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Abstract

Principal components analysis is a widely used technique that provides an opti-

mal lower-dimensional approximation to multivariate or functional data sets. These

approximations can be very useful in identifying potential outliers among high–

dimensional or functional observations. In this paper, we propose a new class of

estimators for principal components based on robust scale estimators. For a fixed

dimension q, we robustly estimate the q−dimensional linear space that provides the

best prediction for the data, in the sense of minimizing the sum of robust scale esti-

mators of the coordinates of the residuals. The extension to the infinite-dimensional

case is also studied. In analogy to the linear regression case, we call this proposal

S−estimators. Our method is consistent for elliptical random vectors, and is Fisher-

consistent for elliptically distributed random elements on arbitrary Hilbert spaces.

Numerical experiments show that our proposal is highly competitive when compared
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with other existing methods when the data are generated both by finite- or infinite-

rank stochastic processes. We also illustrate our approach using two real functional

data sets, where the robust estimator is able to discover atypical observations in the

data that would have been missed otherwise.

Key Words: Functional Data Analysis, Principal Components, Robust estimation,

S−estimator, Sparse Data.
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1 Introduction

Principal components analysis (PCA) is a widely used method to obtain a lower-dimensional

approximation to multivariate data. This approximation is optimal in the sense of min-

imizing the mean squared loss between the original observations and the resulting ap-

proximations. Estimated principal components can be a valuable tool to explore the data

visually, and are also useful to describe some characteristics of the data (e.g. directions

of high variability). Thanks to the ever reducing cost of collecting data, many data sets

in current applications are both large and complex, sometimes with a very high number

of variables. The chance of having outliers or other type of imperfections in the data in-

creases both with the number of observations and their dimension. Thus, detecting these

outlying observations is an important step, even when robust estimates are used, either

as a pre-processing step or because there is some specific interest in finding anomalous

observations. However, it is well known that detecting outliers or other anomalies in mul-

tivariate data can be difficult (Rousseeuw and van Zomeren, 1990; Becker and Gather,

1999, 2001), and one has to rely on robust statistical methodologies.

As a motivation, consider the problem of identifying days with an atypical concentra-

tion of ground level ozone (O3) in the air. Ground level ozone forms as a result of the

reaction between sunlight, nitrogen oxide (NOx) and volatile organic compounds (VOC).

It is an important air pollutant, present around urban areas, with higher concentrations
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in suburban or rural locations downwind from major sources of NOx and VOC, such as in-

dustries, gasoline vapours, and motor vehicle exhaust emissions (Sillman, 1993). Ground

level ozone is a major irritant of the airways, and exposure to it can lead to an increased

risk of developing cardiovascular disease and several respiratory conditions (U.S. Environ-

mental Protection Agency, 2008). Its intensity is affected by several meteorological and

topographical factors (such as temperature and wind direction), which affect the distri-

bution of its precursors (Ainslie and Steyn, 2007). Monitoring the evolution of ground

level ozone is useful to evaluate its impact on population health, and to understand its

dynamics. We obtained hourly average concentration of ground level ozone at a moni-

toring station in Richmond, BC (a few kilometres south of the city Vancouver, BC). The

data comes from the Ministry of Environment of the province of British Columbia, and is

available on line at http://envistaweb.env.gov.bc.ca. Since ground level ozone pol-

lution is most severe in Summer, we focus on the month of August. Our data includes

observations for the years 2004 to 2012. Figure 1 displays the data. Each line corresponds

to the evolution of the hourly average concentration (in ppb) of ground level ozone for one

day. The Canadian National Ambient Air Quality Objectives sets a maximum desired

level of 50 ppb for the average concentration of ground level ozone over a 1-hour period.

This is indicated with a dark dashed horizontal line in the plot. The corresponding max-

imum acceptable level is 80 ppb. The pattern observed in these data corresponds with

our expectations: ozone levels peak in the early afternoon, when pollution emitted during

the first part of the day reacts with the sunlight at the time of its highest intensity. It is

easy to see that a few days exceeded the maximum desired level threshold, but also that

there may be other days exhibiting a different pattern of hourly average concentration of

O3. We are interested in identifying days with atypical hourly O3 trajectories.

In this paper, we study robust low–dimensional approximations for high–(or infinite–

) dimensional data that can be used to identify poorly fitted observations as potential

outliers. The earliest and probably most immediate approach to obtain robust estimates

for the principal components consists in using the eigenvalues and eigenvectors of a robust
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Figure 1: Hourly mean concentration (in ppb) of ground level ozone in Richmond, BC, Canada,

for the month of August in years 2004 to 2012. Each line corresponds to one day. The darker

dashed horizontal line at 50 ppb is the current maximum desired level set by the Canadian

National Ambient Air Quality Objectives. The maximum acceptable level is 80 ppb.

scatter estimator (Devlin et al., 1981; Campbell, 1980; Boente, 1987; Naga and Antille,

1990; Croux and Haesbroeck, 2000). A different approach was proposed by Locantore

et al. (1999) based on using the covariance matrix of the data projected onto the unit

sphere.

Since principal component directions are also those that provide projections with the

largest variability, robust PCA estimators can alternatively be obtained as the directions

that maximize a robust estimator of scale of the projected data. This approach is known

in the literature as “projection pursuit” and has been studied by Li and Chen (1985),

Croux and Ruiz–Gazen (1996, 2005), Hubert et al. (2002) and Hubert et al. (2005).

It is well–known that, for finite–dimensional observations with second finite–moments,

when using mean squared errors the best lower–dimensional approximation is given by the

projections onto the linear space spanned by the eigenvectors of the covariance matrix
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corresponding to its largest eigenvalues. Recently, a stochastic best lower–dimensional

approximation for elliptically distributed random elements on separable Hilbert spaces,

such as those considered when dealing with multivariate data, was obtained by Boente

et al. (2012). This optimality property does not require second moment conditions while

recovering the same best lower dimensional approximation properties mentioned above

when second moments exist. Noting that the first principal components provide the

solution when using the mean squared loss, several proposals for a robust estimator exist

in the literature that exploit this characterization of PCA. They amount to replacing

the squared residuals with a different loss function of them. Liu et al. (2003) used

the absolute value of the residuals. Not surprisingly this approach may not work well

when entire observations are atypical (corresponding to “high–leverage” points in linear

regression models). Croux et al. (2003) proposed a weighted version of this procedure that

reduces the effect of high–leverage points. Verboon and Heiser (1994) and De la Torre and

Black (2001) used a bounded loss function applied to column–wise standardized residuals.

Later, Maronna and Yohai (2008) proposed a similar loss function, but modified in such a

way that the method reduces to the classical PCA when one uses a squared loss function.

Maronna (2005) also considered best–estimating lower–dimensional subspaces directly,

but his approach cannot be easily extended to infinite–dimensional settings because there

may be infinitely many minimum eigenvalues.

In this paper, we propose to estimate the lower–dimensional linear space that mini-

mizes a robust measure of dispersion of the resulting prediction errors. Our approach can

also be extended to functional data. Few robust principal components estimates for func-

tional data (FPCA) have been proposed in the literature. Gervini (2008) studied spher-

ical principal components, and Hyndman and Ullah (2007) discuss a projection–pursuit

approach using smoothed trajectories, but without studying their properties in detail.

More recently, Bali et al. (2011) proposed robust projection–pursuit FPCA estimators

and showed that they are consistent to the eigenfunctions and eigenvalues of the un-

derlying process. Our procedure provides Fisher–consistent estimators of the best lower–
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dimensional subspace when applied to observations (either finite– or infinite–dimensional)

with an elliptical distribution, even when second moments do not exist.

The rest of the paper is organized as follows. In Section 2, the problem of providing

robust estimators for a q−dimensional approximation for euclidean data is described.

Outlier detection and a description of the algorithm considered are described in Sections

2.1 and 2.2, respectively. Section 3 discusses some extensions of the estimators defined

in Section 2 to accommodate functional data. Finally, Section 4 report the results of

a simulation study conducted to study the performance of the proposed procedure for

functional data. Some real data sets are analysed in Section 5, where the advantage of

the proposed procedure to detect possible influential observations is illustrated. Proofs

are relegated to the Appendix.

2 S−estimators of the principal components in Rp

Consider the problem of finding a lower–dimensional approximation to a set of obser-

vations xi, 1 ≤ i ≤ n, in Rp. More specifically, we look for q < p vectors b(l) ∈ Rp,

1 ≤ l ≤ q, whose spanned linear sub–space provides a good approximation to the data.

