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In the literature of statistical analysis with missing data there is a significant gap
in statistical inference for missing data mechanisms especially for nonmono-
tone missing data, which has essentially restricted the use of the estimation
methods which require estimating the missing data mechanisms. For example,
the inverse probability weighting methods (Horvitz & Thompson, 1952; Little
& Rubin, 2002), including the popular augmented inverse probability weighting
(Robins et al, 1994), depend on sufficient models for the missing data mech-
anisms to reduce estimation bias while improving estimation efficiency. This
research proposes a semiparametric likelihood method for estimating missing
data mechanisms where an EM algorithm with closed form expressions for both
E-step and M-step is used in evaluating the estimate (Zhao et al, 2009; Zhao,
2020). The asymptotic variance of the proposed estimator is estimated from the
profile score function. The methods are general and robust. Simulation stud-
ies in various missing data settings are performed to examine the finite sample
performance of the proposed method. Finally, we analysis the missing data
mechanism of Duke cardiac catheterization coronary artery disease diagnostic
data to illustrate the method.
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1 INTRODUCTION

Missing data are a common problem in statistical analysis. In practice data can be missing either by design or
happenstance.1,2 It’s well known that missing data mechanism is a key point which needs to be considered in statistical
analysis with missing data. The three classes of missing data mechanisms3 are (i) missing complete at random where the
missingness is independent of both observed data and unobserved data, (ii) missing at random (MAR) where the missing-
ness is independent of missing data given observed data, and (iii) missing not at random where the missingness depends
on unobserved data given observed data. One other feature about the missing data is missing data pattern which includes
monotone and nonmonotone patterns. In general arbitrary nonmonotone missing data patterns increase the difficulties
of statistical analysis compared with a simple monotone missing data pattern.

In statistical analysis, people often make assumptions about the missing data mechanism, for example, data
are MAR, without proper testing of the assumption. An invalid assumption may produce a significant biased
result. On the other hand, many methods for statistical analysis with missing data require estimating the miss-
ing data mechanisms, for example, the popular augmented inverse provability weighting estimating equation4,18

depends on sufficient models for the missing data mechanisms to reduce estimation bias while improving
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estimation efficiency. However, developing methods for modeling the missing data mechanisms for nonmonotone
missing data patterns is challenging even for the commonly treated MAR data. There has been very limited research in
this area.5,6

Estimation method7 based on a class of models for the missing data mechanisms for the randomized monotone miss-
ingness processes is complex and computationally intensive, which is still not able to be implemented in any computing
software. The multinomial model6 for estimating the missing data probability for MAR data with nonmonotone missing
data patterns assumes that for each missing data pattern the missingness depends on the fully observed variables with
that missing data pattern. It models the probability for each missing data pattern separately using a logistic regression
model based on the fully observed variables in that pattern and estimates the model using only the subset of data with
those variables fully observed. Then the probability of being a complete observation is computed as a combined result
from the set of logistic regression models. We note that (i) the method cannot estimate the missing data probabilities
directly, (ii) estimating the missing mechanism for each pattern separately is not efficient as it only use a subset of the
data especially when the sizes of some of the subsets are small, and (iii) the model has natural restrictions as discussed in
the article, for example, in the simulation study it sets a limited range for the covariates as (X1,X2,X3)∈ [0, 2]3, otherwise
a constrained Bayesian estimation method is required for evaluating the estimates to overcome the natural restrictions
of the model.

In general parametric regression models can only use fully observed variables to make inference for missing
data mechanisms, which is often insufficient as the missingness may depend on the partially observed variables
in a general MAR setting.8 This research develops methods for statistical inference for missing data mechanisms
through a parametric regression model based on both fully observed and partially observed variables. We pro-
pose estimating the regression model directly from a semiparametric likelihood model using an EM algorithm.9,10

The rest of the article is organized as follows. Section 2 introduces notation and the regression model for the
missing data mechanism. In Section 3, we start with a simple monotone missing data pattern to introduce a
semiparametric likelihood method for estimating the missing data mechanism, then we extend the model to deal
with arbitrary nonmonotone missing data patterns. Finally it introduces a method to estimate the asymptotic vari-
ance of the semiparametric maximum likelihood estimator through profile score functions. Section 4 examines the
finite sample performance of the proposed method and the asymptotic variance estimator in simulation studies. In
Section 5, we analysis the missing data mechanism of Duke cardiac catheterization coronary artery disease diag-
nostic data. Although in general the MAR assumption cannot be tested we will explain how to test it in the sim-
ple monotone missing data pattern using the real data example. Some comments and a brief discussion are given
in Section 6.

