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Abstract

Principal components analysis is a widely used technique that provides an opti-

mal lower-dimensional approximation to multivariate or functional data sets. These

approximations can be very useful in identifying potential outliers among high–

dimensional or functional observations. In this paper, we propose a new class of

estimators for principal components based on robust scale estimators. For a fixed

dimension q, we robustly estimate the q−dimensional linear space that provides the

best prediction for the data, in the sense of minimizing the sum of robust scale esti-

mators of the coordinates of the residuals. The extension to the infinite-dimensional

case is also studied. In analogy to the linear regression case, we call this proposal

S−estimators. Our method is consistent for elliptical random vectors, and is Fisher-

consistent for elliptically distributed random elements on arbitrary Hilbert spaces.

Numerical experiments show that our proposal is highly competitive when compared
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with other existing methods when the data are generated both by finite- or infinite-

rank stochastic processes. We also illustrate our approach using two real functional

data sets, where the robust estimator is able to discover atypical observations in the

data that would have been missed otherwise.

Key Words: Functional Data Analysis, Principal Components, Robust estimation,

S−estimator, Sparse Data.
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1 Introduction

Principal components analysis (PCA) is a widely used method to obtain a lower-dimensional

approximation to multivariate data. This approximation is optimal in the sense of min-

imizing the mean squared loss between the original observations and the resulting ap-

proximations. Estimated principal components can be a valuable tool to explore the data

visually, and are also useful to describe some characteristics of the data (e.g. directions

of high variability). Thanks to the ever reducing cost of collecting data, many data sets

in current applications are both large and complex, sometimes with a very high number

of variables. The chance of having outliers or other type of imperfections in the data in-

creases both with the number of observations and their dimension. Thus, detecting these

outlying observations is an important step, even when robust estimates are used, either

as a pre-processing step or because there is some specific interest in finding anomalous

observations. However, it is well known that detecting outliers or other anomalies in mul-

tivariate data can be difficult (Rousseeuw and van Zomeren, 1990; Becker and Gather,

1999, 2001), and one has to rely on robust statistical methodologies.

As a motivation, consider the problem of identifying days with an atypical concentra-

tion of ground level ozone (O3) in the air. Ground level ozone forms as a result of the

reaction between sunlight, nitrogen oxide (NOx) and volatile organic compounds (VOC).

It is an important air pollutant, present around urban areas, with higher concentrations in
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suburban or rural locations downwind from major sources of NOx and VOC, such as indus-

tries, gasoline vapours, and motor vehicle exhaust emissions (Sillman, 1993). Ground level

ozone is a major irritant of the airways, and exposure to it can lead to an increased risk of

developing cardiovascular disease and several respiratory conditions (U.S. Environmental

Protection Agency, 2008). Its intensity is affected by several meteorological and topo-

graphical factors (such as temperature and wind direction), which affect the distribution

of its precursors (Ainslie and Steyn, 2007). We obtained hourly average concentration of

ground level ozone at a monitoring station in Richmond, BC (a few kilometres south of the

city Vancouver, BC). The data comes from the Ministry of Environment of the province of

British Columbia, and is available on line at http://envistaweb.env.gov.bc.ca. Since

ground level ozone pollution is most severe in Summer, we focus on the month of August.

Our data includes observations for the years 2004 to 2012. Figure 1 displays the data.

Each line corresponds to the evolution of the hourly average concentration (in ppb) of

ground level ozone for one day. The Canadian National Ambient Air Quality Objectives

sets a maximum desired level of 50 ppb. It is easy to see that a few days exceeded the

maximum desired level threshold, but also that there may be other days exhibiting a

different pattern of hourly average concentration of O3. We are interested in identifying

days with atypical hourly O3 trajectories.

In this paper, we study robust low–dimensional approximations for high−(or infinite−)

dimensional data that can be used to identify poorly fitted observations as potential

outliers. The earliest and probably most immediate approach to obtain robust estimates

for the principal components consists in using the eigenvalues and eigenvectors of a robust

scatter estimator (Devlin et al., 1981; Campbell, 1980; Boente, 1987; Naga and Antille,

1990; Croux and Haesbroeck, 2000). A different approach was proposed by Locantore

et al. (1999) based on using the covariance matrix of the data projected onto the unit

sphere. Since principal component directions are also those that provide projections

with the largest variability, robust PCA estimators can alternatively be obtained as the

directions that maximize a robust estimator of scale of the projected data. This approach

3



5 10 15 20

0
20

40
60

80

Hour

O
3 

pp
b

Figure 1: Hourly mean concentration (in ppb) of ground level ozone in Richmond, BC, Canada,

for the month of August in years 2004 to 2012. Each line corresponds to one day. The darker

dashed horizontal line at 50 ppb is the current maximum desired level set by the Canadian

National Ambient Air Quality Objectives. The maximum acceptable level is 80 ppb.

is known in the literature as “projection pursuit” and has been studied by Li and Chen

(1985), Croux and Ruiz–Gazen (1996, 2005), Hubert et al. (2002) and Hubert et al.

(2005).

It is well–known that, for finite–dimensional observations with finite second moments,

when using mean squared errors the best lower–dimensional approximation is given by

the projections onto the linear space spanned by the eigenvectors of the covariance matrix

corresponding to its largest eigenvalues. Several robust proposals exist in the literature

exploiting this characterization of PCA. They amount to replacing the squared residuals

with a different loss function. Liu et al. (2003) used the absolute value of the residuals,

and McCoy and Tropp (2011) proposed a randomized algorithm to find an approximate

solution to this L1 minimization problem. Not surprisingly this approach may not work
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well when entire observations are atypical (corresponding to “high–leverage” points in

linear regression models). Croux et al. (2003) proposed a weighted version of this proce-

dure that reduces the effect of high–leverage points. Verboon and Heiser (1994) and De la

Torre and Black (2001) used a bounded loss function applied to column–wise standardized

residuals. Later, Maronna and Yohai (2008) proposed a similar loss function, but modified

in such a way that the method reduces to the classical PCA when one uses a squared loss

function. Maronna (2005) also considered best–estimating lower–dimensional subspaces

directly, but his approach cannot be easily extended to infinite–dimensional settings be-

cause there may be infinitely many minimum eigenvalues.

There has been recent attention paid to a similar problem in the Engineering and

Computer Science literature. The main assumption in their approach is that a proportion

of the observations lies on a proper lower-dimensional subspace, and that there may be a

sparse amount of arbitrary additive “noise” present. The objective is to fully recover the

low-rank part of the data. Chandrasekaran et al. (2011), Candès et al. (2011), McCoy

and Tropp (2011) and Xu et al. (2012) study different convex relaxations of the problem

of finding an exact representation of the data matrix as the sum of a low-rank one and

a sparse one. Lerman et al. (2012) and Zhang and Lerman (2014) also consider convex

relaxations of this problem. The focus of these proposals is on obtaining fast algorithms,

and they derive sufficient conditions to guarantee that the solution to the surrogate convex

optimization problem is the lower dimensional subspace that properly contains the “non-

outlying” points. These conditions can be interpreted as follows: a proportion of the

data points needs to lie on a low-dimensional proper subspace of the sample space, and

the corresponding low-rank matrix should be “diffuse” (for example, its row and column

spaces cannot be aligned with the coordinate axes).

Our approach relies on a probabilistic model and assumes that our observations follow

an elliptical distribution. We are interested in studying best lower-dimensional approx-

imations, in the sense of minimizing the expected prediction error over the distribution

of the random vector. These approximations need not fit exactly any subset of the data.

5



Moreover, our goal is to obtain robust alternatives for estimating principal spaces in

infinite–dimensional settings. We use finite (or high-)dimensional estimators as a step to-

wards achieving that purpose. Nevertheless, our proposal provides consistent estimators

of the best lower–dimensional subspace when applied to multivariate data that follow an

elliptical distribution, even if second moments do not exist. Furthermore, our approach is

Fisher consistent for the case of infinite-dimensional observations. Few robust principal

components estimates for functional data (FPCA) have been proposed in the literature.

Gervini (2008) studied spherical principal components, and Hyndman and Ullah (2007)

discuss a projection–pursuit approach using smoothed trajectories, but without studying

their properties in detail. More recently, Sawant et al. (2012) adapted the BACONPCA

method to detect outliers and to provide robust estimators of the functional components,

while Bali et al. (2011) proposed robust projection–pursuit FPCA estimators and showed

that they are consistent to the eigenfunctions and eigenvalues of the underlying process.

The rest of the paper is organized as follows. Section 2 tackles the problem of pro-

viding robust estimators for a q−dimensional approximation for Euclidean data. Section

3 discusses extending this methodology to accommodate functional data, and its use to

detect outliers is described in Section 4. In Section 5 we report the results of a simulation

study conducted to study the performance of the proposed procedure for functional data.

Some real data sets are analysed in Section 6, where the advantage of the proposed proce-

dure to detect possible influential observations is illustrated. Finally, Section 7 provides

some further discussion and recommendations. Proofs are relegated to the Appendix.