Let B ∈ Rp×q be the matrix given by

B =


bt1
...

btp

 =
(
b(1), . . . ,b(q)

)
,

and let µ ∈ Rp. The corresponding “fitted values” are x̂i = µ + B ai, 1 ≤ i ≤ n, where

ai ∈ Rq. We can also write x̂ij = µj + ati bj, where bj is the jth row of B and ai ∈ Rq is

the ith row of the matrix A ∈ Rn×q

A =


at1
...

atn

 .
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With this notation, principal components can be defined as minimizers, over matrices

A ∈ Rn×q, B ∈ Rp×q and vectors µ ∈ Rp, of

L2(A,B,µ) =
n∑
i=1

‖xi − x̂i‖2
Rp =

n∑
i=1

p∑
j=1

r2
ij , (1)

where rij = xij − x̂ij and ‖ · ‖Rp denotes the usual Euclidean norm in Rp. Furthermore,

this optimization problem can be solved using alternating regression iterations. Note that

if we restrict B to satisfy BtB = Iq, i.e., if the columns b(1), . . . ,b(q) are orthonormal,

then the vectors ai, 1 ≤ i ≤ n, correspond to the scores of the sample on the orthonormal

basis b(1), . . . ,b(q).

Robust estimators motivated by (1) and the alternating regression algorithm have been

considered by several authors. Croux et al. (2003) introduced a procedure, usually called

RAR, that replaces the squared residuals with their absolute values and adds weights to

protect against high–leverage points. Verboon and Heiser (1994) and De la Torre and

Black (2001) proposed to replace r2
ij with ρ(rij/σ̂j), where σ̂j is a robust scale estimator

of the jth column of the matrix of residuals. More recently, Maronna and Yohai (2008)

replaced r2
ij with σ̂2

jρ(rij/σ̂j), so that when ρ(u) = u2 their proposal reduces to the classical

one.

In what follows we will consider a different way to robustify the criterion in (1) to

obtain a q−dimensional approximation to the data. We will also show that our proposal

is Fisher consistent for elliptically distributed random vectors, and the resulting estima-

tors are consistent under standard regularity conditions. Our approach is based on noting

that L2(A,B,µ) in (1) is proportional to
∑p

j=1 s
2
j where s2

j is the sample variance of the

residuals’ jth coordinate: r1j, r2j, . . . , rnj. To reduce the influence of atypical observa-

tions we propose to use robust scale estimates instead of sample variances. Our robustly

estimated q−dimensional subspace best approximating the data is defined as the linear

space spanned by the columns of the matrix B where (A,B,µ) minimizes

Ls(A,B,µ) =

p∑
j=1

σ̂2
j , (2)
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and σ̂j denotes a robust scale estimator of the residuals rij = xij − x̂ij, 1 ≤ i ≤ n. As

mentioned before, if BtB = Iq, the vectors ai, 1 ≤ i ≤ n, correspond to the robust

scores of the ith observation in the orthonormal basis b(1), . . . ,b(q). Note that if we use

the sample variance s2
j instead of σ̂2

j , then the objective function in (2) reduces to the

classical one in (1).

Scale estimators measure the spread of a sample and are invariant under translations

and equivariant under scale transformations (see, for example, Maronna et al. 2006).

Although any robust scale estimator can be used in (2), to fix ideas we focus our pre-

sentation on M−estimators of scale (see Huber, 1981). As in Maronna et al. (2006), let

ρ : R→ R+ be a ρ−function, that is, an even function, non–decreasing on |x|, increasing

for x > 0 when ρ(x) < limt→+∞ ρ(t) and such that ρ(0) = 0. When ρ is bounded, it is

assumed that supu∈R ρc(u) = ‖ρ‖∞ = 1. Given residuals rij(A,B,µ) = xij − x̂ij(A,B,µ)

with x̂ij(A,B,µ) = µj+ati bj, the M−estimator of scale of the residuals σ̂j = σ̂j(A,B,µ)

satisfies
1

n

n∑
i=1

ρc

(
rij(A,B,µ)

σ̂j

)
= b , (3)

where ρc(u) = ρ(u/c), and c > 0 is a user–chosen tuning constant. To ensure consistency

of the scale estimator when the data are normally distributed the tuning parameter c is

chosen to satisfy b = EΦ(ρc(Z)) where Φ denotes the standard normal distribution. If, in

addition, b = ‖ρ‖∞/2 then, the M−estimate of scale in (3) has maximal breakdown point

(50%). When ρ(y) = min (3y2 − 3y4 + y6, 1), (Tukey’s biweight function) the choices

c = 1.54764 and b = 1/2 ensure that the estimator is Fisher–consistent at the normal

distribution and has breakdown point 50%.

Since we are interested in estimating a q−dimensional subspace that approximates

the data well, we can write our estimator in a slightly more general way as follows.

Given a matrix B ∈ Rp×q, let LB be the q−dimensional linear space spanned by its

columns b(1), . . . , b(q). Similarly, let π(y,LB) denote the orthogonal projection of y

onto LB. To simplify the presentation, assume that µ is known. For each observation
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xi ∈ Rp, 1 ≤ i ≤ n, let ri(LB) = xi − µ − π(xi − µ,LB) = (ri1(LB), . . . , rip(LB))t

denote the corresponding vector of residuals and σ̂j,LB = σ̂(r1j(LB), . . . , rnj(LB)) the

scale estimator of the jth coordinate of the residuals. We define the S−estimator of the

best q−dimensional approximation to the data as the linear space L̂ = LB̂ that minimizes

the sum of the M−estimators of scale of the coordinates of the residuals over all linear

spaces LB of dimension q:

LB̂ = argmin
dim(LB)=q

Ψ̂n (LB) , (4)

where Ψ̂n (LB) =
∑p

j=1 σ̂
2
j,LB .

In order to study the asymptotic properties of robust estimators it is sometimes conve-

nient to think of them as functionals evaluated on the empirical distribution of the sample

(Huber and Ronchetti, 2009). For example, M−scale estimators in (3) correspond to the

functional σr : D → R+ defined for each distribution function F ∈ D as the solution

σr(F ) to the equation
∫
ρc(t/σr(F )) dF (t) = b. Here D is a subset of all the univari-

ate distributions that contains all the empirical ones. Given a sample y1, . . . , yn with

empirical distribution Fn, we can write σ̂(y1, . . . , yn) = σr(Fn).

For a random vector x ∈ Rp with distribution P , the functional L(P ) corresponding

to the S−estimators defined in (4) is the linear space of dimension q that satisfies

L(P ) = argmin
dim(L)=q

Ψ(L) , (5)

where Ψ(L) =
∑p

j=1 σ
2
j,L, σj,L = σr(Fj(LB)) and Fj(LB) denotes the distribution of

rj(LB) with r(LB) = x − µ − π(x − µ,LB) = (r1(LB), . . . , rp(LB))t. The following

proposition shows that this functional is Fisher–consistent for elliptically distributed ran-

dom vectors.

Recall that a random vector x ∈ Rd is said to have a p−dimensional spherical distri-

bution if its distribution is invariant under orthogonal transformations. In particular, the

characteristic function of a spherically distributed x ∈ Rp is of the form ϕx(t) = φ(ttt)

for t ∈ Rp and some function φ : R → R. The function φ is called the generator of
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the characteristic function, so that we write x ∼ Sd(φ). As is well known, the elliptical

distributions in Rp correspond to those distributions arising from affine transformations

of spherically distributed random vectors in Rp. For a p × p matrix B and a vector

µ ∈ Rp, the distribution of x = Bz + µ when z ∼ Sp(ψ) is said to have an elliptical

distribution, denoted by x ∼ Ep(µ,Σ, φ), where Σ = BBt. The characteristic function of

x has the simple form ϕx(t) = exp(ittµ)φ(ttΣt). For a fixed φ, the family of elliptical

distributions Ep(µ,Σ, φ) forms a symmetric location–scatter class of distributions with

location parameter µ and symmetric positive semi–definite scatter parameter Σ. If the

first moment exists, then E(x) = µ, and if second moments exist, the covariance matrix

of x is proportional to Σ.

Proposition 2.1 Let x ∼ Ep(0,Σ, φ) be a random vector elliptically distributed with

location 0 and scale Σ such that Σ = βΛβt where Λ = diag(λ1, . . . , λp), λ1 ≥ λ2 ≥ · · · ≥

λp, and β is an orthonormal matrix with columns β1, . . . ,βp. Assume that λq > λq+1.

Then, if Lq is the linear space spanned by β1, . . . ,βq, we have that Lq is the unique

solution of (5), that is, L(P ) is a Fisher–consistent functional at P = Ep(0,Σ, φ).

As mentioned before, this approach can also be used with any robust scale estimator.