2 NOTATION

Let X be a vector of variables with data missing in nonmonotone missing data patterns, n be the sample size, i
be the index for subject and i= 1, … , n, V be an index set of compete observations and V be the complement
of V . That is, if i∈V we have a complete observation and we denote it as Xi, if i ∈ V we have an incomplete
observation. According to the observed variables for the incomplete observations in V we further divide V into K
subsets, V

k
, k= 1, … , K such that the observations in the same subset have the same variables being observed.

Therefore, V
k

is an index set of incomplete observations with the same missing data pattern. Let m be the num-
ber of variables in X , then the number of missing data patterns K < 2m. For convenience, we denote an incom-
plete observation as (Uk

i ,Zk
i ), for i ∈ V

k
, where Zk

i represents the observed part of Xi and Uk
i is the unobserved

part of Xi.
Let R be an indicator variable, Ri = 1 if i∈V , and 0 otherwise. Without loss of generality, we assume that the probability

of being a complete observation is bounded away from zero with probability 1, that is,

Pr(Ri = 1|Xi) > c > 0,

for a fixed positive constant c, and the observed data are independent realizations of the random vector (R,XT)T .
Assume that f𝛼(r|x) = Pr(R = r|X = x) is a parametric regression model, and 𝛼 is a vector of parameters. We are

interested in estimating 𝛼 in the regression model f𝛼(r|x) for MAR data.
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3 METHODS

To investigate the estimation method, we start with a semiparametric likelihood model for a simple monotone missing
data pattern, then we extend the model to deal with nonmonotone missing data patterns.

3.1 Simple monotone missing data pattern

In a simple case, we assume that there are only two variables in the vector X , that is, m= 2, one of them is fully observed
and the other one has missing values. We note that in this case K = 1 and we have a simple monotone missing data pattern.
Using the notation in Section 2, for i∈V we observe Xi, and for i ∈ V

1
we have (U1

i ,Z1
i ) where U1

i represents the missing
part of Xi and Z1

i is the observed part of Xi. We will omit the superscript 1 without confusion as there is only one missing
group. Therefore, U denotes the variable with missing values and Z is the fully observed variable. The regression model
for the missing data probability f𝛼(r|x) can be written as f𝛼(r|u, z).

Let G(u|z) be the conditional distribution of U given Z = z. To estimate 𝛼 we consider the following likelihood function.

L(𝛼,G) =
∏
i∈V

f𝛼(ri|ui, zi)dG(ui|zi)
∏
i∈V

∫ f𝛼(ri|u, zi)dG(u|zi), (1)

which was originally proposed for regression models in a two-phase study.9 To avoid parametric assumption for the con-
ditional distribution G(u|z) we model it using a piecewise empirical distribution.11 Let’s define a categorical variable
H = h(Z) such that H has a few categories, for example, we let the function h(⋅) divide the observed values of Z into a few
categories such that there is approximately the same number of observations in each category. Let

gh
u = Pr{U = u|H = h}, for u ∈ h, h ∈ , (2)

be the probability mass assigned to the pair of data (u,h), where  and h are the sample space of H and U given H = h,
respectively, with h = {ui ∶ i ∈ V and Hi = h} according to the empirical distribution principle. The log likelihood in
(1) is then

l(𝛼, g) =
∑
i∈V

[log{f𝛼(ri|ui, zi)} + log(ghi
ui
)] +

∑
i∈V

log
⎧⎪⎨⎪⎩
∑

u∈hi

f𝛼(ri|u, zi)g
hi
u

⎫⎪⎬⎪⎭
, (3)

where
∑

u∈h
gh

u = 1 for each h ∈ . We note that although the method requires dividing the continuous covariate Z
into a few categories such that we can estimate the covariate distribution G(u|z) using an empirical distribution for each
category separately the original continuous covariate Z is still used in the regression model f𝛼(r|u, z) (see Equation (3)).
The system of score functions is obtained as follows.