2 S−estimators of the principal components in Rp

Consider the problem of finding a lower–dimensional approximation to a set of obser-

vations xi, 1 ≤ i ≤ n, in Rp. More specifically, we look for q < p vectors b(l) ∈ Rp,

1 ≤ l ≤ q, whose spanned linear sub–space provides a good approximation to the data.

Let B ∈ Rp×q be the matrix given by B =
(
b(1), . . . ,b(q)

)
and denote btj the jth row

6



of B. Furthermore, let µ ∈ Rp. The corresponding “fitted values” are x̂i = µ + B ai,

1 ≤ i ≤ n, where ai ∈ Rq. We can also write x̂ij = µj + ati bj. With this notation,

principal components can be defined as minimizers, over matrices A ∈ Rn×q, B ∈ Rp×q

and vectors µ ∈ Rp, of

L2(A,B,µ) =
n∑
i=1

‖xi − x̂i‖2
Rp =

n∑
i=1

p∑
j=1

r2
ij , (1)

where the i-th row of the matrix A ∈ Rn×q is ai, rij = xij − x̂ij and ‖ · ‖Rp denotes the

usual Euclidean norm in Rp. Furthermore, this optimization problem can be solved using

alternating regression iterations. Note that if we restrict B to satisfy BtB = Iq, i.e., if

the columns b(1), . . . ,b(q) are orthonormal, then the vectors ai, 1 ≤ i ≤ n, correspond to

the scores of the sample on the orthonormal basis b(1), . . . ,b(q).

Our approach is based on noting that L2(A,B,µ) in (1) is proportional to
∑p

j=1 s
2
j

where s2
j is the sample variance of the residuals’ jth coordinate: r1j, r2j, . . . , rnj. To reduce

the influence of atypical observations we propose to use robust scale estimates instead of

sample variances. Our robustly estimated q−dimensional subspace best approximating

the data is defined as the linear space spanned by the columns of the matrix B where

(A,B,µ) minimizes

Ls(A,B,µ) =

p∑
j=1

σ̂2
j , (2)

and σ̂j denotes a robust scale estimator of the residuals rij = xij − x̂ij, 1 ≤ i ≤ n. As

mentioned before, if BtB = Iq, the vectors ai, 1 ≤ i ≤ n, correspond to the robust

scores of the ith observation in the orthonormal basis b(1), . . . ,b(q). Note that if we use

the sample variance s2
j instead of σ̂2

j , then the objective function in (2) reduces to the

classical one in (1).

Scale estimators measure the spread of a sample and are invariant under translations

and equivariant under scale transformations (see, for example, Maronna et al. 2006).

Although any robust scale estimator can be used in (2), to fix ideas we focus our presen-

tation on M−estimators of scale (see Huber and Ronchetti, 2009). As in Maronna et al.
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(2006), let ρ : R→ R+ be a ρ−function, that is, an even function, non–decreasing on |x|,

increasing for x > 0 when ρ(x) < limt→+∞ ρ(t) and such that ρ(0) = 0. Given residuals

rij(A,B,µ) = xij− x̂ij(A,B,µ) with x̂ij(A,B,µ) = µj+ati bj, the M−estimator of scale

of the residuals σ̂j = σ̂j(A,B,µ) satisfies

1

n

n∑
i=1

ρc

(
rij(A,B,µ)

σ̂j

)
= b , (3)

where ρc(u) = ρ(u/c), and c > 0 is a user–chosen tuning constant. When ρ(y) =

min (3y2 − 3y4 + y6, 1), (Tukey’s biweight function) with c = 1.54764 and b = 1/2, the

estimator is Fisher–consistent at the normal distribution and has breakdown point 50%.

In general, if ‖ρ‖∞ = 1, then the breakdown point of the M−scale estimator solving (3)

is min(b, 1− b).

We can write our estimator in a slightly more general way as follows. Given a matrix

B ∈ Rp×q, let LB be the q−dimensional linear space spanned by its columns b(1), . . . ,

b(q). Similarly, let π(y,LB) denote the orthogonal projection of y onto LB. To simplify

the presentation, assume that µ is known. For each observation xi ∈ Rp, 1 ≤ i ≤ n, let

ri(LB) = xi−µ−π(xi−µ,LB) = (ri1(LB), . . . , rip(LB))t denote the corresponding vector

of residuals and σ̂j,LB = σ̂(r1j(LB), . . . , rnj(LB)) the scale estimator of the jth coordinate

of the residuals. We define the S−estimator of the best q−dimensional approximation

to the data as the linear space L̂ = LB̂ that minimizes the sum of the M−estimators of

scale of the coordinates of the residuals over all linear spaces LB of dimension q:

LB̂ = argmin
dim(LB)=q

Ψ̂n (LB) , (4)

where Ψ̂n (LB) =
∑p

j=1 σ̂
2
j,LB .

To study the asymptotic properties of robust estimators it is convenient to think

of them as functionals of the empirical distribution of the sample (Huber and Ronchetti,

2009). For example, M−scale estimators in (3) correspond to the functional σr : D → R+

defined for each distribution function F ∈ D as the solution σr(F ) to the equation∫
ρc(t/σr(F )) dF (t) = b. Here D is a subset of all the univariate distributions that
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contains all the empirical ones. Given a sample y1, . . . , yn with empirical distribution Fn,

we can write σ̂(y1, . . . , yn) = σr(Fn).

In what follows we will assume that xi ∈ Rp, 1 ≤ i ≤ n are independent and identically

distributed random vectors with distribution P . The independence condition may be

relaxed, for instance, requiring stationarity and a mixing condition or just ergodicity,

since we only need the strong law of large numbers to hold in order to guarantee the

consistency results given below. For a random vector x with distribution P , the functional

L(P ) corresponding to the S−estimators defined in (4) is the linear space of dimension q

that satisfies

L(P ) = argmin
dim(L)=q

Ψ(L) , (5)

where Ψ(L) =
∑p

j=1 σ
2
j,L, σj,L = σr(Fj(LB)) and Fj(LB) denotes the distribution of

rj(LB) with r(LB) = x − µ − π(x − µ,LB) = (r1(LB), . . . , rp(LB))t. Proposition 2.1

below shows that this functional is Fisher–consistent for elliptical random vectors.

Recall that a random vector is said to have a spherical distribution if its distribution is

invariant under orthogonal transformations. In particular, the characteristic function of a

spherically distributed x ∈ Rp is of the form ϕx(t) = φ(ttt) for t ∈ Rp where φ : R→ R

is the generator of the characteristic function. We write x ∼ Sp(φ). For a p× p matrix B

and a vector µ ∈ Rp, the distribution of x = Bz + µ when z ∼ Sp(ψ) is said to have an

elliptical distribution, denoted by x ∼ Ep(µ,Σ, φ), where Σ = BBt. The characteristic

function of x is ϕx(t) = exp(ittµ)φ(ttΣt).

Proposition 2.1 Let x ∼ Ep(0,Σ, φ) be a random vector elliptically distributed with

location 0 and scale Σ such that Σ = βΛβt where Λ = diag(λ1, . . . , λp), λ1 ≥ λ2 ≥ · · · ≥

λp, and β is an orthonormal matrix with columns β1, . . . ,βp. Assume that λq > λq+1.

Then, if Lq is the linear space spanned by β1, . . . ,βq, we have that Lq is the unique

solution of (5), that is, L(P ) is a Fisher–consistent functional at P = Ep(0,Σ, φ).

As mentioned before, this approach can also be used with any robust scale estimator.
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For example, we can define τ−estimators by considering a τ−scale. Define as above,

rij(A,B,µ) = xij − x̂ij(A,B,µ) where x̂ij(A,B,µ) = µj + ati bj and let ρ and ρ1 be two

ρ−functions such that ρ ≤ ρ1. The τ−best lower dimensional approximations are given

by the minimizers of

Lτ (A,B,µ) =

p∑
j=1

σ̂2
j

n∑
i=1

ρ1

(
rij(A,B,µ)

σ̂j

)
,

where σ̂j = σ̂j(A,B,µ) is a robust scale estimator of rij(A,B,µ) computed as in (3) with

the ρ−function ρ. When an iterative procedure is used to find the minimizer of (4), the

p scale estimators σ̂j need to be updated at each stop of the algorithm.

Consistency of projection–pursuit principal component estimators for random vectors

was derived in Cui et al. (2003) requiring uniform convergence over the unit ball of the

projected data scale estimators to the scale functional. This condition was generalized in

Bali et al. (2011) to the functional case. A natural extension of this condition for q > 1

is

sup
dim(L)=q

|Ψ̂n(L)−Ψ(L)| a.s.−→ 0 . (6)

Note that this condition is easily verified when using a robust scale functional with finite–

dimensional random vectors since the Stiefel manifold Vp×q = {B ∈ Rp×q : BtB = Iq}

is a compact set. Furthermore, the following proposition shows that this condition is

sufficient to obtain consistency of the S−estimators in (4).

Proposition 2.2 Assume that L(P ) is unique and that (6) holds. Then, the estimators

L̂ = LB̂ obtained minimizing Ψ̂n(L) in (4) over linear spaces L of dimension q, are

consistent to the linear space L(P ) defined in (5). In other words, with probability one

π(x, L̂) converges to π(x,L(P )), for almost all x.