For example, we can define τ−estimators by considering a τ−scale. Define as above,

rij(A,B,µ) = xij − x̂ij(A,B,µ) where x̂ij(A,B,µ) = µj + ati bj and let ρ and ρ1 be two

ρ−functions such that ρ ≤ ρ1. The τ−best lower dimensional approximations are given

by the minimizers of

Lτ (A,B,µ) =

p∑
j=1

σ̂2
j

n∑
i=1

ρ1

(
rij(A,B,µ)

σ̂j

)
,

where σ̂j = σ̂j(A,B,µ) is a robust scale estimator of rij(A,B,µ) computed as in (3) with

the ρ−function ρ. Note the dependence of the scale estimate σ̂j on (A,B,µ). When an

iterative procedure is used to find the minimizer of (4), one needs to update the p scale

estimators σ̂j at each step of the algorithm. Analogous arguments to those considered
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in Proposition 2.1 can be used to show that the corresponding functional will also be

Fisher–consistent for elliptically distributed observations.

In the finite–dimensional setting, consistency of projection–pursuit principal compo-

nent estimators was derived in Cui et al. (2003) requiring uniform convergence over the

unit ball of the scale estimators of the projected data to the scale functional computed at

the distribution of the projected random vector. This condition was generalized in Bali et

al. (2011) to the functional case. A natural extension of this condition to the case q > 1

is

sup
dim(L)=q

|Ψ̂n(L)−Ψ(L)| a.s.−→ 0 . (6)

Note that this condition is easily verified when using a robust scale functional with finite–

dimensional random vectors since the Stiefel manifold Vp×q = {B ∈ Rp×q : BtB = Iq}

is a compact set. Furthermore, the following proposition shows that this condition is

sufficient to obtain consistency of the S−estimators in (4).

Proposition 2.2 Assume that L(P ) is unique and that (6) holds. Then, the estimators

L̂ = LB̂ obtained minimizing Ψ̂n(L) in (4) over linear spaces L of dimension q, are

consistent to the linear space L(P ) defined in (5). In other words, with probability one

π(x, L̂) converges to π(x,L(P )), for almost all x.

2.1 Outlier detection

An important use of robust estimators is the detection of potentially atypical observations

in the data. Given a sample x1, . . . , xn in Rp and the estimated subspace L̂ = LB̂

in (4), one can construct the corresponding “best q−dimensional” approximations x̂i =

µ̂+π(xi−µ̂,LB̂) = µ̂+B̂B̂t(xi−µ̂), 1 ≤ i ≤ n. We expect outlying or otherwise atypical

observations to be poorly fit and thus to have a relatively large residual ‖ri(LB̂)‖Rp =

‖(I − B̂B̂t)(xi − µ̂)‖Rp , 1 ≤ i ≤ n. Exploring the norm of these residuals sometimes

provides sufficient information to detect abnormal points in the data.
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A different way to use principal components to examine the data for potential outliers

looks at the scores of each point on the estimated principal eigenvectors. Note that the

solution to (4) provides an estimated basis b̂(j), 1 ≤ j ≤ q (the columns of B̂) for the

optimal q−dimensional linear space spanned by the first q eigenvectors, but the b̂(j)’s

themselves need not be estimates of the principal directions. However, we can use an

approach similar to “projection pursuit” to sequentially search for vectors in L̂B̂ that

maximize a robust scale estimate of the corresponding projections of the data. More

specifically, for each γ ∈ L̂B̂, let Fn[γ] be the empirical distribution of the projected

observations γtx1, . . . ,γ
txn, and σr(Fn[γ]) the corresponding scale estimator. The esti-

mated first principal direction is obtained maximizing σr(Fn[γ]) over unitary vectors in

L̂B̂. Once an estimate for the first principal component is obtained, subsequent principal

directions are similarly computed with the additional condition of being orthogonal to

the previous ones. The scores of each observation on the estimated principal directions

can be used to screen for atypical data points.

2.2 Algorithm for S−estimators

To compute the estimator defined in (4), we use an algorithm similar to the one used for

linear regression S−estimators. Note that, although S−scale estimators are only defined

implicitly, explicit first–order conditions can be obtained differentiating both sides of the

equation (3). The resulting equations suggest re–weighted least squares iterations to find

local extrema of the objective function (4) as a function of the vector µ and the matrices

B and A. These iterations are started from a large number of random initial points and

the critical point with the smallest value of the objective function is selected as the best

solution.

More specifically, let σ̂j, j = 1, . . . , p be an M−estimator of scale of the residuals
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xij − x̂ij, i = 1, . . . , n. In other words, σ̂j satisfies

1

n

n∑
i=1

ρ

(
xij − µj − ati bj

σ̂j

)
= b ,

where we have absorbed the constant c into the loss function ρ. The derivatives with

respect to ai, i = 1, . . . , n are given by

∂

∂ai

(
p∑
j=1

σ̂2
j

)
=

p∑
j=1

2 σ̂j
∂ σ̂j
∂ai

= −2

p∑
j=1

σ̂j h
−1
j ρ′

(
rij
σ̂j

)
bj , i = 1, . . . , n ,

where

hj =
n∑
i=1

ρ′
(
rij
σ̂j

)
rij
σ̂j
.

Similarly, the other first–order conditions are

∂

∂bs

(
p∑
j=1

σ̂2
j

)
=

p∑
j=1

2 σ̂j
∂ σ̂j
∂bs

= −2 σ̂s h
−1
s

n∑
i=1

ρ′
(
ris
σ̂s

)
ai , s = 1, . . . , p

and

∂

∂µ`

(
p∑
j=1

σ̂2
j

)
=

p∑
j=1

2 σ̂j
∂ σ̂j
∂µ`

= −2 σ̂` h
−1
`

n∑
i=1

ρ′
(
ri`
σ̂`

)
, ` = 1, . . . , p .

Setting these to zero we obtain the following system of equations:

p∑
j=1

σ̂j h
−1
j ρ′

(
rij
σ̂j

)
bj = 0 , 1 ≤ i ≤ n ,

n∑
i=1

ρ′
(
ris
σ̂s

)
ai = 0 , 1 ≤ s ≤ p ,

n∑
i=1

ρ′
(
ri`
σ̂`

)
= 0 , 1 ≤ ` ≤ p .

These equations can be re–expressed as re–weighted least–squares problems as follows:
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let wij = σ̂j h
−1
j r−1

ij ρ
′(rij/σ̂j), then we need to solve

p∑
j=1

wij (xij − µj)bj =

(
p∑
j=1

wij bjb
t
j

)
ai , 1 ≤ i ≤ n ,

n∑
i=1

wij (xij − µj)ai =

(
n∑
i=1

wij aia
t
i

)
bj , 1 ≤ j ≤ p ,

n∑
i=1

wij (xij − ati bj) =
n∑
i=1

wij µj , 1 ≤ j ≤ p .

This formulation suggests the usual iterative re–weighted least squares algorithm. Given

initial estimates b
(0)
j , 1 ≤ j ≤ p and µ(0), compute the scores a

(0)
i , i = 1, . . . , n, the

weights w
(0)
ij and obtain updated values for a

(1)
i , b

(1)
j , 1 ≤ i ≤ n, 1 ≤ j ≤ p and µ(1). We

repeat these steps until the objective function changes less than a chosen tolerance value.

The best q−dimensional linear space approximation is spanned by

{b̂(1), · · · , b̂(q)}, the final values obtained above. For interpretation purposes, it is gener-

ally preferable to provide an orthonormal basis for the linear space, so we orthogonalize

the set {b̂(1), · · · , b̂(q)} and compute the scores âi as the corresponding orthogonal pro-

jections. The “fitted values” corresponding to this last method will be called “scoring

S−estimators”.

R code implementing this algorithm can be downloaded from

http://www.stat.ubc.ca/~matias/soft.html

3 S−estimators in the functional setting

In this section, we discuss extensions of the estimators defined in Section 2 to accom-

modate functional data. The most common situation corresponds to the case when the

observations correspond to realizations of a stochastic process X ∈ L2(I) with I an in-

terval of the real line, which can be assumed to be I = [0, 1]. A more general setup

that can accommodate applications where observations are images, for example, is to
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consider realizations of a random element on a separable Hilbert space H with inner

product 〈·, ·〉H and norm ‖ · ‖H. Note that principal components for functional data (de-

fined via the Karhunen–Loève decomposition of the covariance function of the process

X) also have the property of providing best lower–dimensional approximations, in the

L2 sense. Furthermore, Boente et al. (2012) recently extended this characterization to

a best stochastically lower–dimensional approximation for elliptically distributed random

elements on separable Hilbert spaces.