S𝛼 =
𝜕l(𝛼, g)
𝜕𝛼

=
∑
i∈V

S𝛼(ri|ui, zi) +
∑
i∈V

∑
u∈hi

W u
i S𝛼(ri|u, zi), (4)

Sgh
u
=

𝜕l(𝛼, g)
𝜕gh

u
=

nV
uh +

∑
i∈V h

W u
i

gh
u

−
nV

u′h +
∑

i∈V h
W u′

i

gh
u′

, for u ∈ h, h ∈ , (5)

where S𝛼(ri|ui, zi) = 𝜕 log{f𝛼(ri|ui, zi)}∕𝜕𝛼 is the score function of 𝛼 of a complete observation, nV
uh is the number of obser-

vations in V with (U,H)= (u,h), V h is the subset of indices i in V with hi = h, u′ is a specified value of U in h, and the
weight

W u
i =

f𝛼(ri|u, zi)g
hi
u∑

u∈hi
f𝛼(ri|u, zi)g

hi
u

. (6)
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To compute semiparametric maximum likelihood estimates (SPMLE’s) of 𝛼 and gh
u we solve the system of score

equations S𝛼 = 0 and Sgh
u
= 0 simultaneously. First, from Sgh

u
= 0 we get

gh
u =

nV
uh +

∑
i∈V h

W u
i

nV∪V
h

. (7)

Giving initial estimates 𝛼(0) and gh(0)
u , an EM algorithm9 for obtaining these estimates is as follows. (i) Computing

W u(t+1)
i in (6) at current 𝛼(t) and gh(t)

u , (ii) Computing 𝛼(t+1) from S𝛼 = 0 at given W u(t+1)
i , and (iii) Updating gh(t+1)

u in (7) at
given W u(t+1)

i . We repeat the above steps iteratively until convergence to get the SPMLE’s 𝛼̂ and ĝh
u.

We emphasize the following facts of the semiparametric model. (i) The support h for the empirical distribution in
(2) is defined based on the complete observations which is reliable when Pr(U|Z)=Pr(U|Z,R= 1), that is, the data are
MAR. (ii) The updating Equations (6) and (7) indicate that the covariate distribution is estimated not only using the
complete observations but also the incomplete observations and the logistic regression model. (iii) The model can deal
with cases where both U and Z are vectors of variables. (iv) The categorical variable H is used in modeling the conditional
distribution G(u|z). When the correlation Corr(U,Z) is high we may let H have more categories to capture the strong
association. In finite samples in order to use all the incomplete observations in the analysis the method requires that for
each category of H in the missing group there is at least one observation in V with a common H. In our simulations the
number of categories for each variable in Z from 2 to 5 produce reasonable good results (see the numerical studies in
Sections 4 and 5).

3.2 Nonmonotone missing data pattern

Direct extension of the above SPMLE to nonmonotone missing data patterns is complex and computationally intensive.
This section introduces the pseudo-likelihood model,10 also referred to as composite likelihoods,12 to estimate the missing
data probability for nonmonotone missing data.

Using the notation in Section 2, in a general nonmonotone missing data pattern, there are K < 2m missing data
groups. Let G(uk|zk) be the conditional distribution of Uk given Zk = zk, k= 1, … , K. We consider the following likelihood
functions.

Lk(𝛼,G) =
∏
i∈V

f𝛼(ri|uk
i , zk

i )dG(uk
i |zk

i )
K∏

k=1

∏
i∈V

k
∫ f𝛼(ri|uk, zk

i )dG(uk|zk
i ), for k = 1, … ,K. (8)

We define a categorical variable Hk = h(Zk) such that Hk has a few categories, and we assume that ghk

uk is the probability
mass assigned to the pair of data (uk,hk), that is

ghk

uk = Pr{Uk = uk|Hk = hk}, for uk ∈ hk , hk ∈ k, (9)

where k and hk are the sample space of Hk and Uk given h(Zk)= hk, respectively, with hk = {uk
i ∶ i ∈ V and Hk

i =
hk}. Then from (8), we obtain the pseudo-log-likelihoods of (𝛼, g) as

lk(𝛼, g) =
∑
i∈V

[log{f𝛼(ri|uk
i , zk

i )} + log(ghk
i

uk
i
)] +

K∑
k=1

∑
i∈V

k

log
⎧⎪⎨⎪⎩

∑
uk∈hk

i

f𝛼(ri|uk, zk
i )g

hk
i

uk

⎫⎪⎬⎪⎭
, for k = 1, 2, … ,K, (10)

where
∑

uk∈hk
ghk

uk = 1 for each hk ∈ k. The system of score functions is as follows.