2.1 Algorithm for S−estimators

The optimization problem defining our estimator is generally non-convex, and typically

difficult to solve. In this Section, we show that first–order conditions for a critical point
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of the objective function in (4) naturally suggests iterative re–weighted least squares

iterations. Once such iterations are available, a standard strategy used in the Statistical

literature to compute this type of estimators (e.g. Rousseeuw and van Driessen, 1999;

Maronna, 2005; Salibian-Barrera and Yohai, 2006) is to iterate a large number of random

initial points, and select the best visited local minimum as the estimator.

Note that although S−scale estimators are only defined implicitly, explicit first–order

conditions can be obtained differentiating both sides of (3). More specifically, let σ̂j,

j = 1, . . . , p be an M−estimator of scale of the residuals xij − x̂ij, i = 1, . . . , n. In other

words, σ̂j satisfies (1/n)
∑n

i=1 ρ
(
(xij − µj − ati bj)/σ̂j

)
= b , where we have absorbed

the constant c into the loss function ρ. The derivatives with respect to ai, i = 1, . . . , n

are given by

∂

∂ai

(
p∑
j=1

σ̂2
j

)
=

p∑
j=1

2 σ̂j
∂ σ̂j
∂ai

= −2

p∑
j=1

σ̂j h
−1
j ρ′

(
rij
σ̂j

)
bj , i = 1, . . . , n ,

where hj =
∑n

i=1 ρ
′ (rij/σ̂j) rij/σ̂j. Similarly, the other first–order conditions are

∂

∂bs

(
p∑
j=1

σ̂2
j

)
=

p∑
j=1

2 σ̂j
∂ σ̂j
∂bs

= −2 σ̂s h
−1
s

n∑
i=1

ρ′
(
ris
σ̂s

)
ai , s = 1, . . . , p

∂

∂µ`

(
p∑
j=1

σ̂2
j

)
=

p∑
j=1

2 σ̂j
∂ σ̂j
∂µ`

= −2 σ̂` h
−1
`

n∑
i=1

ρ′
(
ri`
σ̂`

)
, ` = 1, . . . , p .

Setting these to zero, we obtain a system of equations that can be re–expressed as re–

weighted least–squares problems as follows: let wij = σ̂j h
−1
j r−1

ij ρ
′(rij/σ̂j), then we need

to solve

p∑
j=1

wij (xij − µj)bj =

(
p∑
j=1

wij bjb
t
j

)
ai , 1 ≤ i ≤ n ,

n∑
i=1

wij (xij − µj)ai =

(
n∑
i=1

wij aia
t
i

)
bj , 1 ≤ j ≤ p ,

n∑
i=1

wij (xij − ati bj) =
n∑
i=1

wij µj , 1 ≤ j ≤ p .
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This formulation suggests the usual iterative re–weighted least squares (IRWLS) algo-

rithm. Given initial estimates b
(0)
j , 1 ≤ j ≤ p and µ(0), compute the scores a

(0)
i ,

i = 1, . . . , n, the weights w
(0)
ij and obtain updated values for a

(1)
i , b

(1)
j , 1 ≤ i ≤ n,

1 ≤ j ≤ p and µ(1). We repeat these steps until the objective function changes less than a

chosen tolerance value. The best q−dimensional linear space approximation is spanned by

{b̂(1), · · · , b̂(q)}, the final values obtained above. For interpretation purposes, we orthogo-

nalize the set {b̂(1), · · · , b̂(q)} and compute the scores âi as the corresponding orthogonal

projections.

For the initial location vector µ(0) we use the L1−median, and adapt the strategy of

Rousseeuw and van Driessen (1999) to select initial values for B and A. More specifically,

we generate N1 random starts for the matrix B which are orthogonalized, each of them

leading to an initial matrix B(0). The columns of the matrix A are the scores of each

observation on the basis given by the q columns of B(0). For each of these initial values we

run N2 IRWLS iterations, or until a tolerance level is achieved. The initial values giving

the best objective function after N2 iterations are then iterated until convergence. This

algorithm depends on the number of random starts N1, the desired tolerance for sequential

change in the objective function, and the number of iterations N2 that is applied to each

random candidate. In our experiments we used a tolerance of 10−6 and found that using

N1 = 50 random starts and N2 = 50 partial IRWLS iterations for each of them was

typically sufficient to find a good solution to (4), which is in line with the results of

Maronna (2005).

An implementation of this algorithm in R is publicly available on-line from

http://www.stat.ubc.ca/~matias/soft.html. Although a formal computational com-

plexity analysis of this algorithm is beyond the scope of his paper, our numerical experi-

ments reported in Section 5 show that the algorithm works very well. We tested the speed

of our R code using these settings on an Intel i7 CPU (3.5GHz) machine running Windows

7. In Table 1 we report the average time in CPU minutes over 10 random samples for

different combinations of the sample size (n), number of variables (p) and dimension of
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the subspace (q). Note that these times could be improved notably if the algorithm was

implemented in C or a language with faster linear algebra operations.

p

50 100 200 500

n q = 1 q = 2 q = 5 q = 1 q = 2 q = 5 q = 1 q = 2 q = 5 q = 1 q = 2 q = 5

50 4.2 4.3 3.9 8.7 8.9 8.1 17.8 17.9 16.8 53.5 53.8 53.3

70 4.4 4.4 4.0 8.9 8.5 8.1 17.7 17.8 17.3 55.0 56.9 60.1

100 5.0 4.9 4.8 9.9 10.0 8.9 20.5 22.6 23.6 69.0 67.2 70.8

200 5.6 6.0 5.8 11.5 12.2 10.8 25.8 28.1 25.0 97.6 108.5 116.3

Table 1: Average timing of the IRWLS algorithm in CPU minutes for different data and model

configurations using N1 = N2 = 50 and tolerance equal to 10−6.

2.2 Choosing the dimension of the approximating subspace

In some cases, the desired dimension of the linear subspace providing an approximation

to the data is either known or chosen in advance (e.g. for visualization purposes). In

many applications, however, this dimension is selected based on the resulting “proportion

of unexplained variability”.

Proposition 2.1 shows that for elliptically distributed random vectors x ∼ Ep(0,Σ, φ),

the functional Ψ(L) is minimized when L = Lq the subspace spanned by the first q

eigenvectors of the scatter matrix and Ψ(Lq) =
∑p

j=q+1 λj. Note that for q = 0 we have

Ψ(L0) =
∑p

j=1 λj = tr(Σ) =
∑p

j=1 σ
2
j,0, where σj,0 = σr(Fj,0) with Fj,0 the distribution

of rj(µ) = xj − µj. Thus, the proportion of unexplained variability can be defined as

uq = Ψ(Lq)/Ψ(L0) and an estimator of uq is given by ûq = Ψ̂n(L̂q)/Ψ̂n(L̂0), where L̂q
is defined in (4) and L̂0 corresponds to minimizing Ψ̂n (L0) =

∑p
j=1 σ̂

2
j,L0 with σ̂j,L0 =

σ̂(r1j(µ), . . . , rnj(µ)) the scale estimator of the jth coordinate of the residuals ri(µ) =

xi−µ = (ri1(µ), . . . , rip(µ))t. Proposition 2.2 can be used to show the consistency of ûq

to uq.
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To avoid the high computational cost of solving (4) for different values of q we adapt the

strategy of Maronna (2005). Let umax be the maximum allowed proportion of unexplained

variability, and a maximum dimension qmax of the approximating subspace. We look for

the smallest q0 such that q0 ≤ qmax and ûq0 ≤ umax. We first verify that ûqmax ≤ umax

otherwise the problem cannot be solved and we need to modify our goals. The procedure

starts with q1 = 1. If û1 ≤ umax we are done. Otherwise, assume that after j steps, we

have ûqj ≥ umax, where qj = j dimension used in step j. Let µ̂(qj) be the estimated center

and B̂qj ∈ Rp×qj the orthonormal basis of the best qj-dimensional subspace, with columns

b̂
(1)
qj , . . . , b̂

(qj)
qj . As before, let Âqj ∈ Rn×qj be the matrix of scores. Let qj+1 = qj + 1 and

define the matrices B =
(
B̂qj ,β

)
∈ Rp×qj+1 , with β ∈ Rp, and A =

(
Âqj ,α

)
∈ Rn×qj+1

with α ∈ Rn. Let b1, . . . ,bqj+1 and a1, . . . , an denote the columns of B and the rows of

A, respectively. We construct our predictions as x̂
(qj+1)
i` = µ̂

(qj)
` + ati b`, and note that the

residuals satisfy r
(qj+1)
i` = r

(qj)
i` −αiβ`. Our problem is now to minimize Ls(A,B, µ̂

(qj)) over

β, α such that B̂t
qj
β = 0, with Ls(A,B,µ) given in (2). A system of equations analogous

to that described in Section 2.1 can be derived to formulate an iterative re–weighted least

squares algorithm. Once the optimal β and α are found, we optimize Ls(A,B,µ) over µ

to obtain µ̂(qj+1). This approach is much faster than solving (4) for q = qj+1. Note that

ũqj+1
= Ψ̂n(L̃qj+1

)/Ψ̂n(L̂0) is typicaly larger than ûqj+1
, so that if ũqj+1

≤ umax, we select

q = qj+1, and otherwise increase j and continue.