A potential practical complication arises when dealing with functional data. Even

in the simplest situation when X ∈ L2([0, 1]), one rarely observes entire curves. The

functional datum for replication i usually corresponds to a finite set of discrete values

xi 1, . . . , xi pi with xij = Xi(tij), 1 ≤ j ≤ pi. Depending on the characteristics of the

grid of points tij where observations were obtained, one can employ different strategies to

analyse these data.

The easiest situation is when observations were made at common design points. In

this case we have pi = p and tij = τj, for all 1 ≤ i ≤ n and 1 ≤ j ≤ p. Defining

xi = (xi 1, . . . , xi p)
t a purely multivariate approach can be used as in Section 2 to obtain

a q−dimensional linear space L̂ spanned by orthonormal vectors b̂(1), · · · , b̂(q). An asso-

ciated basis in L2([0, 1]) can be defined as φ̂`(τj) = a`b̂` j, for 1 ≤ ` ≤ q, 1 ≤ j ≤ p, where

a` is a constant to ensure that ‖φ̂`‖L2 = 1 and b̂(`) = (b` 1, · · · , b` p)t. Smoothing over the

observed data points one can recover the complete trajectory. This approach provides a

consistent estimator for the best approximating linear space and the corresponding “fitted

trajectories” π(Xi, L̂), 1 ≤ i ≤ n.

In many cases, however, trajectories are observed at different design points tij, 1 ≤ j ≤

pi, 1 ≤ i ≤ n. In what follows we will assume that as the sample size n increases, so does

the number of points where each trajectory is observed and that, in the limit, these points

cover the interval [0, 1]. Our approach consists of using a sequence of finite–dimensional

functional spaces that increases with the sample size. This method is sometimes called

Sieves and we describe it here in the more general case where the observed random process
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X takes values on an arbitrary separable Hilbert space H. The basic idea is to identify

each observed point inH with the vector formed by its coordinates on a finite–dimensional

basis that increases with the sample size. The procedure of Section 2 can be applied to

these vectors to obtain a q−dimensional approximating subspace, which can then be

mapped back onto H.

More specifically, let {δi}i≥1 be an orthonormal basis of H and, for each n ≥ 1,

let Hmn be the linear space spanned by δ1, . . . , δmn . To simplify the notation we write

m = mn. Let xij = 〈Xi, δj〉H be the coeficient of the ith trajectory on the jth element

of the basis, 1 ≤ j ≤ m, and form the m−dimensional vector xi = (xi1, . . . , xim)t.

When, H = L2([0, 1]), the inner products 〈Xi, δj〉H can be numerically computed using

a Riemann sum over the design points for the ith trajectory {tij}1≤j≤pi . We apply the

procedure described in Section 2 to the multivariate observations x1, . . . ,xn ∈ Rm to

obtain a q−dimensional linear space L̂ spanned by orthonormal vectors b̂(1), · · · , b̂(q) and

the corresponding “predicted values” x̂i = µ̂ +
∑q

`=1 âi`b̂
(`), with µ̂ = (µ̂1, . . . , µ̂m)t.

It is now easy to find the corresponding approximation in the original space H. The

location parameter is µ̂ =
∑m

j=1 µ̂jδj, and the associated q−dimensional basis in H is

φ̂` =
∑m

j=1 b̂` jδj/‖
∑m

j=1 b̂` jδj‖H, for 1 ≤ ` ≤ q. Furthermore, the “fitted values” in H are

X̂i = µ̂+
∑q

`=1 âi`φ̂`. Moreover, since ‖xi− x̂i‖Rp ' ‖Xi− X̂i‖H, we can also use squared

residual norms to detect atypical observations.

As in Section 2, we will derive the Fisher–consistency of this Sieves–approach for

observations generated by an elliptically distributed random object, which is a natural

generalization of elliptical random vectors to an infinite–dimensional setup. The following

definition was given in Bali and Boente (2009).

Definition 3.1. Let X be a random element in a separable Hilbert space H. We will

say that X has an elliptical distribution with parameters µ ∈ H and Γ : H → H, where

Γ is a self–adjoint, positive semi–definite and compact operator, if and only if for any

linear and bounded operator A : H → Rd we have that the vector AX has a d−variate
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elliptical distribution with location parameter Aµ, shape matrix AΓA∗ and characteristic

generator φ, that is, AX ∼ Ed(Aµ,AΓA∗, φ) where A∗ : Rd → H denotes the adjoint

operator of A. We write X ∼ E(µ,Γ, φ).

To study the Fisher–consistency of our Sieves approach, we need to introduce some

notation in order to define the corresponding functional. Let ⊗ denote the tensor product

in H, i.e., for any two elements u, v ∈ H the operator u ⊗ v : H → H is defined as

(u ⊗ v)w = 〈v, w〉u for w ∈ H. To simplify the presentation, assume that the location

parameter µ equals 0. Let x ∈ Rm be the random vector defined by x = AmX where

Am : H → Rm is defined by

Am =
m∑
j=1

ej ⊗ δj , (7)

and {δi}i≥1 is a fixed orthonormal basis of H. In other words, AmX consists of the m

coefficients of X on the basis δ1, . . . , δm. For a matrix B ∈ Rm×q with BtB = Iq let

LB denote the linear space spanned by its columns. As in Section 2, define the objective

function

Ψm(LB) =
m∑
j=1

σ2
j,LB , (8)

where σj,LB = σr(Fj(LB)) and Fj(LB) denotes the distribution of the jth coordinate

rj(LB) of the vector of residuals r(LB) = x−π(x,LB) = (I−BBt)x = (r1(LB), . . . , rm(LB))t.

The subscript m in the function defined in (8) emphasizes the fact that we have trans-

formed the random object X into the m−dimensional random vector x. Let b(1), . . . ,

b(q) denote the columns of the matrix B and let φ`(B) ∈ H be given by

φ`(B) =
m∑
j=1

b` jδj =
( m∑
j=1

δj ⊗ ej
)

b(`) , 1 ≤ ` ≤ q . (9)

The linear space spanned by the orthonormal elements φ1(B), . . . , φq(B) will be denoted

by HB.

Let X be an elliptical random element X ∼ E(0,Γ, φ), with Γ the self–adjoint, positive

semi–definite and compact scale operator. Consider the spectral value decomposition of
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the scale operator Γ =
∑∞

j=1 λj φj ⊗ φj, where λj denotes the jth largest eigenvalue

with associated eigenfunction φj, j ≥ 1. The next proposition shows that, as m tends to

infinity, the lowest value of Ψm(LB) converges to
∑

j≥q+1 λj, the trace of the operator (IH−

P )Γ(IH − P )∗ where P =
∑q

j=1 φj ⊗ φj, and IH is the identity operator in H. This is the

infinite–dimensional counterpart of the classical optimal property of principal components

for random vectors. Together with Proposition A1 in Boente et al. (2012), the following

result shows that these estimators are Fisher–consistent for elliptically distributed random

elements on a separable Hilbert space H.

Proposition 3.1. Let X ∼ E(0,Γ, φ) be an elliptically distributed random element on

a separable Hilbert space H with location 0 and positive semi–definite, self–adjoint and

compact scale operator Γ. Let λ1 ≥ λ2 ≥ . . . be the eigenvalues of Γ with associated

eigenfunctions φj, j ≥ 1. If
∑

j≥1 λj <∞ and λq > λq+1, then

lim
m→∞

min
B∈Rm×q ,BtB=Iq

Ψm(LB) =
∑
j≥q+1

λj . (10)

Denote by B0,m be the minimizer of (8) over {B ∈ Rm×q,BtB = Iq}. Then, as m →

∞, the sequence of linear spaces HB0,m converge to the linear space spanned by the

eigenfunctions φ1, . . . , φq associated with the q largest eigenvalues of Γ.

It is worth noting that, contrary to what happens in the finite–dimensional case,

functional principal component analysis can not be easily defined directly through an

alternating functional regression algorithm due to the ill–posed problem for estimating

the regression operator.

4 Simulation

In this section, we present the results of a a simulation study performed to investigate

the finite–sample properties of our robust sieve proposal. In all cases, we generated 500

samples of size n = 70 where each trajectory was observed at pi = p = 100 equidistant
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points in the interval [0, 1].

4.1 Simulation settings

The following four different models constructed from finite– and infinite–range processes

were used to generate the data. In two of them we included a relatively small proportion

of measurement errors, as is usual in many applications.