S𝛼 =
∑
i∈V

S𝛼(ri|uk
i , zk

i ) +
K∑

k=1

∑
i∈V

k

∑
uk∈hk

i

W uk

i S𝛼(ri|uk, zk
i ), (11)
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Sghk
uk
=

nV
ukhk +

∑
i∈V

k
hk

W uk

i

ghk

uk

−
nV

uk′hk +
∑

i∈V
k
hk

W uk′

i

ghk

uk′

, for uk ∈ hk , hk ∈ k, k = 1, … ,K, (12)

where nV
ukhk is the number of observations in V with (Uk,Hk)= (uk,hk), V

k
hk is the subset of indices i in V

k
with hk

i = hk,
uk′ is a specified value of Uk in hk , and

W uk

i =
f𝛼(ri|uk, zk

i )g
hk

i
uk

∑
uk∈hk

i

f𝛼(ri|uk, zk
i )g

hk
i

uk

. (13)

The SPMLE’s for 𝛼 and ghk

uk can be obtained by solving the score equations S𝛽 = 0 and Sghk
uk
= 0, k= 1, … , K

according to the EM algorithm in Section 3.1 with updating equations for W uk

i and ghk

uk replaced with (13) and (14),
respectively.

ghk

uk =
nV

ukhk +
∑

i∈V
k
hk

W uk

i

nV∪V
k

hk

, for uk ∈ hk , hk ∈ k, k = 1, … ,K. (14)

We note that the regular full likelihood methods8,13,14 require estimating the distribution of the multivariate covari-
ates which is often a high-dimensional object. The above pseudo-likelihoods replace the high-dimensional object
with a low-dimensional empirical model for the conditional distribution of covariates which significantly reduce the
computation complexity.

3.3 Asymptotic variance estimation

In certain semiparametric settings profile log likelihoods behave like regular log likelihoods.15 Methods for estimating the
asymptotic variances of the SPMLE’s from profile log likelihoods or the profile score functions have been investigated for
regression analysis with missing data,9,10 where they consider modeling the profile log likelihood as a quadratic function
of the regression parameters at a close neighborhood of the SPMLE’s or using the inverse of the negative Hessian matrix
through numerical differentiation of the profile score functions.

Our semiparametric models using the pseudo-log-likelihoods in (3) and (10) to approximate the log-likelihoods, which
produce the score function S𝛼 . We know that the score function is a function of the parameter of interest 𝛼 and the
nuisance parameter g, so we write it as S𝛼(𝛼, g). The profile score for 𝛼, S𝛼{𝛼, g(𝛼)} can be easily evaluated using the EM
algorithm for any given 𝛼. When f𝛼(r|x) is the true model we would expect that the profile score for 𝛼, S𝛼{𝛼, g(𝛼)} behaves
like a regular score function.15 Let I𝛼{𝛼, g(𝛼)} denote the profile information matrix for 𝛼, then under certain regularity
conditions we have

E[S𝛼{𝛼, g(𝛼)}S𝛼{𝛼, g(𝛼)}T] = E[I𝛼{𝛼, g(𝛼)}].

Therefore, we can estimate the asymptotic variances of the SPMLE’s by estimating E[S𝛼{𝛼̂, g(𝛼)}S𝛼{𝛼̂, g(𝛼)}T], which can
be computed directly from the score functions in (4) or (11) and does not require numerical differentiation or further
iteration with the EM algorithm.

4 SIMULATIONS

In this section, we use simulation study to examine the finite sample performance of the proposed SPMLE’s and the
estimator of the asymptotic variance. For comparison, we also compute the maximum likelihood estimates (MLE’s) based
on the full data.
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We consider two simulations with different missing data models. In simulation one, we generate data from the
following logistic regression model

logit{Pr(X4 = 1|X1,X2,X3)} = 𝛽10 + 𝛽11X1 + 𝛽12X2 + 𝛽13X3, (15)

where X1, X2 and X3 are standard normal, and both X2 and X3 are correlated with X1 with a common correlation equal
to 0.20. Let 𝛽1 = (𝛽10, 𝛽11, 𝛽12, 𝛽13) = (−1, 2, 1, 1, 1). Variables X1 and X4 are fully observed, but X2 and X3 have data MAR.
We divide the data into two groups randomly, in one group we let X3 fully observed but X2 partially observed, and in
the other group we let X2 fully observed but X3 partially observed. Let X = (X1,X2,X3,X4), R2 and R3 be the missing data
indicator for X2 and X3, respectively. We generate R2 and R3 from the following logistic regression models, respectively.

logit{Pr(R2 = 1|X)} = 𝛽20 + 𝛽21X1 + 𝛽22X3 + 𝛽23X4,

logit{Pr(R3 = 1|X)} = 𝛽30 + 𝛽31X1 + 𝛽32X2 + 𝛽33X4.