3 S−estimators in the functional setting

In this section, we discuss extensions of the estimators defined in Section 2 to accom-

modate functional data. The most common situation corresponds to the case when the

observations correspond to realizations of a stochastic process X ∈ L2(I) with I an in-

terval of the real line, which can be assumed to be I = [0, 1]. A more general setup that

can accommodate applications where observations are images, for example, is to con-

sider realizations of a random element on a separable Hilbert space H with inner product
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〈·, ·〉H and norm ‖ · ‖H. Note that principal components for functional data (defined

via the Karhunen–Loève decomposition of the covariance function of the process X) also

have the property of providing best lower–dimensional approximations, in the L2 sense.

Recently, a stochastic best lower–dimensional approximation for elliptically distributed

random elements on separable Hilbert spaces, such as those considered when dealing with

multivariate data, was obtained by Boente et al. (2012). This optimality property does

not require second moment conditions.

However, even in the simplest situation when X ∈ L2([0, 1]), one rarely observes entire

curves. The functional datum for replication i usually corresponds to a finite set of discrete

values xi 1, . . . , ximi
with xij = Xi(tij), 1 ≤ j ≤ mi. Depending on the characteristics of

the grid of points tij where observations were obtained, one can employ different strategies

to analyze these data.

The easiest situation is when observations were made at common design points. In

this case, we have p = m1 = mi and tij = τj, for all 1 ≤ i ≤ n and 1 ≤ j ≤ p.

Defining xi = (xi 1, . . . , xi p)
t a purely multivariate approach can be used as in Section 2

to obtain a q−dimensional linear space L̂ spanned by orthonormal vectors b̂(1), · · · , b̂(q).

An associated basis in L2([0, 1]) can be defined as φ̂`(τj) = a`b̂` j, for 1 ≤ ` ≤ q, 1 ≤

j ≤ p, where a` is a constant to ensure that ‖φ̂`‖L2 = 1 and b̂(`) = (b` 1, · · · , b` p)t.

Smoothing over the observed data points one can recover the complete trajectory. This

approach provides a consistent estimator for the best approximating linear space and the

corresponding “fitted trajectories” π(Xi, L̂), 1 ≤ i ≤ n.

In many cases, however, trajectories are observed at different design points tij, 1 ≤ j ≤

mi, 1 ≤ i ≤ n. In what follows we will assume that as the sample size n increases, so does

the number of points where each trajectory is observed and that, in the limit, these points

cover the interval [0, 1]. Our approach consists of using a sequence of finite–dimensional

functional spaces that increases with the sample size. The basic idea is to identify each

observed point in H with the vector formed by its coordinates on a finite–dimensional

basis that increases with the sample size. The procedure of Section 2 can be applied
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to these vectors to obtain a q−dimensional approximating subspace, which can then be

mapped back onto H.

More specifically, let {δi}i≥1 be an orthonormal basis of H and, for each n ≥ 1,

let Hpn be the linear space spanned by δ1, . . . , δpn . To simplify the notation we write

p = pn. Let xij = 〈Xi, δj〉H be the coefficient of the ith trajectory on the jth ele-

ment of the basis, 1 ≤ j ≤ p, and form the p−dimensional vector xi = (xi1, . . . , xip)
t.

When, H = L2([0, 1]), the inner products 〈Xi, δj〉H can be numerically computed using

a Riemann sum over the design points for the ith trajectory {tij}1≤j≤mi
. We apply the

procedure described in Section 2 to the multivariate observations x1, . . . ,xn ∈ Rp to ob-

tain a q−dimensional linear space L̂ spanned by orthonormal vectors b̂(1), · · · , b̂(q) and

the corresponding “predicted values” x̂i = µ̂ +
∑q

`=1 âi`b̂
(`), with µ̂ = (µ̂1, . . . , µ̂p)

t. It

is now easy to find the corresponding approximation in the original space H. The lo-

cation parameter is µ̂H =
∑p

j=1 µ̂jδj, and the associated q−dimensional basis in H is

φ̂` =
∑p

j=1 b̂` jδj/‖
∑p

j=1 b̂` jδj‖H, for 1 ≤ ` ≤ q. Furthermore, the “fitted values” in H

are X̂i = µ̂H +
∑q

`=1 âi`φ̂`. Moreover, since ‖xi − x̂i‖Rp ' ‖Xi − X̂i‖H, we can also use

squared residual norms to detect atypical observations.

As in Section 2, we will derive the Fisher–consistency of this Sieves–approach for

observations generated by an elliptically distributed random object, which is a natural

generalization of elliptical random vectors to an infinite–dimensional setup. The following

definition was given in Bali and Boente (2009).

Definition 3.1. Let X be a random element in a separable Hilbert space H. We will

say that X has an elliptical distribution with parameters µH ∈ H and Γ : H → H,

where Γ is a self–adjoint, positive semi–definite and compact operator, if and only if

for any linear and bounded operator A : H → Rd we have that the vector AX has a

d−variate elliptical distribution with location parameter AµH, shape matrix AΓA∗ and

characteristic generator φ, that is, AX ∼ Ed(AµH, AΓA∗, φ) where A∗ : Rd → H denotes

the adjoint operator of A. We write X ∼ E(µH,Γ, φ).
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To study the Fisher–consistency of our Sieves approach, we need to introduce some

notation in order to define the corresponding functional. Let ⊗ denote the tensor product

in H, i.e., for any two elements u, v ∈ H the operator u ⊗ v : H → H is defined as

(u ⊗ v)w = 〈v, w〉u for w ∈ H. To simplify the presentation, assume that the location

parameter µH equals 0. Let x ∈ Rp be the random vector defined by x = ApX with

Ap : H → Rp defined by

Ap =

p∑
j=1

ej ⊗ δj , (7)

where ej, 1 ≤ j ≤ p, denote the elements of the canonical basis of Rp and {δi}i≥1 is a

fixed orthonormal basis of H. In other words, ApX consists of the p coefficients of X on

the basis δ1, . . . , δp. For a matrix B ∈ Rp×q with BtB = Iq, let LB denote the linear

space spanned by its columns. As in Section 2, define the objective function

Ψp(LB) =

p∑
j=1

σ2
j,LB , (8)

where σj,LB = σr(Fj(LB)) and Fj(LB) denotes the distribution of the jth coordinate

rj(LB) of the vector of residuals r(LB) = x−π(x,LB) = (I−BBt)x = (r1(LB), . . . , rp(LB))t.

The subscript p in the function defined in (8) emphasizes the fact that we have trans-

formed the random object X into the p−dimensional random vector x. Let b(1), . . . , b(q)

denote the columns of the matrix B and let φ`(B) ∈ H be given by

φ`(B) =

p∑
j=1

b` jδj =
( p∑
j=1

δj ⊗ ej
)
b(`) , 1 ≤ ` ≤ q . (9)

We denote asHB the linear space spanned by the orthonormal elements φ1(B), . . . , φq(B).

In what follows, and without loss of generality, we will assume that µH = 0. Let

X be an elliptical random element X ∼ E(0,Γ, φ), with Γ the self–adjoint, positive

semi–definite and compact scale operator. Consider the spectral value decomposition

of the scale operator Γ =
∑∞

j=1 λj φj ⊗ φj, where λj denotes the jth largest eigenvalue

with associated eigenfunction φj, j ≥ 1. The next proposition shows that, as p tends

to infinity, the lowest value of Ψp(LB) converges to
∑

j≥q+1 λj, the trace of the operator
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(IH − P )Γ(IH − P )∗ where P =
∑q

j=1 φj ⊗ φj, and IH is the identity operator in H.

This is the infinite–dimensional counterpart of the classical optimal property of principal

components for random vectors. Together with Proposition A1 in Boente et al. (2012), the

following result shows that the proposed estimators are Fisher–consistent for elliptically

distributed random elements on a separable Hilbert space H.

Proposition 3.1. Let X ∼ E(0,Γ, φ) be an elliptically distributed random element on

a separable Hilbert space H with location 0 and positive semi–definite, self–adjoint and

compact scale operator Γ. Let λ1 ≥ λ2 ≥ . . . be the eigenvalues of Γ with associated

eigenfunctions φj, j ≥ 1. If
∑

j≥1 λj <∞ and λq > λq+1, then

lim
p→∞

min
B∈Rp×q ,BtB=Iq

Ψp(LB) =
∑
j≥q+1

λj . (10)

Let B0,p be the minimizer of (8) over {B ∈ Rp×q,BtB = Iq}. Then, as p → ∞, the

sequence of linear spacesHB0,p converges to the linear space spanned by the eigenfunctions

φ1, . . . , φq associated with the q largest eigenvalues of Γ.