Model 1 In this setup, the non–contaminated observations Xi ∼ X, 1 ≤ i ≤ n, satisfy

X(ts) ∼ 10 + µ(ts) + ξ1φ1(ts) + ξ2φ2(ts) + zs , s = 1, . . . , 100 ,

where the additive errors zs are i.i.d N(0, 1), the scores ξ1 ∼ N(0, 25/4), ξ2 ∼ N(0, 1/4), ξ1

and ξ2 are independent and independent of zs. The mean function is µ(t)=5+10 sin(4πt)

exp(−2t)+5 sin(πt/3)+2 cos(πt/2) and φ1(t) =
√

2 cos(2πt) and φ2(t) =
√

2 sin(2πt)

correspond to the Fourier basis.

We also generated contaminated trajectories X
(c)
i as realizations of the process X(c)

defined byX(c)(ts) = X(ts) + V Y (ts), s = 1, . . . , 100, where V ∼ Bi(1, ε1) is independent

of X and Y , Y (ts) = Ws z̃s with Ws ∼ Bi(1, ε2), z̃s ∼ N(µ(c), 0.01), Ws and z̃s are all

independent. In other words, a trajectory is contaminated with probability ε1, and at any

point ts the contaminated function is shifted with probability ε2. The shift is random but

tightly distributed around the constant µ(c) = 30. Samples without outliers correspond

to ε1 = 0. To investigate the influence of different outlier configurations our estimator

we also considered the following four settings: ε1 = 0.10 with ε2 = 0.30 and ε2 = 0.60;

ε1 = 0.20 with ε2 = 0.30, and ε1 = 0.30 with ε2 = 0.30.

Model 2 In this case, the non–contaminated observations Xi ∼ X were generated as

X(ts) ∼ 150− 2µ(ts) + ξ1φ1(ts) + ξ2φ2(ts) + zs , s = 1, . . . , 100 ,

where zs, ξ1, ξ2, µ, φ1 and φ2 are as in the previous model. However, contaminated

trajectories are only perturbed in a specific part of their range. The atypical observations
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satisfy X
(c)
i ∼ X(c) where X(c)(ts) = X(ts) + V Y (ts) for ts < 0.4 and X(c)(ts) =

X(ts) for ts ≥ 0.4, where V ∼ Bi(1, ε1) is independent of X and Y , Y (ts) = Wsz̃s with

Ws ∼ Bi(1, ε2), z̃s ∼ N(µ(c)(ts), 0.01), with µ(c)(ts) = −5− 2µ(ts), and Ws and z̃s are all

independent. In this model we used ε1 = 0.10 and ε1 = 0.20, and in both cases we set

ε2 = 0.90.

Model 3 We also generate observations from a Wiener process contaminated. The

uncontaminated observations are Gaussian with covariance kernel γX(s, t) = 10 min(s, t).

The eigenfunctions of the covariance operator equal φj(t) =
√

2 sin ((2j − 1)(π/2)t), j ≥ 1,

with associated eigenvalues λj = 10 (2/ [d(2j − 1)π])2.

As in Sawant et al. (2012), the contaminated observationsX
(c)
i are defined asX

(c)
i (s) =

Xi(s) + ViDiM I{Ti<s<Ti+`}, where Vi ∼ Bi(1, ε) , P(Di = 1) = P(Di = −1) = 1/2,

Ti ∼ U(0, 1 − `), ` < 1/2 and Vi, Xi, Di and Ti are independent. This contamination

produces irregular trajectories introducing a peak contamination. We choose ` = 1/15,

M = 30 and ε = 0.1 and 0.2.

Model 4 In this setting, the generated uncontaminated observations are Gaussian with

covariance kernel γX(s, t) = (1/2)(1/2)0.9|s−t|, which corresponds to the Ornstein Uhlen-

beck process. The contamination is generated in the same way as in Model 3.

4.2 The estimators

For the four models considered, we have computed the best lower approximations using

the functional data approach described in Section 3. We first project the observations

taking as basis a cubic B−spline basis of dimension m = 50. With the finite–dimensional

approximations, we then computed the classical principal components estimator (LS)

as well as the robust one defined in (2), using an M−scale estimator, with function ρc

in Tukey’s bi–square family with tuning constants c = 1.54764 and b = 0.50. We also

considered the choice c = 3.0 and b = 0.2426, which we expect to yield more efficiency. The
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robust estimators are labelled as S (1.5) and S (3) in the tables. As suggested in Section

2.2, after obtaining the robust q−dimensional linear space, we selected an orthonormal

basis of the found linear space, that is, we orthogonalize the set {b̂(j)} and computed the

scores âi as the corresponding orthogonal projections.

We also computed the sieve projection–pursuit approach proposed in Bali et al. (2011),

which is called “PP” in our Tables below. For comparison purposes, we have also calcu-

lated the mean squared prediction errors obtained with the true best q−dimensional linear

space for uncontaminated data. This benchmark is indicated as “True” in all Tables.

Since trajectories following Models 1 and 2 were generated using a two–dimensional

scatter operator (i.e. the underlying process had only 2 non–zero eigenvalues) plus mea-

surement errors, we used q = 1 with our estimator. For Models 3 and 4, we used q = 4,

which results in 95% of explained variance for Model 3. All our computations were per-

formed using R code.

4.3 Simulation results

To summarize the results of our simulation study, for each replication we consider the

mean squared prediction error

PEH =
1

n

n∑
i=1

‖Xi − X̂i‖2
H . (11)

The conclusions that can be reached using the finite–dimensional mean squared prediction

error (1/n)
∑n

i=1 ‖xi − x̂i‖2
Rp are the same as those discussed below, and hence are not

reported here.

We report the minimum, maximum and mean (Min, Max and Mean) as well as the

median (Q2) and the 25% and 75% quantiles (Q1 and Q3) of these mean errors over the

500 replications. In addition, we also report the average mean squared error for outlying

and non–outlying trajectories separately, as a way to quantify how the procedures fit the

bulk of the data. More specifically, let γi = 1 when Xi is an outlier and γi = 0 otherwise,

21



then

PEH,out =
1

n

n∑
i=1

γi‖Xi − X̂i‖2
H and PEH,clean =

1

n

n∑
i=1

(1− γi)‖Xi − X̂i‖2
H . (12)

We also report the mean PE over contaminated and clean trajectories separately:

PEH,out =

∑n
i=1 γi‖Xi − X̂i‖2

H∑n
i=1 γi

, (13)

and

PEH,clean =

∑n
i=1(1− γi)‖Xi − X̂i‖2

H∑n
i=1(1− γi)

. (14)

Finally, we also compute the prediction squared error of the actual best lower dimensional

predictions X̂0
i , obtained with the first q true eigenfunctions (recall that we used q = 1

in Models 1 and 2, and q = 4 in Models 3 and 4). The results for this “estimator” are

tabulated in the row labelled “True”.

Tables 1 to 5 report the results obtained under Model 1, Tables 6 to 8 correspond to

Model 2, the results for Model 3 are in Tables 9 to 11 while those in Tables 12 to 14 are

for the samples following Model 4. In all Tables, the averages over the 500 replications of

PEH,out, PEH,clean, PEH,out and PEH,clean are labelled “Out”, “Clean” , “Out” and

“Clean”, respectively.

Method Min Q1 Q2 Mean Q3 Max Out Clean Out
1

Clean

True 1.119 1.232 1.264 1.266 1.299 1.430 0.000 1.266 1.266

LS 1.099 1.212 1.245 1.246 1.278 1.409 0.000 1.246 1.246

S (3) 1.105 1.219 1.252 1.253 1.285 1.417 0.000 1.253 1.253

S (1.5) 1.163 1.272 1.305 1.308 1.340 1.495 0.000 1.308 1.308

PP 1.199 1.290 1.327 1.335 1.375 1.549 0.000 1.335 1.335

Table 1: Model 1. No outliers.

As expected, when no outliers are present all procedures are comparable, with a small

loss for the robust procedures. The S−estimator with c = 3 had the second smallest mean

squared prediction error, after the LS. When samples were contaminated, the classical
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Method Min Q1 Q2 Mean Q3 Max Out Clean Out
1

Clean

True 1.265 20.810 27.370 28.070 34.380 70.440 26.930 1.138 269.316 1.264

LS 1.251 19.020 23.640 24.030 28.990 53.780 18.961 5.065 193.372 5.679

S (3) 1.258 20.780 27.340 28.050 34.360 70.430 26.922 1.126 269.245 1.252

S (1.5) 1.315 20.840 27.370 28.140 34.490 64.740 26.872 1.270 268.937 1.417

PP 1.307 20.760 27.210 27.870 34.050 68.990 26.536 1.335 265.791 1.486

Table 2: Model 1. ε1 = 0.10, ε2 = 0.30.