Let 𝛽2 = (𝛽20, 𝛽21, 𝛽22, 𝛽23) and 𝛽3 = (𝛽30, 𝛽31, 𝛽32, 𝛽33). We consider the following three settings. (i) The missingness only
depends on the fully observed variables with 𝛽2 = 𝛽3 = (−0.5, 0.5, 0,−0.5), (ii) the missingness depends on both the full
observed and partially observed variables with 𝛽2 = 𝛽3 = (−0.5, 0.5, 0.5,−0.5), and (iii) the missingness only depends on
the partially observed variable with 𝛽2 = 𝛽3 = (−0.5, 0, 0.5, 0). We let the sample size n= 1500. In each setting there are
about 500 complete observations.

In the second simulation, we consider the multinomial missing data model.6 We generate (X1,X2,X3) from the trun-
cated normal distributions with X1 ∼ N(𝜇 = 0, 𝜎 = 0.5), X2 ∼ N(𝜇 = X1 + X2

1 , 𝜎 = 0.5) and X3 ∼ N(𝜇 = X2 + 0.8X1X2, 𝜎 =
0.5) on the support (X1,X2,X3)∈ [0, 2]3. Then X4 is generated from the logistic regression model in (15) at 𝛽1 =
(−2.5, 0.7, 0.8, 1). For the two pairs of variables (X1,X4) and (X2,X3), we assume that the variables in the same pair are
either missing or observed together and the missingness follows a multinomial distribution. We generate R1 from a
multinomial distribution with

logit{Pr(R1 = 2|X)} = 𝛾20 + 𝛾21X1 + 𝛾22X4,

logit{Pr(R1 = 3|X)} = 𝛾30 + 𝛾31X2 + 𝛾32X3,

and Pr(R1 = 1|X)= 1−Pr(R1 = 2|X)−Pr(R1 = 3|X). We observe (X1,X4) for R1 = 2 or (X2,X3) for R1 = 3. If R1 = 1 we have a
complete observation, otherwise we have an incomplete observation. Let 𝛾2 = (𝛾20, 𝛾21, 𝛾22) and 𝛾3 = (𝛾30, 𝛾31, 𝛾32). We set
𝛾3 = (−1.2, 0.3, 0.3), and 𝛾2 = (−0.8, 0.2, 0), (− 0.8,0.2,− 0.2), or (− 0.8,0.2,0.5). Let sample size n= 2000. There are about
300 to 400 complete observations in each case.

We estimate the missing data probability using the following logistic regression model.

logit{Pr(R = 1|X)} = 𝛼0 + 𝛼1X1 + 𝛼2X2 + 𝛼3X3 + 𝛼4X4,

where R= 1 if X is fully observed and 0 otherwise. In simulation one R= 1 if both R2 and R3 equal 1 and in simulation
two R= 1 if R1 equals 1, and 0 otherwise. The values of the true 𝛼 = (𝛼0, 𝛼1, 𝛼2, 𝛼3, 𝛼4) used in computing the biases and
the mean squared errors are estimated from large samples with sample size n= 1 000 000. To compute the SPMLE’s, we
define Hk, k= 1 or 2 such that it divides each continuous variable into two and three categories for simulation one and
simulation two, respectively.

Table 1 shows the simulation results for the SPMLE’s and the full data MLE’s based on 1000 replications. We see that
for the two simulations in all the different settings (i) both the SPMLE’s and the full data MLE’s have small biases, the
biases of the SPMLE’s are slightly bigger than those of the full data MLE’s when the missingness dependents the partially
observed variables, (ii) in simulation one the roots of mean squared errors (RMSE’s) of the SPMLE’s are very close to
those of the full data MLE’s, while in simulation two the RMSE’s for the SPMLE’s are consistently smaller than those of
the full data MLE’s and (iii) the empirical standard deviations (s.d.’s) are close to the average of the corresponding s.e.’s
computed from the inverse of the estimated ES𝛼{𝛼̂, g(𝛼)}S𝛼{𝛼̂, g(𝛼)}T for the coefficients of the fully observed covariates,
while the s.e.’s for the coefficients of the partially observed covariates are slightly bigger than the corresponding s.d.’s.
In general the simulation results indicate that the performance of the proposed method is acceptable for estimating the
missing data probability for MAR data in practice.