3.1 Algorithm for functional data

In this section we give details on how to compute our S−estimators for functional principal

components. The basic idea is given above and consists of applying the algorithm of

Section 2.1 to the coordinates of the observed data on a sufficiently rich orthonormal

basis of the Hilbert space, and then transforming back the result to the original variables.

To fix ideas, consider the case where the data consist of functions Xi, 1 ≤ i ≤ n,

observed at points t1, . . . , tm. We approximate the L2 inner product with a Riemann

sum over the grid of points: 〈α , β〉H =
∫
α(t)β(t) dt ≈

∑m
`=2 α(t`)β(t`)(t` − t`−1).

Let ν1, . . . , νp be a B-spline basis. We orthonormalize ν1, . . . , νp using the approxi-

mated inner product to obtain orthonormal elements δ1, . . . , δp. Let ∆ ∈ Rm×p be

the matrix of the functions δj evaluated at the points ti: ∆ = (δ1, δ2 . . . δp), where
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δj = (δj(t1), δj(t2), . . . , δj(tm))t. Then, if X ∈ Rn×m is the matrix of observed trajecto-

ries (one in each row), the coordinates of each Xi on each element δj of the spline basis

is denoted as x̃i,j =
∑m

`=2Xi(t`)δj(t`)(t` − t`−1) ≈ 〈Xi , δj〉H, 1 ≤ i ≤ n, 1 ≤ j ≤ p.

We now apply the algorithm given in Section 2.1 to the “data” matrix X̃ ∈ Rn×p of

the coordinates of our observations on the B–spline basis. We obtain the centre vector

µ̃ ∈ Rp, an orthonormal basis B̃ ∈ Rp×q of the best q dimensional subspace and the

matrix of scores Ã ∈ Rn×q. The matrix
̂̃
X = In µ̃t + ÃB̃t provides the q dimensional

approximation to our functional data written in the B–splines basis. Finally, we express

our solution in the original variables X̂ =
̂̃
X ∆t. Note that X̂ = In (∆ µ̃)t + Ã(∆ B̃)t.

In other words, ∆ µ̃ ∈ Rm is the vector of the centre function µ̂H evaluated at the points

t1, . . . , tm, and ∆ B̃ ∈ Rm×q is the matrix of q orthonormal functions φ̂` spanning the best

lower approximation space in H, evaluated on the same points.

4 Outlier detection

An important use of robust estimators for multivariate data is the detection of poten-

tially atypical observations in the data, see, for example, Rousseeuw and Van Zomeren

(1990), Becker and Gather (2001), Pison and van Aelst (2004) and Hardin and Rocke

(2005). Unfortunately, these approaches to outlier detection do not extend naturally to

the functional case.

Alternatively, one can consider the PCA residuals as indicators of outlyingness. Given

a sample x1, . . . ,xn in Rp and the estimated subspace L̂ = LB̂ in (4), one can construct

the corresponding “best q−dimensional” approximations x̂i = µ̂ + π(xi − µ̂,LB̂) = µ̂ +

B̂B̂t(xi − µ̂), 1 ≤ i ≤ n. We expect outlying or otherwise atypical observations to

be poorly fitted and thus to have a relatively large residual Ri = ‖ri(LB̂)‖Rp = ‖(I −

B̂B̂t)(xi − µ̂)‖Rp , 1 ≤ i ≤ n. Exploring the norm of these residuals sometimes provides

sufficient information to detect abnormal points in the data. It is worth noticing that the

distribution of the residuals squared norm R2
i is unknown, but typically skewed to the
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right because they are bounded by 0 from below. Following the approach of Hubert and

Vandervieren (2008), we propose to flag an observation as atypical if its squared residual

norm exceeds the upper whisker of an skewed-adjusted boxplot.

Another way to use principal components to look for potential outliers considers the

scores of each point on the estimated principal eigenvectors. The solution to (4) provides

an estimated basis b̂(j), 1 ≤ j ≤ q (the columns of B̂) for the optimal q−dimensional linear

space spanned by the first q eigenvectors, but the b̂(j)’s themselves need not be estimates

of the principal directions. However, we can use an approach similar to “projection

pursuit” to sequentially search for vectors in L̂B̂ that maximize a robust scale estimate

of the corresponding projections of the data. Specifically, for each γ ∈ L̂B̂, let Fn[γ] be

the empirical distribution of the projected observations γtx1, . . . ,γ
txn, and σr(Fn[γ])

the corresponding scale estimator. The estimated first principal direction is obtained

maximizing σr(Fn[γ]) over unitary vectors in L̂B̂. Subsequent principal directions are

similarly computed with the additional condition of being orthogonal to the previous

ones. The scores of each observation on the estimated principal directions can be used to

screen for atypical data points.

Both of these last two approaches have natural counterparts for functional data and

can be used with the estimators defined in Section 3. Hyndman and Shang (2010) define

two detection rules based on the scores of a robust two–dimensional fit and compare them

with a residuals-based PCA procedure introduced in Hyndman and Ullah (2007). Our

simulation study in Section 5 includes these methods as well those based on functional

depth proposed by Febrero et al. (2007, 2008).

As in the finite–dimensional case, to find potential outliers one may consider looking for

curvesXi that are poorly predicted by the S−estimator using the squared prediction errors

R2
i,H = ‖Xi − X̂i‖2

H, i = 1, . . . , n. As in the finite–dimensional case, the distribution of

these prediction residuals is unknown and difficult to estimate. Hyndman and Ullah (2007)

proposed to use a normal approximation to the residual squared norm, which they called

the integrated squared error, to define a threshold. Our approach is more data analytic
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and does not depend on the underlying distribution of the process even if we always have

in mind that the uncontaminated process has a symmetric distribution. For that reason,

we mimic the proposal given in the finite–dimensional case and to decide whether an

observation may be flagged as a potential outlier, we used the adjusted boxplot of Hubert

and Vandervieren (2008) on the residuals R2
i,H, identifying as an atypical observation a

value exceeding the upper whisker of the adjusted boxplot. We use this approach in the

examples and in our simulation study discussed below.

5 Simulation

In this section we present the results of a a simulation study performed to investigate

the finite–sample properties of our robust sieve proposal. In all cases, we generated 500

samples of size n = 70 where each trajectory was observed at m = 100 equidistant

points in the interval [0, 1]. We used a cubic B−spline basis of dimension p = 50, which

is sufficiently rich to represent the data well. This choice represents a realistic situation

where the sample size is similar to the dimension of the problem. Other reasonable choices

for the dimension of the spline basis (even with n < p) yielded very similar results and

lead to the same conclusions in our numerical experiments.

5.1 Simulation settings

The following three different models constructed from finite– and infinite–range processes

were used to generate the data. In two of them we included a relatively small proportion

of measurement errors, as is usual in many applications.

Model 1 This model corresponds to the case where most of the curves follow a smooth

trajectory, but some of them may display sudden vertical jumps at a few time points.

In this setup, the non–contaminated observations Xi ∼ X, 1 ≤ i ≤ n, with X(ts) ∼

10 + µ(ts) + ξ1φ1(ts) + ξ2φ2(ts) + zs, s = 1, . . . , 100, where the additive errors zs are
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i.i.d N(0, 1), the scores ξ1 ∼ N(0, 25/4), ξ2 ∼ N(0, 1/4), ξ1 and ξ2 are independent and

independent of zs. The mean function is µ(t)=5+10 sin(4πt) exp(−2t)+5 sin(πt/3)+2

cos(πt/2) and φ1(t) =
√

2 cos(2πt) and φ2(t) =
√

2 sin(2πt) correspond to the Fourier

basis.

We also generated contaminated trajectories X
(c)
i as realizations of the process X(c)

defined byX(c)(ts) = X(ts) + V Y (ts), s = 1, . . . , 100, where V ∼ Bi(1, ε1) is independent

of X and Y , Y (ts) = Ws z̃s with Ws ∼ Bi(1, ε2), z̃s ∼ N(µ(c), 0.01), Ws and z̃s are all

independent. In other words, a trajectory is contaminated with probability ε1, and at any

point ts the contaminated function is shifted with probability ε2. The shift is random but

tightly distributed around the constant µ(c) = 30. Samples without outliers correspond

to ε1 = 0. To investigate the influence of different outlier configurations our estimator,

we considered the settings: ε1 = 0.10 and ε1 = 0.20, with ε2 = 0.30 in both cases.

Model 2 This situation corresponds to a similar case as in Model 1, but with some

curves starting on a different trajectory that joins smoothly with the one that most

curves follow. In this case, non–contaminated observations Xi ∼ X were generated as

X(ts) ∼ 150 − 2µ(ts) + ξ1φ1(ts) + ξ2φ2(ts) + zs, s = 1, . . . , 100, where zs, ξ1, ξ2, µ,

φ1 and φ2 are as in the previous model. However, contaminated trajectories are only

perturbed in a specific part of their range. The atypical observations satisfy X
(c)
i ∼ X(c)

where X(c)(ts) = X(ts) + V Y (ts) for ts < 0.4 and X(c)(ts) = X(ts) for ts ≥ 0.4,

where V ∼ Bi(1, ε1) is independent of X and Y , Y (ts) = Wsz̃s with Ws ∼ Bi(1, ε2),

z̃s ∼ N(µ(c)(ts), 0.01), with µ(c)(ts) = −5− 2µ(ts), and Ws and z̃s are all independent. In

this model we used ε1 = 0.10 and ε1 = 0.20, and in both cases we set ε2 = 0.90.