Method Min Q1 Q2 Mean Q3 Max Out Clean Out
1

Clean

True 1.265 40.570 53.570 55.110 69.060 127.800 53.975 1.138 539.206 1.264

LS 1.251 21.330 26.560 27.110 32.350 59.150 20.572 6.534 203.416 7.261

S (3) 1.258 40.750 53.680 53.150 64.790 99.870 51.043 2.109 520.484 2.388

S (1.5) 1.315 38.710 46.480 47.700 55.470 113.900 44.329 3.366 462.582 3.792

PP 1.307 40.260 52.920 54.050 67.420 120.800 52.558 1.494 527.444 1.668

Table 3: Model 1. ε1 = 0.10, ε2 = 0.60.

Method Min Q1 Q2 Mean Q3 Max Out Clean Out
1

Clean

True 17.910 46.050 53.970 54.790 62.850 105.700 53.780 1.013 269.685 1.265

LS 17.000 36.860 42.750 43.110 49.060 75.390 37.429 5.682 187.461 7.104

S (3) 17.870 46.060 53.900 54.510 63.080 91.530 53.425 1.081 268.453 1.361

S (1.5) 17.910 46.370 53.960 54.700 62.680 94.990 53.241 1.464 267.400 1.850

PP 18.210 45.420 52.990 53.400 61.510 89.560 51.845 1.559 260.972 1.972

Table 4: Model 1. ε1 = 0.20, ε2 = 0.30.

procedure based on least squares tries to compromise between outlying and non–outlying

trajectories and this is reflected on the values of PEH,out and PEH,clean in (12), and also

on the average prediction error of the contaminated and non–contaminated trajectories in

(13) and (14) appearing in the columns labelled “Out” and “Clean”. With contaminated

samples the S−estimator had the best performance overall. Its mean squared prediction
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Method Min Q1 Q2 Mean Q3 Max Out Clean Out
1

Clean

True 36.530 71.260 81.010 81.290 90.600 135.400 80.399 0.888 269.717 1.265

LS 30.310 54.610 61.550 61.660 68.240 95.160 56.593 5.069 189.685 7.214

S (3) 36.400 70.430 78.280 76.750 84.030 103.600 75.067 1.685 254.757 2.503

S (1.5) 36.570 70.380 79.770 79.990 88.680 131.700 78.196 1.794 263.041 2.600

PP 36.030 68.180 76.550 76.060 84.870 106.900 73.853 2.206 249.538 3.222

Table 5: Model 1 - ε1 = 0.30, ε2 = 0.30

Method Min Q1 Q2 Mean Q3 Max Out Clean Out
1

Clean

True 1.234 1.325 1.355 1.359 1.391 1.530 0.000 1.359 1.359

LS 1.215 1.307 1.335 1.339 1.371 1.497 0.000 1.339 1.339

S (3) 1.220 1.313 1.342 1.346 1.378 1.504 0.000 1.346 1.346

S (1.5) 1.278 1.367 1.399 1.401 1.434 1.582 0.000 1.401 1.401

PP 1.289 1.385 1.422 1.428 1.467 1.639 0.000 1.428 1.428

Table 6: Model 2. No outliers.

Method Min Q1 Q2 Mean Q3 Max Out Clean Out
1

Clean

True 1.364 8.486 11.120 11.280 13.830 25.550 10.063 1.222 100.589 1.358

LS 1.350 5.113 5.622 5.629 6.135 8.463 1.597 4.032 19.528 4.512

S (3) 1.357 8.535 11.070 11.220 13.720 22.080 9.839 1.380 99.230 1.541

S (1.5) 1.414 8.731 11.490 11.690 14.060 25.360 9.638 2.047 97.207 2.296

PP 1.406 8.216 10.200 10.350 12.350 20.630 8.922 1.427 90.696 1.589

Table 7: Model 2. ε1 = 0.10, ε2 = 0.90.

was closest to the “True” one, and it also provided better fits to the non–contaminated

samples (and worse predictions for the contaminated trajectories). This last observation

can be seen comparing the columns labelled “Out” and “Clean”, which correspond to

(13) and (14), respectively.

The only case when the sieves projection–pursuit estimator performed slightly better

than the S−estimator is for Model 1 with ε1 = 0.10 and ε2 = 0.60. The advantage of the
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Method Min Q1 Q2 Mean Q3 Max Out Clean Out
1

Clean

True 7.335 18.130 21.030 21.140 24.210 37.000 20.054 1.087 100.598 1.358

LS 4.034 5.710 6.256 6.322 6.844 9.625 1.840 4.482 9.505 5.610

S (3) 4.639 7.507 16.780 14.780 19.930 25.580 12.427 2.357 69.919 3.035

S (1.5) 7.481 18.190 20.840 20.810 23.560 35.390 17.916 2.891 90.648 3.645

PP 6.936 15.230 16.710 16.480 18.110 22.660 14.865 1.618 76.535 2.039

Table 8: Model 2. ε1 = 0.20, ε2 = 0.90.

Method Min Q1 Q2 Mean Q3 Max Out Clean Out
1

Clean

True 0.259 0.295 0.304 0.304 0.314 0.356 0.000 0.304 0.304

LS 0.244 0.276 0.284 0.285 0.295 0.336 0.000 0.285 0.285

S (3) 0.256 0.289 0.299 0.301 0.312 0.356 0.000 0.301 0.301

S (1.5) 0.301 0.340 0.352 0.354 0.367 0.444 0.000 0.354 0.354

PP 0.322 0.363 0.382 0.385 0.405 0.476 0.000 0.385 0.385

Table 9: Model 3. No outliers.

Method Min Q1 Q2 Mean Q3 Max Out Clean Out
1

Clean

True 0.864 3.431 4.675 4.684 5.668 9.818 4.411 0.274 44.163 0.304

LS 0.361 1.674 2.618 2.735 3.514 7.072 2.074 0.660 18.457 0.736

S (3) 0.781 3.440 4.653 4.681 5.693 9.869 4.412 0.269 44.148 0.299

S (1.5) 0.943 3.528 4.722 4.784 5.771 9.888 4.465 0.318 44.674 0.354

PP 0.895 3.533 4.720 4.794 5.849 10.240 4.439 0.355 44.397 0.394

Table 10: Model 3. ε1 = 0.10.

S−estimator was more notable in all the other cases of Model 1, Model 2 and Model 3.

For Model 4, although the S−estimator still performed better than the projection–pursuit

one, its advantage was smaller than in the other cases.
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Method Min Q1 Q2 Mean Q3 Max Out Clean Out
1

Clean

True 3.959 7.653 8.968 9.085 10.440 15.460 8.842 0.243 44.088 0.304

LS 1.835 5.061 6.179 6.310 7.453 12.110 5.599 0.711 27.363 0.893

S (3) 3.647 7.637 8.960 9.083 10.530 15.380 8.846 0.237 44.113 0.297

S (1.5) 3.822 7.728 9.109 9.215 10.590 16.090 8.931 0.284 44.535 0.355

PP 3.543 7.807 9.149 9.234 10.610 15.890 8.913 0.321 44.430 0.402

Table 11: Model 3. ε1 = 0.20.

Method Min Q1 Q2 Mean Q3 Max Out Clean Out
1

Clean

True 0.018 0.020 0.021 0.021 0.021 0.024 0.000 0.021 0.021

LS 0.016 0.018 0.019 0.019 0.019 0.022 0.000 0.019 0.019

S (3) 0.017 0.019 0.020 0.020 0.021 0.024 0.000 0.020 0.020

S (1.5) 0.020 0.023 0.024 0.024 0.025 0.032 0.000 0.024 0.024

PP 0.021 0.025 0.026 0.026 0.028 0.034 0.000 0.026 0.026

Table 12: Model 4. No outliers.

Method Min Q1 Q2 Mean Q3 Max Out Clean Out
1

Clean

True 0.648 3.223 4.417 4.447 5.467 9.657 4.429 0.019 44.290 0.021

LS 0.061 0.746 1.705 1.909 2.705 6.490 1.680 0.229 14.265 0.256

S (3) 0.554 3.230 4.384 4.448 5.497 9.668 4.430 0.018 44.288 0.020

S (1.5) 0.023 3.305 4.340 4.409 5.439 8.879 4.385 0.023 44.344 0.026

PP 0.652 3.247 4.543 4.521 5.584 9.540 4.497 0.024 44.996 0.027

Table 13: Model 4. ε1 = 0.10.