For the purpose of comparison in simulation one, we have also computed the IPW estimates of E(X2) and E(X3)
using two different weights, one from the proposed SPMLE and the other one from the MLE based on the fully observed
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MLE SPMLE (1) SPMLE (2)

Est.(s.e.) Est.(s.e.) Est.(s.e.)

(Intercept) 0.513 (0.081) 0.320 (0.084) 0.370 (0.084)

Sigdz 0.157 (0.087) 0.585 (0.095) 0.503 (0.094)

Age −0.518 (0.041) −0.604 (0.044) −0.594 (0.044)

Cholesterol – −0.646 (0.037) −0.628 (0.037)

log(1+cad.dur) 0.279 (0.037) 0.369 (0.039) 0.351 (0.039)

Gender 0.036 (0.085) 0.511 (0.096) 0.420 (0.094)

Abbreviations: MLE, maximum likelihood estimate; SPMLE, semiparametric maximum
likelihood estimate.

T A B L E 2 Cardiac catheterization coronary
artery disease data

variables only.8 We observe that the IPW estimates using weights from MLE are significantly biased with |bias|≈0.1 and
s.d.≈ 0.04 in setting (ii) and (iii), while the IPW estimates with weights based on SPMLE are not biased and more efficient
with |bias|<0.01 and s.d.≈ 0.03 in all the settings as we expected.

5 EXAMPLE

We consider the Duke cardiac catheterization coronary artery disease diagnostic dataset (available at Vanderbilt Biostatis-
tics Wiki), which has been analyzed under the assumption that the data are MAR.16 There are five variables in the dataset:
gender, age, duration of symptoms of coronary artery disease (cad.dur), cholesterol level, and an indicator of significant
coronary disease of cardiac cath (sigdz). Among these variables cholesterol level is missing for 1246 patients and the rest
variables are fully observed for all the 3504 patients. To estimate the missing data probability we consider the logistic
regression model in (16), where continuous variables are standardized.16

logit{Pr(R = 1|sigdz, age, cholesterol, cad.dur, gender)}
= 𝛼0 + 𝛼1sigdz + 𝛼2age + 𝛼3cholesterol + 𝛼4 log(1 + cad.dur) + 𝛼5gender. (16)

Using the notation in Section 2 this dataset has one missing data group, that is, K = 1, and U = cholesterol, Z = (sigdz,
age, cad.dur, gender). We compute two SPMLE’s of 𝛼 = (𝛼0, 𝛼1, 𝛼2, 𝛼3, 𝛼4, 𝛼5). In SPMLE (1), we let H = h(Z) have 16 cat-
egories where we divide each continuous variable into two categories such that there is approximately the same number
of observations in each category, and in SPMLE (2) we let H = h(Z) have 36 categories where we divide each continuous
variable into three categories. For the purpose of comparison, we also compute the MLE’s based on the fully observed
the variables. The results reported in Table 2 indicate that (i) SPMLE (1) and SPMLE (2) are very close and SPMLE (2)
is slightly more efficient compared with SPMLE (1), (ii) the partially observed variable, cholesterol level, is a significant
predictor for the missing data probability, and (iii) the SPMLE’s of the sigdz effect and the gender effect are significantly
different from those of the MLE’s. In the simple monotone missing data pattern the missingness does not depend on the
variables with missing values given the fully observed variables if the data are MAR.6 From the results of our analysis, we
see that the variable with missing values, cholesterol level, has significant effect on the missing data mechanism given
other fully observed variables in the model. Therefore, the example data are not MAR.

6 DISCUSSION

This research proposes a semiparametric likelihood method for statistical inference for missing data mechanisms with
arbitrary nonmonotone missing data patterns. It can estimate the effects of both the fully observed variables and the
partially observed variables in a parametric regression model for the missing data mechanism, which can be highly
significant especially for nonmonotone missing data patterns as discussed by many researchers.8 The method uses
a piecewise empirical distribution to model the conditional distribution of the missing variables given the observed
variables for each missing data pattern in the likelihood, which is easily implemented in the EM algorithm with closed
form expressions for both E-step and M-step. The empirical distributions depend on complete observations to estimate
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the conditional distributions of the missing variables given the observed variables for each missing data pattern. It may
force some restrictions on the MAR assumption. An alternative more flexible product piecewise empirical distribution
for the covariates, which uses all the observed data to model the joint distribution of the covariates for all the missing data
patterns simultaneously, is under investigation.