Model 3 This setting corresponds to functions that follow an infinite-rank stochastic

process. Contamination is present in terms of short sudden vertical shifts. Curves were

generated from a Gaussian process with covariance kernel γX(s, t) = 10 min(s, t). The

eigenfunctions of the covariance operator equal φj(t) =
√

2 sin ((2j − 1)(π/2)t), j ≥ 1,
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with associated eigenvalues λj = 10 (2/ [d(2j − 1)π])2. As in Sawant et al. (2012), the

contaminated observations X
(c)
i are defined as X

(c)
i (s) = Xi(s) + ViDiM I{Ti<s<Ti+`},

where Vi ∼ Bi(1, ε) , P(Di = 1) = P(Di = −1) = 1/2, Ti ∼ U(0, 1 − `), ` < 1/2 and Vi,

Xi, Di and Ti are independent. We choose ` = 1/15, M = 30 and ε = 0.1 and 0.2.

5.2 The estimators

We computed the classical principal components estimator (LS) as well as the robust one

defined in (2), using an M−scale estimator, with function ρc in Tukey’s bi–square family

with tuning constants c = 1.54764 and b = 0.50. We also considered the choice c = 3.0 and

b = 0.2426, which we expect to yield more efficiency. The robust estimators are labelled

as S (1.5) and S (3) in the tables. As mentioned in Section 2.1, after obtaining the robust

q−dimensional linear space, we orthonormalize its basis and compute the scores âi as

the corresponding orthogonal projections. We also computed the sieve projection–pursuit

approach proposed in Bali et al. (2011), which is called “PP” in our Tables below. For

comparison purposes, we have also calculated the mean squared prediction errors obtained

with the true best q−dimensional linear space for uncontaminated data. This benchmark

is indicated as “True” in all Tables.

Since trajectories following Models 1 and 2 were generated using a two–dimensional

scatter operator (i.e. the underlying process had only 2 non–zero eigenvalues) plus mea-

surement errors, we used q = 1 with our estimator. For Model 3, we used q = 4, which

results in 95% of explained variance.

5.3 Simulation results

To summarize the results of our simulation study, for each replication we consider mean

squared prediction errors in the original space, i.e., based on ‖Xi−X̂i‖2
H. The conclusions

that can be reached using the finite–dimensional residuals squared prediction error ‖xi−

x̂i‖2
Rp are the same as those discussed below, and hence are not reported here. We report
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the average mean squared error for outlying and non–outlying trajectories separately, as

a way to quantify how the procedures fit the bulk of the data. More specifically, let γi = 1

when Xi is an outlier and γi = 0 otherwise, then

PEH,out =
1

n

n∑
i=1

γi‖Xi − X̂i‖2
H and PEH,clean =

1

n

n∑
i=1

(1− γi)‖Xi − X̂i‖2
H . (11)

Note that the total prediction error equals PEH = (1/n)
∑n

i=1 ‖Xi − X̂i‖2
H = PEH,out +

PEH,clean. We also report the mean PE over contaminated and clean trajectories sepa-

rately:

PEH,out =

∑n
i=1 γi‖Xi − X̂i‖2

H∑n
i=1 γi

, (12)

and

PEH,clean =

∑n
i=1(1− γi)‖Xi − X̂i‖2

H∑n
i=1(1− γi)

. (13)

We also compute the prediction squared errors of the actual best lower dimensional pre-

dictions X̂0
i , obtained with the first q true eigenfunctions (recall that we used q = 1 in

Models 1 and 2, and q = 4 in Model 3). The results for this “estimator” are tabulated in

the row labelled “True”. The averages over the 500 replications of PEH,out, PEH,clean,

PEH,out and PEH,clean are labelled “Out”, “Clean” , “Out” and “Clean”, respectively.

ε1 = ε2 = 0.00 ε1 = 0.10 ε1 = 0.20

Method Clean Out Clean Out
1

Clean Out Clean Out
1

Clean

True 1.266 26.930 1.138 269.316 1.264 53.780 1.013 269.685 1.265

LS 1.246 18.961 5.065 193.372 5.679 37.429 5.682 187.461 7.104

S (3) 1.253 26.922 1.126 269.245 1.252 53.425 1.081 268.453 1.361

S (1.5) 1.308 26.872 1.270 268.937 1.417 53.241 1.464 267.400 1.850

PP 1.335 26.536 1.335 265.791 1.486 51.845 1.559 260.972 1.972

Table 2: Mean prediction errors over 500 replications for Model 1.

As expected, when no outliers are present all procedures are comparable, with a small

loss for the robust procedures. The S−estimator with c = 3 had the second smallest mean
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ε1 = ε2 = 0.00 ε1 = 0.10 ε1 = 0.20

Method Clean Out Clean Out
1

Clean Out Clean Out
1

Clean

True 1.359 10.063 1.222 100.589 1.358 20.054 1.087 100.598 1.358

LS 1.339 1.597 4.032 19.528 4.512 1.840 4.482 9.505 5.610

S (3) 1.346 9.839 1.380 99.230 1.541 12.427 2.357 69.919 3.035

S (1.5) 1.401 9.638 2.047 97.207 2.296 17.916 2.891 90.648 3.645

PP 1.428 8.922 1.427 90.696 1.589 14.865 1.618 76.535 2.039

Table 3: Mean prediction errors over 500 replications for Model 2.

ε = 0.00 ε = 0.10 ε = 0.20

Method Clean Out Clean Out
1

Clean Out Clean Out
1

Clean

True 0.304 4.411 0.274 44.163 0.304 8.842 0.243 44.088 0.304

LS 0.285 2.074 0.660 18.457 0.736 5.599 0.711 27.363 0.893

S (3) 0.301 4.412 0.269 44.148 0.299 8.846 0.237 44.113 0.297

S (1.5) 0.354 4.465 0.318 44.674 0.354 8.931 0.284 44.535 0.355

PP 0.385 4.439 0.355 44.397 0.394 8.913 0.321 44.430 0.402

Table 4: Mean prediction errors over 500 replications for Model 3.

squared prediction error, after the LS. When samples were contaminated, the classical

procedure based on least squares tries to compromise between outlying and non–outlying

trajectories and this is reflected on the values of PEH,out and PEH,clean in (11), and also

on the average prediction error of the contaminated and non–contaminated trajectories in

(12) and (13) appearing in the columns labelled “Out” and “Clean”. With contaminated

samples the S−estimator had the best performance overall. Its mean squared prediction

was closest to the “True” one, and it also provided better fits to the non–contaminated

samples (and worse predictions for the contaminated trajectories). This last observation

can be seen comparing the columns labelled “Out” and “Clean”, which correspond to

(12) and (13), respectively. The only case when the sieves projection–pursuit estimator

performed slightly better than the S−estimator is for Model 1 with ε1 = 0.10 and ε2 =
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0.60. The advantage of the S−estimator was more notable in all the other cases of Model

1, Model 2 and Model 3.

We also compared the performance of different outlier detection methods for functional

data. As described in Section 4, we used the squared prediction errors R2
i,H = ‖Xi−X̂i‖2

H,

i = 1, . . . , n, to find curves Xi that are poorly predicted. Those with squared prediction

errors exceeding the upper whisker of the adjusted boxplot will be flagged as outliers. We

used the same approach with predictors X̂i obtained using the other estimators mentioned

before.

In addition, we included other outlier–detection methods for functional data that

appeared in the literature. We considered the functional high-density region and the

functional bagplots of Hyndman and Shang (2010) with a 99% coverage, denoted HDR

and BAG, respectively, as well as the integrated squared error method defined in Hyndman

and Ullah (2007), denoted HU. The first two methods are based on the scores of a two–

dimensional robust projection–pursuit fit. To keep the comparison fair, for HU we chose

a q−dimensional robust fit with q = 1 under Models 1 and 2 and q = 4 under Model

3. Furthermore, we also compared our detection rule with the proposals based on a

likelihood-ratio-type statistic given in Febrero et al. (2007) and on the modal depth,

using both trimmed and weighted bootstrap estimates for the threshold as proposed in

Febrero et al. (2008). These methods are denoted LRT, DTR and DWE, respectively.

These detection rules are implemented in the R package rainbow.

For each model and each outlier detection method, in Tables 5 to 7 we report the

average sensitivity and specificity over the 500 samples. Sensitivity is the proportion of

actual outliers that are correctly flagged as such, while specificity is the proportion of non–

outlying curves correctly identified as not atypical. An ideal method will simultaneously

maintain high sensitivity and specificity.