5 Examples

In this section we present two data analyses where the interest is in identifying poten-

tially atypical observations. We first analyse the ground level ozone concentration data

discussed in the Introduction. Our second example deals with human mortality data

per age group for French males between 1816 and 2010. We will see than in both cases

26



Method Min Q1 Q2 Mean Q3 Max Out Clean Out
1

Clean

True 3.665 7.498 8.894 8.908 10.250 15.290 8.892 0.017 44.339 0.021

LS 0.796 4.128 5.269 5.442 6.604 11.580 5.182 0.260 25.173 0.327

S (3) 3.442 7.461 8.841 8.900 10.260 15.150 8.884 0.016 44.307 0.020

S (1.5) 3.477 7.277 8.535 8.744 10.090 15.530 8.722 0.022 43.479 0.028

PP 3.683 7.623 8.925 9.044 10.430 15.360 9.022 0.022 44.984 0.028

Table 14: Model 4. ε1 = 0.20.

the differences between the observations and the robust predictions can easily be used

to detect potentially outlying curves, and that in both examples the identified outliers

correspond to “real anomalies” in the specific context of each problem. In both examples,

the S−estimators were computed as in Section 3 with tuning constant c = 3.

5.1 Ground level Ozone concentrations

Our data contains hourly average measurements of ground level ozone (O3) concentration

from a monitoring station in Richmond, BC, Canada. Ozone at ground level is a serious

air pollutant and its presence typically peaks in summer months. We focus on the month

of August, and obtained data for the years 2004 to 2012. We have 176 days with hourly

average O3 measurements (displayed in Figure 1). Our purpose is to identify days in

which the temporal pattern of O3 concentration appears different from the others. Based

on the strong pattern observed in the data, which corresponds to what may be expected

from the way O3 concentrations behave in summer days, we consider 1−dimensional

approximations. We use an S−estimator applying the approach described in Section

3 with a cubic B−spline basis of dimension m = 10. Figure 2 contains the L2 norm

of the residuals for each of the 176 curves when we compute predictions using our S-

estimators (panel a) and the classical LS ones (panel b). Highlighted points correspond

to residuals that are relatively larger than the majority, and will be considered as potential

outliers. To make the visualization of the results easier, each panel in Figure 3 shows the
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(a) Residuals using a robust best fit
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(b) Residuals using classical PCA

Figure 2: L2 norms of the residuals obtained with the S-estimator (panel a) and the classical

one (panel b) for the ground level ozone data. Highlighted points in each panel correspond to

suspected atypical days.

observations detected as outliers on one year, both by the robust estimator (solid lines)

and the classical approach (dotted lines). The thin gray lines in the background show all

the available observations, and are included as a visual reference. We see that the robust

fit identifies as outliers all of the days with relatively high peaks of O3 concentration, but

also some days that exhibit a “flat” profile. In total, the S-estimator finds 16 days as

possibly atypical, while the classical approach identifies 9 days as outliers, of which only

one is also classified as unusual by the robust method.

Since ground level ozone is produced by the reaction between sunlight and other

compounds in the air, we use temperature data to verify whether the potential outliers

identified above actually correspond to atypical days. Figure 4 shows maximum daily

temperature for the months of August between 2004 and 2012 together with the daily

amount of rain. Days for which O3 data is not available are indicated with white circles.

A day identified as having an atypical O3 profile by the robust fit is marked with a large

solid circle. Potential outliers identified by the classical approach are indicated with a
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solid triangle. We see that the outliers identified by the robust fit correspond to days

with either a very high or low temperature. Furthermore, outlying days with a “flat” O3

profile are those with a low maximum temperature (cold summer days), while days with

a sharp O3 peak correspond to particularly hot days. On the other hand, days flagged

as possible outliers by the least squares approach generally do not show any pattern

with respect to temperature. This analysis shows that the robust method is able to

identify potential outliers that correspond to extreme values of an unobserved but closely

associated meteorological variable (temperature). In other words, the robust method is

able to uncover outliers that correspond to actual atypical days.

5.2 Mortality data

In this example we explore human mortality data, available on–line from the Human

Mortality Database (Human Mortality Database, 2013). We restrict our attention to

death rates per age group for men in France. For each year, we use the logarithm of

the death rate of people between the ages of 0 and 99. Panel (a) in Figure 5 shows the

mortality curves for the years between 1816 to 2010. Dark lines correspond to years after

1945. We observe a clear difference in the pattern of male mortality curves in France

before and after the Second World War. This phenomenon is sometimes attributed to

technological advances and quality of life changes in Europe after 1945. We also note

that there is a 3−year transitional period (1946–1948) in which the mortality curves lie

between the two main groups. In this analysis we focus on the period 1816–1948, that

includes the pre–war and the “transition” periods. The purpose of this analysis is to detect

years in which the pattern of mortality across age groups is noticeably different from the

majority of curves in the data. We computed an S−estimator for the best 2−dimensional

subspace approximating these curves using the approach described in Section 3 with a

cubic B−spline basis of dimension m = 20. Figure 5 (b) contains the estimated central

curve plotted over the original data, and also over the robustly predicted curves. To
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(b) Robust predictions for the years 1816–1948

Figure 5: Mortality data. Panel (a) contains the curves for the years 1816 to 2010. Darker lines corre-

spond to years after 1945. Panel (b) depicts the predicted trajectories corresponding to the 2−dimensional

subspace that best approximates the curves before the post–war years (1816–1948), estimated using our

S−estimator. The black line is the estimated central curve.
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(b) Detail of the lower section of plot (a)

Figure 6: L2 norm of the residuals corresponding to the predictions obtained with the S−estimator

(light gray points) and the classical Least Squares estimator (black points). Panel (b) is a detail of the

lower portion of panel (a).

determine whether any curve appears as atypical, in Figure 6 we plot the L2 norm of

the residuals for each of the 135 curves. Light gray points correspond to residuals from

the predictions obtained with the S−estimator, while the residuals associated with the

classical estimator are represented using black points. We see that the S−estimator
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clearly identifies four periods of atypical observations. Panel (b) in Figure 6 zooms in the

lower part of the plot to explore more carefully the residuals of the predictions based on

the LS estimator. There seem to be two clear “peaks” in the LS–based residuals, that

partially coincide with two of the 4 sets of large residuals found by the S−estimator.

Using this plot we select the value 0.035 (the dashed horizontal line in panel (b) of Figure

6) as our threshold to identify potential outliers. The robust fit identifies the following

years as atypical: 1855, 1871, 1914–1919, 1940, and 1942–1948, while the LS fit only

identifies the periods 1914–1915 and 1943–1948. It is interesting to note that in 1855

France was involved in the Crimean War, and in 1871 in the Prussian War. The period

1914 to 1919 corresponds to World War I and the Spanish Flu epidemic. France falls to

German occupation in 1940 and after a relatively calm year in 1941, sees more action in

the period 1942 to 1944. Figure 7 contains the curves corresponding to these four events

(the Crimean and Prussian Wars, and the 2 World Wars), along with the predictions

resulting from the S and LS estimators. It is interesting to note that the LS estimator

is not able to detect the Crimean and Prussian Wars, neither the early World War II

casualties in France (1940 and 1942). Both estimators properly identify the post–war

years as atypical.

5.3 Lip movement data

Here we analyse the “lip movement” data. The observations correspond to the position of

the lower lip as a function of time as a subject repeated the syllable “bob” 32 times. The

available data have been pre–processed and the times standardized to 700 milliseconds.

We have 501 observations for each of the 32 trajectories, which are available on–line from

http://www.stats.ox.ac.uk/~silverma/fdacasebook/lipemg.html. More details can

be found at the same URL and in Malfait and Ramsay (2003). This data set was also

studied by Gervini (2008) who detected as atypical three trajectories with delayed second

peaks, labelled as 24, 25 and 27.
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Using a cubic B−spline basis of dimension 20 we obtained 5−dimensional robust

predicted trajectories for each observed curve. The L2 norms of the residuals (both for

the S− and the classical LS estimators) are displayed in panel (a) of Figure 8. There

are 7 curves that clearly stand out in terms of their prediction residuals when using the

robust estimator. The residuals associated with the LS predictions show one curve that

is fit slightly worse than the others. Panel (b) of Figure 8 displays the original data, with

the seven suspected outliers highlighted with darker lines. It is interesting to note that,

without having “extreme” observations in the data (for example, there are no unusually

large response values), all the flagged curves do exhibit a behaviour that is rather peculiar.