We estimate the asymptotic variance through the profile score function based on the profile likelihood principle.
As we noted that pseudo-likelihoods also belong to composite likelihoods.12 The Godambe information12,17 and boot-
strap method can also be used for estimating the asymptotic variances, which may require further investigations for
recommending better methods for practice.

As far as I know there is no method available for directly estimating logistic regression model of missing data mech-
anism through splines or other machine learning methods for nonmonotone MAR data. Investigations on parametric
and nonparametric models for missing data mechanism based on kernel methods, splines and other machine learning
methods are valuable.

ACKNOWLEDGEMENTS
The author would like to thank the editor and the two referees for providing detailed comments on the article which are
very helpful to improve the presentation of the article. This research was partially supported by grant from the Natural
Sciences and Engineering Research Council of Canada (YZ).

DATA AVAILABILITY STATEMENT
Dataset is available at Vanderbilt Biostatistics Wiki.

ORCID
Yang Zhao https://orcid.org/0000-0002-9768-7683

REFERENCES
1. Zhao LP, Lipsitz S. Designs and analysis of two-stage studies. Stat Med. 1992;11:769-782.
2. Little RJA, Rubin DB. Statistical Analysis with Missing Data. Wiley Series in Probability and Statistics 3rd. New York, NY: John Wiley and

Sons; 2019.
3. Rubin DB. Inference and missing data. Biometrika. 1976;63(3):581-592.
4. Robins JM, Rotnitzky A, Zhao LP. Estimation of regression coefficients when some regressors are not always observed. J Am Stat Assoc.

1994;89:846-866.
5. Tsiatis A. Semiparametric Theory and Missing Data. Springer Series in Statistics. New York, NY: Springer-Verlag New York Inc.; 2006.
6. Sun B, Tchetgen EJT. On inverse probability weighting for nonmonotone missing at random data. J Am Stat Assoc. 2018;113:369-379.
7. Robins JM, Gill RD. Non-response models for the analysis of non-monotone ignorable missing data. Stat Med. 1997;16:39-56.
8. Ibrahim JG, Chen MH, Lipsitz SR, Herring AH. Missing-data methods for generalized linear models: a comparative review. J Am Stat

Assoc. 2005;100:332-346.
9. Zhao Y, Lawless JF, McLeish DL. Likelihood methods for regression models with expensive variables missing by design. Biom J.

2009;51:123-136.
10. Zhao Y. Semiparametric model for regression analysis with nonmonotone missing data. Stat Methods Appl. 2020. https://doi.org/10.1007/

s10260-020-00530-w [Epub ahead of print].
11. Zhao Y. Regression analysis with covariates missing at random: a piece-wise nonparametric model for missing covariates. Commun Stat

Theory Methods. 2009;38:3736-3744.
12. Varin C, Reid N, Firth D. An overview of composite likelihood methods. Stat Sin. 2011;21:5-42.
13. Ibrahim JG. Incomplete data in generalized linear models. J Am Stat Assoc. 1990;85:765-769.
14. Lipsitz SR, Ibrahim JG. A conditional model for incomplete covariates in parametric regression models. Biometrika. 1996;83(4):916-922.
15. Murphy SA, van der Vaart AW. On profile likelihood. J Am Stat Assoc. 2000;95:449-465.
16. Tomita H, Fujisawa H, Henmi M. A bias-corrected estimator in multiple imputation for missing data. Stat Med. 2018;37:3373-3386.
17. Godambe V. An optimum property of regular maximum likelihood estimation. Ann Math Stat. 1960;31:1208-1211.
18. Horvitz DG, Thompson DJ. A generalization of sampling without replacement from a finite universe. J Am Stat Assoc. 1952;47:663-685.

How to cite this article: Zhao Y. Statistical inference for missing data mechanisms. Statistics in Medicine.
2020;39:4325–4333. https://doi.org/10.1002/sim.8727

https://orcid.org/0000-0002-9768-7683
https://orcid.org/0000-0002-9768-7683
https://doi.org/10.1007/s10260-020-00530-w
https://doi.org/10.1007/s10260-020-00530-w