For Model 1, we note that DRT, DWE and HU identify too many curves as outliers

(resulting in a high sensitivity but low specificity). On the other hand, LRT, HDR and

BAG consistently miss most of the outliers (low sensitivity), as does LS when the pro-
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portion of outliers is 20%. Using prediction residuals based on S− and the projection

pursuit estimators offers the best overall performance. When the data follow Model 2,

LS, HDR, LRT, DTR and DWE fail to detect most of the outliers, as does BAG for

ε = 0.20. Again, HU flags too many curves as outlying. The relatively low specificity of

DTR and DWE (and to some extent BAG) seems to indicate that the few observations

flagged as outliers are not the truly atypical ones. Once again the approach based on

S- and projection pursuit estimators works best. Note that although the S(1.5) appears

to miss around half of the outliers for ε1 = 0.20, those flagged as atypical are correctly

identified. The results for Model 3 are very similar to those for Model 1. Overall, for the

three scenarios considered here, the clear best method to detect functional outliers is to

use the squared prediction residuals based on a robust principal components estimator.

Sensitivity

ε1 LS PP S(3) S(1.5) HDR BAG LRT DTR DWE HU

0.10 0.914 1.000 1.000 0.998 0.155 0.597 0.305 1.000 1.000 1.000

0.20 0.295 0.835 0.856 0.833 0.074 0.224 0.018 1.000 1.000 1.000

Specificity

0.00 0.982 0.982 0.981 0.982 0.986 0.983 0.978 0.802 0.802 0.782

0.10 0.999 0.997 0.996 0.997 0.999 0.982 1.000 0.839 0.839 0.792

0.20 1.000 1.000 1.000 1.000 0.999 0.989 1.000 0.897 0.897 0.808

Table 5: Average sensitivity and specificity over 500 random samples following Model 1

6 Examples

6.1 Ground level Ozone concentrations

These data contains hourly average measurements of ground level ozone (O3) concentra-

tion from a monitoring station in Richmond, BC, Canada. Ozone at ground level is a
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Sensitivity

ε1 LS PP S(3) S(1.5) HDR BAG LRT DTR DWE HU

0.10 0.178 0.996 0.979 0.915 0.135 0.774 0.059 0.350 0.353 1.000

0.20 0.020 0.708 0.637 0.474 0.053 0.079 0.005 0.239 0.239 1.000

Specificity

0.00 0.980 0.980 0.980 0.980 0.986 0.982 0.978 0.803 0.803 0.782

0.10 0.996 0.997 0.997 0.997 0.997 0.958 1.000 0.817 0.817 0.774

0.20 0.994 1.000 0.997 1.000 0.994 0.988 0.999 0.815 0.815 0.770

Table 6: Average sensitivity and specificity over 500 random samples following Model 2

Sensitivity

ε1 LS PP S(3) S(1.5) HDR BAG LRT DTR DWE HU

0.10 0.936 1.000 1.000 1.000 0.148 0.489 0.124 0.982 0.988 1.000

0.20 0.603 0.848 0.850 0.848 0.071 0.418 0.063 0.922 0.977 1.000

Specificity

0.00 0.987 0.986 0.987 0.987 0.986 0.983 0.990 0.804 0.804 0.849

0.10 0.998 0.997 0.998 0.998 0.999 0.988 1.000 0.838 0.837 0.869

0.20 1.000 1.000 1.000 1.000 0.999 0.991 1.000 0.863 0.886 0.896

Table 7: Average sensitivity and specificity over 500 random samples following Model 3

serious air pollutant and its presence typically peaks in summer months. We focus on

the month of August, and obtained data for the years 2004 to 2012. We have 176 days

with hourly average O3 measurements. Our purpose is to identify days in which the

temporal pattern of O3 concentration appears different from the others. Based on the

strong pattern observed in the data, we consider 1−dimensional approximations. We use

an S−estimator with tuning constant c = 3 applying the approach described in Section 3

with a cubic B−spline basis of dimension p = 10. To find potentially outlying curves we

use as threshold the upper whisker of the adjusted boxplot of Hubert and Vandervieren

(2008) applied to the squared prediction errors using the LS and S-estimators. Figure
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2 contains the estimated density of the L2 norm of the residuals for each of the 176

curves when we compute predictions using our S-estimators (panel a) and the classical

LS ones (panel b). The dashed line in Figure 2 corresponds to the threshold suggested

by adjbox(). While there are a few extreme outliers at the right tail of each plot, both

plots also show a relatively heavy tail that suggests the presence of moderate outliers.

The solid line indicates approximately the beginning of this heavy tail, and is the cut-off

used in our analysis.
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(a) Residuals using a robust best fit (b) Residuals using classical PCA

Figure 2: Estimated density of the squared prediction errors for the ground level ozone data

with (a) the S-estimator and (b) the classical one. The dashed line corresponds to the threshold

suggested by adjbox() while the solid one indicates the beginning of a relatively heavy tail

To make the visualization of the results easier, each panel in Figure 3 shows the

observations detected as outliers on one year, both by the robust estimator (solid lines)

and the classical approach (dashed lines). The thin gray lines in the background show

all the available observations, and are included as a visual reference, while the light

dashed horizontal line at 50 ppb is the current maximum recommended level. We see

that the robust fit identifies as outliers all of the days with relatively high peaks of O3

concentration, but also some days that exhibit a “flat” profile.
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Since ground level ozone is produced by the reaction between sunlight and other

compounds in the air, we use temperature data to verify whether the potential outliers

identified above correspond to atypical days. Figure 4 shows maximum daily temperature

for the months of August between 2004 and 2012 together with the daily amount of rain.

Days for which O3 data is not available are indicated with white circles. A day identified

as having an atypical O3 profile by the robust fit is marked with a large solid circle.

Potential outliers identified by the classical approach are indicated with a solid triangle.

We see that the outliers identified by the robust fit correspond to days with either a

very high or low temperature. Furthermore, outlying days with a “flat” O3 profile are

those with a low maximum temperature, while days with a sharp O3 peak correspond

to particularly hot days. On the other hand, days flagged as possible outliers by LS

generally do not show any pattern with respect to temperature. This analysis shows that

the robust method is able to identify potential outliers that correspond to extreme values

of an unobserved but closely associated meteorological variable (temperature). In other

words, the robust method is able to uncover outliers that correspond to actual atypical

days.

6.2 Mortality data

In this example we explore human mortality data, available on–line from the Human

Mortality Database (Human Mortality Database, 2013). We restrict our attention to

death rates per age group for men in France. For each year, we use the logarithm of

the death rate of people between the ages of 0 and 99. Panel (a) in Figure 5 shows the

mortality curves for the years between 1816 to 2010. Dark lines correspond to years after

1945. We observe a clear difference in the pattern of male mortality curves in France

before and after the Second World War. This phenomenon is sometimes attributed to

technological advances and quality of life changes in Europe after 1945. We also note

that there is a 3−year transitional period (1946–1948) in which the mortality curves lie
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(b) Robust predictions for the years 1816–1948

Figure 5: Mortality data. Panel (a) contains the curves for the years 1816 to 2010. Darker lines corre-

spond to years after 1945. Panel (b) depicts the predicted trajectories corresponding to the 2−dimensional

subspace that best approximates the curves before the post–war years (1816–1948), estimated using our

S−estimator. The black line is the estimated central curve.

between the two main groups. In this analysis we focus on the period 1816–1948, that

includes the pre–war and the “transition” periods. The purpose of this analysis is to

detect years in which the pattern of mortality across age groups is noticeably different

from the majority of curves in the data. We computed an S−estimator with tuning

constant c = 3 to find the best 2−dimensional subspace approximating these curves. We

used the approach described in Section 3 with a cubic B−spline basis of dimension p = 20.

A two–dimensional fit was also considered in Hyndman and Ullah (2007) and Hyndman

and Shang (2010). Figure 5 (b) contains the estimated central curve plotted over the

original data, and also over the robustly predicted curves.

As described in Section 4, we looked for outlying curves by means of the adjusted

boxplot of Hubert and Vandervieren (2008) on the squared prediction errors using the

LS and S−estimators. With the robust fit we identified the following years as atypical:

1855, 1871, 1914–1919, 1940, and 1942–1948, while the LS fit only identifies the periods

1914–1915 and 1943–1948. It is interesting to note that in 1855 France was involved in

the Crimean War, and in 1871 in the Prussian War. The period 1914 to 1919 corresponds
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to World War I and the Spanish Flu epidemic. France falls to German occupation in

1940 and after a relatively calm year in 1941, sees more action in the period 1942 to

1944. Figure 6 contains the curves corresponding to these four events (the Crimean and

Prussian Wars, and the 2 World Wars), along with the predictions resulting from the S

and LS estimators. Note that the predicted curves based on the robust estimator do not

fit well the mortality profiles for these atypical years, which allows us to detect them as

outlying. On the other hand, it is interesting to note that the LS estimator is not able

to detect the Crimean and Prussian Wars, neither the early World War II casualties in

France (1940 and 1942). Both estimators properly identify the post–war years as atypical.

7 Concluding Remarks

In this paper, we propose a robust estimator for the subspace spanned by the first q

principal components. We show that our method is consistent and can be used in general

settings, including functional data applications. In this case, our method works well

when the observations can be well represented in an sufficiently rich but arbitrary basis.