Namely, the lip stays in its lower position for a much longer period of time that during

the other repetitions. At the same time, their “second peak” occurs either earlier or later

than the rest of the curves. This is another example where the robust estimator is able to

identify observations that are different from the bulk of the data. These curves will not

have been found using a classical principal components analysis.
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(a) Residuals based on the S− (light)

and LS–estimates (dark)
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Figure 8: Lip movement data. Panel (a) shows the prediction residuals (times 106) obtained

using the robust S−estimator (light gray points) and the LS estimator (black points). Panel (b)

displays the data (light gray) with the suspected outliers corresponding to the dark lines.
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A Appendix

Proof of Proposition 2.1. Note that since x ∼ Ep(0,Σ, φ), z = Λ−1/2βtx is spheri-

cally distributed, so that all its components have the same distribution G. Without loss
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of generality, assume that σr(G) = 1. Let L be a linear space of dimension q, with or-

thonormal basis b(1), . . . ,b(q). If we arrange this basis as columns of a matrix B ∈ Rp×q

we have that r(L) = (r1(L), . . . , rp(L))t = x−π(x,L) = (I−BBt)x ∼ Ep(0,ΣL, φ), with

ΣL = (I − BBt)Σ(I − BBt)t = CΣCt, with C = (I − BBt). Since x = βΛ1/2z, we

see that r(L) can be written as CβΛ1/2z. Therefore, the characteristic function of r(L)

is given by ϕr(L)(t) = ϕz(Λ
1/2βtCtt) = φ(ttCΣCtt), where φ denotes the generator of

the characteristic function of z. Hence, for the jth coordinate of the vector of residuals we

have ϕrj(L)(t) = ϕr(L)(tej) = φ(t2 etj CΣCtej) = φ(t2 ctj Σcj) = ϕz1(t
2 ctj Σcj). It follows

that rj(L) ∼ ξjz1 where z1 ∼ G and ξ2
j = ctj Σcj. This implies that σ2

j,L = σ2
r(Fj(L)) =

ctj Σcj. Hence,
∑p

j=1 σ
2
j,L =

∑p
j=1 ctj Σcj = tr(CΣCt). This last expression is minimized

when B = (β1, . . . ,βq) (see Seber, 1984, Theorem 5.3) and the solution is unique since

λq > λq+1.

Proof of Proposition 2.2. Let an = supdim(L)=q |Ψ̂n(L) − Ψ(L)| and note that

Ψ̂n(L̂) ≤ Ψ̂n(L(P )) = Ψ(L(P ))+an and similarly Ψ(L(P )) ≤ Ψ(L̂) ≤ Ψ̂n(L̂)+an. Hence

Ψ̂n(L̂) ≥ Ψ(L(P ))− an and we obtain Ψ̂n(L̂)
a.s.−−−→
n→∞

Ψ(L(P )) and Ψ(L̂)
a.s.−−−→
n→∞

Ψ(L(P )).

Standard arguments now imply the convergence of the linear spaces since L(P ) is unique.

Hence, one can choose an orthonormal basis of L̂ converging with probability one to a

basis of L(P ).

Proof of Proposition 3.1. To illustrate the main idea of the proof, we start with

the (easy) case where the orthonormal basis {δj} is the basis φj of eigenfunctions of Γ.

Assume that m = mn is such that mn > q and {φ1, . . . , φq} ⊂ {δ1, δ2, . . . , δmn}. Without

loss of generality, assume that δj = φj, for 1 ≤ j ≤ q and that δj = φ`j for q+ 1 ≤ j ≤ mn

with q < `q+1 < · · · < `mn . Then, x = AX ∼ Ep(0,Σ, φ) where A is defined in (7) and

Σ = AΓA∗ = diag(λ1, . . . , λq, λ`q+1 , . . . , λ`m) where λq > λ`q+1 > · · · > λ`m . Then, using
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Proposition 2.1, for any B ∈ Rm×q such that BtB = Iq, we have

Ψm(LB) =
m∑
j=1

σ2
j,LB ≥

m∑
j=1

σ2
j,LB0,m

=
m∑

s=q+1

λ`s ,

where B0,m = (e1, . . . , eq). Hence, using that limm→∞
∑m

s=q+1 λ`s =
∑

s≥q+1 λs = tr(Γ)−∑q
j=1 λj = tr ((IH − P )Γ(IH − P )∗). Note that, in this case, φj(B0,m) = φj, where φj(B)

is defined in (9). Hence, HB0,m is the linear space spanned by φ1, . . . , φq, which shows

Fisher–consistency.

Let us now consider the general situation. As before, we have x = AX ∼ Ep(0,Σ, φ)

where A is defined in (7) and Σ = AΓA∗. Recall that A∗ =
∑m

j=1 δj ⊗ ej, so that for

any y ∈ Rm, A∗y =
∑m

j=1 yjδj. Let Hm be the linear subspace spanned by {δ1, . . . , δm}

and Πm : H → Hm be the projection operator over Hm, that is, Πm =
∑m

j=1 δj ⊗ δj. We

have that Πm is self–adjoint and Πmν = ν for ν ∈ Hm. Moreover, Πm → IH in the strong

operator topology, where IH is the identity operator in H, that is, Πmx → x for any

x ∈ H, as m→∞. It follows that for any compact operator Υ, ΠmΥ→ Υ as m→∞ in

the norm operator topology.

It is easy to show that, if u ∈ Rm is an eigenvector of Σ related to an eigenvalue α,

then ν = A∗u is an eigenfunction of Υm = ΠmΓΠ∗m associated to α. Similarly, if ν is

an eigenfunction of Υm with eigenvalue α, then Aν is an eigenvector of Σ with the same

eigenvalue α. Hence, the m−largest eigenvalues of Υm are those of Σ with the relation

among eigenvectors and eigenfunctions just described. Note that since the range of Υm

is m, Υm has at most m non–null eigenvalues. Let B0,m ∈ Rm×q be a matrix containing

the eigenvectors of Σ related to its m largest eigenvalues as columns. In other words,

B0,m = (β1, . . . ,βq) where βj is the eigenvector of Σ related to its jth largest eigenvalue

denoted αj. Then, αj = λj(Υm), where λj(Υ) denotes the jth largest eigenvalue of the

operator Υ.

Using Proposition 2.1 we get that, for any B ∈ Rm×q such that BtB = Iq, Ψm(LB) =∑m
j=1 σ

2
j,LB ≥

∑m
j=1 σ

2
j,LB0,m

=
∑m

s=q+1 αs =
∑m

s=q+1 λs(Υm), Noting that tr(Σ) = tr(Υm) =∑m
s=1 λs(Υm), we obtain the bound Ψm(LB) ≥ Ψm(LB0,m) = tr(Υm)−

∑q
s=1 λs(Υm), that
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is

min
B∈Rm×q ,BtB=Iq

Ψm(LB) = Ψm(LB0,m) = tr(Υm)−
q∑
s=1

λs(Υm) . (A.1)

As noted above, we have ‖Υm−Γ‖ → 0 as m→∞. By the continuity of the eigenvalues

with respect to the operators norm (see for instance, Osborn, 1975), we have that, for

each fixed k, λk(Υm)→ λk(Γ) = λk as m→∞. Hence, limm→∞
∑q

s=1 λs(Υm) =
∑q

s=1 λs.

It remains to show that limm→∞ tr(Υm) = tr(Γ). First note that, Proposition A.1 in

Boente et al. (2012) shows that λk(Υm) ≤ λk, hence tr(Υm) =
∑m

s=1 λs(Υm) ≤
∑m

s=1 λs ≤

tr(Γ). Therefore, we only have to show that, for any ε > 0, there exists m0 such that for

m ≥ m0, we have tr(Υm) ≥ tr(Γ) − ε. Since tr(Γ) < ∞, there exists N ∈ N such that

N > q and 0 ≤ tr(Γ)−
∑N

j=1 λj < ε/2. Using that limm→∞
∑N

j=1 λj(Υ) =
∑N

j=1 λj, choose

m0 such that for m ≥ m0, |
∑N

j=1 λj(Υm)−
∑N

j=1 λj| ≤ ε/2. Now, for m ≥ max{m0, N}

we have tr(Υm) =
∑m

j=1 λj(Υm) ≥
∑N

j=1 λj(Υm) ≥
∑N

j=1 λj − ε/2 ≥ tr(Γ)− ε, as desired.

Hence, from (A.1), we have that

lim
m→∞

min
B∈Rm×q ,BtB=Iq

Ψm(LB) = lim
m→∞

Ψm(LB0,m) = tr(Γ)−
q∑
s=1

λs ,

concluding the proof of (10). Finally, note that the linear space HB0,m is spanned by

φ1(B0,m), . . . , φq(B0,m), where φj(B0,m) = A∗βj. Then, we have φj(B0,m) = φj(Υm).

Using again that, ‖Υm − Γ‖ → 0 as m → ∞ and the fact that λq > λq+1, we see that

the linear space spanned by φ1(Υm), . . . , φq(Υm) converges to that spanned by φ1, . . . , φq,

(see for instance, Osborn 1975 or Dunford and Schwartz, 1963), concluding the proof.
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