202 379 100 93 93 94
SML 6 −7 −16 212 401 99 202 379 100 93 93 94

2 FD −5 9 3 222 316 101 213 301 94 93 95
CC 416 −1 −170 277 388 122 276 390 66 95 76
ML0 20 −20 −25 328 483 100 310 454 99 93 92 93
ML1 7 −3 −14 326 474 100 320 467 100 94 94 94
SML 7 −3 −14 325 474 100 319 467 100 94 94 94

5 0.5 FD −3 6 −6 106 235 102 106 237 94 95 94
CC 631 −657 −127 170 299 123 178 312 7 42 87
ML0 −4 5 −10 119 258 126 129 284 124 97 97 94
ML1 171 −339 −81 138 253 132 153 272 134 81 77 86
SML −8 22 −20 123 258 121 125 261 120 95 95 93

1 FD −4 6 0 146 249 102 142 246 95 94 95
CC 777 −718 −130 269 396 123 262 379 17 52 84
ML0 −12 13 −12 185 289 139 193 311 139 96 97 93
ML1 −81 72 14 239 341 158 223 329 157 93 95 94
SML −32 44 −7 215 328 142 197 308 138 94 94 93

2 FD −1 −3 2 212 296 101 213 302 95 95 94
CC 948 −789 −146 398 503 127 399 506 34 65 81
ML0 −2 5 −17 263 360 154 322 433 151 97 98 93
ML1 −403 463 92 383 483 178 331 448 170 79 82 95
SML −82 88 16 384 487 160 312 418 149 89 92 93

In the presence of a strong regression relationship (β1 = 5), it also tends to have a large
standard deviation. In contrast, all three methods (ML0, ML1, SML) that explicitly adjust for
missing data generally perform better, at least in terms of bias. We now turn to the comparison
of ML0, ML1, and SML, with ML0 being an ideal that cannot be achieved (without a good
knowledge of G). It appears that, under weak regression (β1 = 0), the three methods are nearly
equivalent in terms of the few criteria considered here. In that case, it does not seem to matter
how to deal with the covariate distribution – parametrically or nonparametrically, correctly or
incorrectly – as long as we do deal with it. In the case of strong regression (β1 = 5), however,
the ML1 estimates can be seen to carry a significant bias. In fact, strong regression also has
the effect of setting a higher sample size requirement for the asymptotic properties of SML
to take effect. Indeed, for each fixed n, one can make ML1 and SML perform arbitrarily
poorly by choosing large values of β1. Note, for example, the biases of ML1 and SML in
the scenario where β1 = 5 and α = 2, at a sample size of n = 100. On the other hand, in
each fixed scenario, the bias of SML eventually vanishes with increasing n, whereas that of
ML1 does not. In the same scenario as noted above, but at n = 200, ML1 remains severely
biased, whereas SML becomes much less so. The (in)efficiency of SML relative to ML0
quantifies the statistical buying power of an accurate knowledge of G in the presence of
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missing values of Z. β1 is again an important factor in this assessment: the larger it is, the
less efficient SML is relative to ML0. In most cases, the SML standard errors estimate the
true standard deviations reasonably well and the associated confidence intervals enjoy good
coverage probabilities.

The simulation experiments for Poisson regression are conducted in a similar fashion and
yield similar results. Data are generated according to equations (10) and (12) and, of course,
a Poisson regression model:

Y |Z = z ∼ Poisson (exp(β0 + β1z)), (14)

where β0 = 0 and β1 ∈ {0, 2}. Again, 1000 replicates are generated in each scenario at each
sample size. Here FD and CC refer to the standard maximum likelihood procedure applied to
{(Zi, Yi): i = 1, . . . , n} and {(Zi, Yi): Ri = 1}, respectively. ML0 is the maximum likelihood
method under expressions (10) and (14). ML1 is the maximum likelihood method under
expressions (13) and (14). Both ML0 and ML1 are computed using an EM algorithm with
numerical integration in the E-step. Numerical results are reported in tables 3 and 4. All the
qualitative remarks in the preceding paragraph remain valid here.

Table 3. Poisson regression with n = 100.

Scenario Bias (×1000) SD (×1000) SE (×1000) CP (×100)

β1 α Method β0 β1 β0 β1 β0 β1 β0 β1

0 0.5 FD −2 −32 154 340 152 343 94 95
CC 331 −27 175 399 184 417 53 97
ML0 7 −57 186 464 178 439 93 94
ML1 3 −36 192 485 179 447 94 93
SML 2 −33 190 481 182 455 93 93

1 FD −12 3 210 376 202 351 95 95
CC 328 2 233 407 245 425 70 97
ML0 −2 −14 265 487 250 456 94 94
ML1 −9 3 271 499 251 459 95 95
SML −9 3 270 496 255 466 94 94

2 FD −14 10 309 438 304 430 95 95
CC 328 2 337 475 370 523 85 98
ML0 7 −18 396 570 393 567 95 95
ML1 −9 6 400 578 387 560 95 95
SML −7 4 398 575 396 573 95 95

2 0.5 FD −2 −4 126 208 128 208 95 96
CC 492 −512 147 225 170 254 16 46
ML0 −3 −9 135 226 141 232 96 97
ML1 −6 −15 144 230 161 259 97 98
SML −3 −7 136 225 138 225 95 96

1 FD 0 −3 148 215 151 215 95 95
CC 607 −594 184 251 218 288 17 45
ML0 −8 3 168 240 175 247 96 96
ML1 −75 88 193 266 221 310 96 95
SML −10 8 173 245 174 245 95 95

2 FD −4 1 200 254 196 249 95 95
CC 767 −715 262 321 306 369 25 48
ML0 −7 −2 240 307 237 301 95 95
ML1 −195 223 308 381 318 407 69 69
SML −42 42 279 348 245 311 92 93
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Table 4. Poisson regression with n = 200.