Moreover, the resulting robust predictions can be used to detect atypical observations

in the data. This is confirmed in our simulation study, where this outlier detection

method compares very favourably to other proposals in the literature. Our estimators are

defined via a non-convex optimization problem which is difficult to solve. As it is done

for similar problems arising in other contexts (robust linear regression and multivariate

location and scatter estimators, for example) we use first order conditions to derive an

iterative re-weighted least squares-type algorithm. Extensive numerical experiments show

that this algorithm provides estimators with good statistical properties. It would be

interesting, but beyond the scope of this work, to study whether a convex relaxation

of the optimization problem (2) can provide a more scalable algorithm with comparable

robustness and statistical properties.
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A Appendix

Proof of Proposition 2.1. Note that since x ∼ Ep(0,Σ, φ), z = Λ−1/2βtx is spheri-

cally distributed, so that all its components have the same distribution G. Without loss

of generality, assume that σr(G) = 1. Let L be a linear space of dimension q, with or-

thonormal basis b(1), . . . ,b(q). If we arrange this basis as columns of a matrix B ∈ Rp×q

we have that r(L) = (r1(L), . . . , rp(L))t = x−π(x,L) = (I−BBt)x ∼ Ep(0,ΣL, φ), with

39



ΣL = (I − BBt)Σ(I − BBt)t = CΣCt, with C = (I − BBt). Since x = βΛ1/2z, we

see that r(L) can be written as CβΛ1/2z. Therefore, the characteristic function of r(L)

is given by ϕr(L)(t) = ϕz(Λ
1/2βtCtt) = φ(ttCΣCtt), where φ denotes the generator of

the characteristic function of z. Hence, for the jth coordinate of the vector of residuals we

have ϕrj(L)(t) = ϕr(L)(tej) = φ(t2 etj CΣCtej) = φ(t2 ctj Σcj) = ϕz1(t
2 ctj Σcj). It follows

that rj(L) ∼ ξjz1 where z1 ∼ G and ξ2
j = ctj Σcj. This implies that σ2

j,L = σ2
r(Fj(L)) =

ctj Σcj. Hence,
∑p

j=1 σ
2
j,L =

∑p
j=1 ctj Σcj = tr(CΣCt). This last expression is minimized

when B = (β1, . . . ,βq) (see Seber, 1984, Theorem 5.3) and the solution is unique since

λq > λq+1.

Proof of Proposition 2.2. Let an = supdim(L)=q |Ψ̂n(L) − Ψ(L)| and note that

Ψ̂n(L̂) ≤ Ψ̂n(L(P )) = Ψ(L(P ))+an and similarly Ψ(L(P )) ≤ Ψ(L̂) ≤ Ψ̂n(L̂)+an. Hence

Ψ̂n(L̂) ≥ Ψ(L(P ))− an and we obtain Ψ̂n(L̂)
a.s.−−−→
n→∞

Ψ(L(P )) and Ψ(L̂)
a.s.−−−→
n→∞

Ψ(L(P )).

Standard arguments now imply the convergence of the linear spaces since L(P ) is unique.

Hence, one can choose an orthonormal basis of L̂ converging with probability one to a

basis of L(P ).

Proof of Proposition 3.1. To illustrate the main idea of the proof, we start with

the (easy) case where the orthonormal basis {δj} is the basis φj of eigenfunctions of Γ.

Assume that m = mn is such that mn > q and {φ1, . . . , φq} ⊂ {δ1, δ2, . . . , δmn}. Without

loss of generality, assume that δj = φj, for 1 ≤ j ≤ q and that δj = φ`j for q+ 1 ≤ j ≤ mn

with q < `q+1 < · · · < `mn . Then, x = AX ∼ Ep(0,Σ, φ) where A is defined in (7)

and Σ = AΓA∗ = diag(λ1, . . . , λq, λ`q+1 , . . . , λ`m) where λq > λ`q+1 > · · · > λ`m . Then,

using Proposition 2.1, for any B ∈ Rm×q such that BtB = Iq, we have Ψm(LB) =∑m
j=1 σ

2
j,LB ≥

∑m
j=1 σ

2
j,LB0,m

=
∑m

s=q+1 λ`s , where B0,m = (e1, . . . , eq). Hence, using that

limm→∞
∑m

s=q+1 λ`s =
∑

s≥q+1 λs = tr(Γ) −
∑q

j=1 λj = tr ((IH − P )Γ(IH − P )∗). Note

that, in this case, φj(B0,m) = φj, where φj(B) is defined in (9). Hence, HB0,m is the linear

space spanned by φ1, . . . , φq, which shows Fisher–consistency.

Let us now consider the general situation. As before, we have x = AX ∼ Ep(0,Σ, φ)

where A is defined in (7) and Σ = AΓA∗. Recall that A∗ =
∑m

j=1 δj ⊗ ej, so that for
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any y ∈ Rm, A∗y =
∑m

j=1 yjδj. Let Hm be the linear subspace spanned by {δ1, . . . , δm}

and Πm : H → Hm be the projection operator over Hm, that is, Πm =
∑m

j=1 δj ⊗ δj. We

have that Πm is self–adjoint and Πmν = ν for ν ∈ Hm. Moreover, Πm → IH in the strong

operator topology, where IH is the identity operator in H, that is, Πmx → x for any

x ∈ H, as m→∞. It follows that for any compact operator Υ, ΠmΥ→ Υ as m→∞ in

the norm operator topology.

It is easy to show that, if u ∈ Rm is an eigenvector of Σ related to an eigenvalue α,

then ν = A∗u is an eigenfunction of Υm = ΠmΓΠ∗m associated to α. Similarly, if ν is

an eigenfunction of Υm with eigenvalue α, then Aν is an eigenvector of Σ with the same

eigenvalue α. Hence, the m−largest eigenvalues of Υm are those of Σ with the relation

among eigenvectors and eigenfunctions just described. Note that since the range of Υm

is m, Υm has at most m non–null eigenvalues. Let B0,m ∈ Rm×q be a matrix containing

the eigenvectors of Σ related to its m largest eigenvalues as columns. In other words,

B0,m = (β1, . . . ,βq) where βj is the eigenvector of Σ related to its jth largest eigenvalue

denoted αj. Then, αj = λj(Υm), where λj(Υ) denotes the jth largest eigenvalue of the

operator Υ.

Using Proposition 2.1 we get that, for any B ∈ Rm×q such that BtB = Iq, Ψm(LB) =∑m
j=1 σ

2
j,LB ≥

∑m
j=1 σ

2
j,LB0,m

=
∑m

s=q+1 αs =
∑m

s=q+1 λs(Υm), Noting that tr(Σ) = tr(Υm) =∑m
s=1 λs(Υm), we obtain the bound Ψm(LB) ≥ Ψm(LB0,m) = tr(Υm)−

∑q
s=1 λs(Υm), that

is

min
B∈Rm×q ,BtB=Iq

Ψm(LB) = Ψm(LB0,m) = tr(Υm)−
q∑
s=1

λs(Υm) . (A.1)

As noted above, we have ‖Υm−Γ‖ → 0 as m→∞. By the continuity of the eigenvalues

with respect to the operators norm (see for instance, Osborn, 1975), we have that, for

each fixed k, λk(Υm)→ λk(Γ) = λk as m→∞. Hence, limm→∞
∑q

s=1 λs(Υm) =
∑q

s=1 λs.

It remains to show that limm→∞ tr(Υm) = tr(Γ). First note that, Proposition A.1 in

Boente et al. (2012) shows that λk(Υm) ≤ λk, hence tr(Υm) =
∑m

s=1 λs(Υm) ≤
∑m

s=1 λs ≤

tr(Γ). Therefore, we only have to show that, for any ε > 0, there exists m0 such that
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for m ≥ m0, we have tr(Υm) ≥ tr(Γ) − ε. Since tr(Γ) < ∞, there exists N ∈ N such

that N > q and 0 ≤ tr(Γ) −
∑N

j=1 λj < ε/2. Using that limm→∞
∑N

j=1 λj(Υ) =
∑N

j=1 λj,

choose m0 such that for m ≥ m0, |
∑N

j=1 λj(Υm) −
∑N

j=1 λj| ≤ ε/2. Now, for m ≥

max{m0, N} we have tr(Υm) =
∑m

j=1 λj(Υm) ≥
∑N

j=1 λj(Υm) ≥
∑N

j=1 λj− ε/2 ≥ tr(Γ)−

ε, as desired. Hence, from (A.1), we have that limm→∞min
B∈Rm×q ,BtB=Iq

Ψm(LB) =

limm→∞Ψm(LB0,m) = tr(Γ) −
∑q

s=1 λs , concluding the proof of (10). Finally, note that

the linear space HB0,m is spanned by φ1(B0,m), . . . , φq(B0,m), where φj(B0,m) = A∗βj.

Then, we have φj(B0,m) = φj(Υm). Using again that, ‖Υm − Γ‖ → 0 as m → ∞ and

the fact that λq > λq+1, we see that the linear space spanned by φ1(Υm), . . . , φq(Υm)

converges to that spanned by φ1, . . . , φq, (see for instance, Osborn 1975 or Dunford and

Schwartz, 1963), concluding the proof.
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