Scenario Bias (×1000) SD (×1000) SE (×1000) CP (×100)

β1 α Method β0 β1 β0 β1 β0 β1 β0 β1

0 0.5 FD −3 −4 107 230 107 239 95 96
CC 338 −11 114 255 127 287 23 98
ML0 5 −25 124 300 124 307 94 96
ML1 2 −13 127 313 126 312 95 96
SML 1 −12 127 311 127 317 95 95

1 FD −6 −2 147 254 142 247 95 94
CC 334 −5 167 284 172 298 48 97
ML0 4 −20 188 341 176 322 93 94
ML1 −2 −7 190 346 178 326 94 95
SML −2 −7 190 344 179 328 93 94

2 FD −9 8 214 297 214 302 95 96
CC 329 10 229 321 257 364 76 98
ML0 −3 1 277 396 276 399 95 95
ML1 −13 15 279 400 272 394 95 95
SML −11 14 278 398 277 402 95 94

2 0.5 FD −11 13 90 142 90 147 96 96
CC 480 −489 101 151 119 179 2 17
ML0 −12 13 96 153 102 168 97 97
ML1 −14 4 102 156 126 203 99 99
SML −12 15 97 154 97 158 95 96

1 FD −2 3 107 151 107 151 95 95
CC 608 −594 130 179 153 202 2 14
ML0 −3 2 121 170 126 178 96 96
ML1 −68 83 139 189 187 263 95 95
SML −5 6 126 175 122 172 95 95

2 FD −1 −2 141 178 138 175 95 94
CC 769 −719 181 221 213 257 5 18
ML0 −5 −1 167 209 171 217 97 96
ML1 −181 211 210 257 162 206 33 32
SML −17 15 183 227 171 217 95 94

5. Application

The proposed method is applied to data from the Breast Cancer Prevention Trial at the National
SurgicalAdjuvant and Bowel Project. The aim of this trial is to evaluate the effect of Tamoxifen
for preventing breast cancer. As each patient enters the trial, a variety of measurements are
made, collectively known as baseline information. This includes body weight and alanine
aminotransferase (ALT) level, an index of liver functioning.

At one point, investigators are interested in relating body weight to ALT level, for which
a simple linear regression model is deemed plausible. Specifically, let Z denote ALT level in
units per liter, and Y body weight in pounds. It is postulated that

Y |Z = z ∼ N(β0 + β1z, σ
2),

and the scientific focus is on β1. Available for this analysis are records of the first 1000 patients
in the trial. Unfortunately, although Y is recorded for every subject, Z is measured only for
some 50% of the subjects. This missingness is attributed to financial and other nonbiological
factors. In statistical terms, there are reasons to believe that Z is missing completely at random.
Hence the CC analysis is valid. Nevertheless, it is certainly desirable to take into account the
information in the incomplete cases and obtain a more accurate estimate. One way to do this
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is to specify a normal model for Z and maximize the parametric likelihood; this is denoted by
ML1 in Section 4.2. Another possibility is the proposed SML method.

All three methods are used to analyze this data. The point estimates of β1 are 1.01 (CC),
0.97 (ML1), and 0.96 (SML), with respective standard errors 0.24, 0.18, and 0.22. There is
a visible difference in the point estimate with and without using the incomplete cases. As
expected, SML has a smaller standard error than CC. The standard error for ML1 is even
smaller. Without validating the normal model, inference based on the small standard error of
ML1 could be overoptimistic.

6. Discussion

An EM algorithm proposed in this paper implements an SML method for parametric regression
problems where some covariates are missing at random. This method requires no parametric
specification of the selection mechanism or the covariate distribution, and the EM algorithm
yields reasonable numerical results in moderate-sized samples. Fortran programs are available
from the first author.

Simulation experiments are carried out to compare the proposed method (SML) with the
CC analysis and another maximum likelihood method (ML) based on a parametric model for
the covariate distribution. It is clear that the CC analysis tends to be more biased than both ML
and SML, even if the covariate distribution is mis-specified in ML. This is further evidence that
missing data should be dealt with explicitly rather than ignored. SML is less efficient than ML
when the covariate distribution is correctly specified. However, if the covariate distribution
is mis-specified, then ML can be severely biased. We therefore recommend the SML method
when the covariate distribution is difficult to model. The strength of the regression relationship
has an effect on the performance of both ML and SML. Under weak regression, both methods
perform well, whether the covariate model in ML is correct or not. Under strong regression, ML
is sensitive to mis-specification of the covariate distribution and SML requires a large sample.
Thus if a strong regression relationship is expected, an ML user should be very careful about
the covariate model and an SML user may wish to collect a large sample. The meaning of
“large” here is admittedly vague, and in practice we recommend further simulation studies
targeted at the application at hand.

The proposed method applies when a portion (Z) of X is missing as a whole and the
observed portion (W ) is finitely discrete. If W is not discrete or, more generally, if multiple
patterns of missing covariates can occur, then it seems difficult to treat the covariate distribution
completely nonparametrically within the ML framework. The method of Ibrahim et al. [2] is
available in the more general setting and is subject to the usual mis-specification bias. We are
currently exploring a different approach based on nonparametric regression ideas.
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