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Abstract 
In survey sampling, ratio and regression estimators are often used to estimate the mean of a finite population.  These 
estimators make use of information on an auxiliary variable that is assumed to be available over the entire population.  
Generally speaking, the higher the correlation between the response and this auxiliary variable, the more efficient the 
ratio and regression estimators will be relative to the simple random sample mean.  However, these two estimators are 
quite sensitive to outliers.  In the survey sampling context, Chambers (1986) distinguishes between representative and 
non-representative outliers.  The former type of outlier is defined as an observation with similar counterparts in the 
non-sampled portion of the population, while the latter is unique.  Most research on outlier-robust alternatives to the 
ratio and regression estimators tends to focus on representative outliers.  In this paper, we compare via a simulation 
study the performance of a number of these alternatives under the presence of representative and non-representative 
outliers, including those based on M-, GM-, and least absolute value L1 estimators considered by Bassett and Saleh 
(1994).  We also extend MM-estimators (see Yohai 1987) to the survey sampling context, and evaluate their 
performance as well. 
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1.  Introduction 
It is often the case in survey sampling that interest centres on the estimation of the unknown mean Y  of a response 
variable, Y, associated with a finite population.  An obvious choice of estimator is the mean,y , of a simple random 
sample drawn without replacement from the population.  However, such an estimator can be extremely variable 
depending upon the variability of the response variable across the population.  Alternatively, provided that information 
on a positive auxiliary variable X that is highly correlated with Y is available for all N units in the population U = {1, 
…, j, …, N}, estimators with greater efficiency than y  can be considered that acknowledge the association between 

the response and auxiliary variables. 
 Two such estimators are the so-called “ratio” and “regression” estimators.  Both are based on drawing a bivariate 
simple random sample of n of the (Xj, Yj) pairs (j = 1, …, N) that define the population.  Since complete information is 

available for the auxiliary variable, the population mean and variance X  and 2
XS  are known.  Both the ratio and 

regression estimators are based on the premise of comparing X  to the mean of the auxiliary variable,x , over the 
sample.  Provided that there is a high degree of correlation between the auxiliary and response variables, this 

comparison would lead to the consideration of an estimator for Y  that would be derived by adjusting the sample mean 

of the response variable y  upwards or downwards depending upon whether X  was larger or smaller than x . 

 Specifically, the ratio estimator for Y  is given by )/(ˆ xXyyratio = .  This is a good estimator for Y  when it can 

be assumed that the survey population can be modeled as the realization of a super-population (see Cochran 1977) 
where the response variable values in the population are assumed to be realizations of the random variables Yj, j = 1, 
…, N, according to 
 
            Yj = Xjβ + V(Xj)ej,               (1) 

where V(Xj) = Xj, and the ej are i.i.d. random variables with mean zero and variance σ2 that are assumed to follow a 
distribution f.  This is due to the fact that for a bivariate sample (xi, yi) of size n, the weighted least squares estimator for 

β is xy /ˆ =β . 

 Alternatively, the regression estimator is given by )(ˆ xXbyyreg −+= , where b is an estimator of the true slope 

between the response and auxiliary variables.  Note that if b is assumed constant, the value for b that minimizes the 
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variance )ˆ( regyV  is XY SSb /* ρ= , where SY is the population standard deviation of the response variable, and ρ is 

the correlation coefficient between the response and auxiliary variables over the entire population.  Therefore, the 

regression estimator will be a good choice for estimating Y  when the response variable values in the population are 
assumed to be realizations of Yj according to 
 
            Yj = α + Xjβ + ej,               (2) 

since for a bivariate sample (xi, yi) of size n, the least squares estimator for β is xy ss /ˆˆ ρβ = , where ρ̂  is an estimate 

of ρ, and sy and sx are sample standard deviations.  In other words, when model (2) above holds, )(ˆˆ xXyyreg −+= β  

is optimal among those estimators of the form )( xXby −+ . 
 Both the ratio and regression estimators are clearly sensitive to outliers.  In the survey sampling context, 
Chambers (1986) distinguishes between two types of outliers, which he refers to as representative and non-
representative.  Chambers (1986) defines a representative outlier as “… a sample element with a value that has been 
correctly recorded and that cannot be regarded as unique”.  Thus, in this case the non-sampled portion of the population 
may contain units with similar values; however, these units possess values that differ significantly from those of the 
majority of the units in the population.  By contrast, Chambers (1986) refers to non-representative outlier as one that 
“… is typically associated with a sample datum that is either incorrect (due, for example, to errors in coding) or is 
unique to the particular population element involved”. 
 Most research on outlier-robust alternatives to the ratio and regression estimators are proposed tends to focus on 
representative outliers.  In principle, a non-representative outlier can be dealt with using survey editing if it is deemed 
the result of an error, or, if it is unique, by giving it a weight of one in order to exclude it (see Chambers 1986 and Gwet 
and Rivest 1992).  Consequently, the case of non-representative outliers has not received much attention in the 
literature.  However, if an atypical observation is detected in a sample, it will generally be difficult for the practitioner, 
if not impossible, to categorize it as representative or non-representative, since knowledge of the response variable 
distribution over the entire population will not be available.  It is therefore important to assess how the classical and the 
different outlier-robust estimators perform when there are both representative and non-representative outliers in the 
sample. 
 Early outlier-robust alternatives that have been developed for the standard-type estimators of a finite population 
mean are based on winsorization (due to Charles P. Winsor; see Tukey 1962), which consists of replacing large 
observations by either a pre-determined value, or one that is determined according to the sample data.  It is a commonly 
used technique to reduce the importance of outliers for the location model Yj = µ + ej, where µ is a constant.  This 
methodology has been investigated in the survey sampling context by Searls (1966), Ernst (1980), Fuller (1991), and 
Rivest (1993).  Despite the fact that the winsorized sample mean is a biased estimator of the finite population mean, 
Searls (1966) demonstrated that for skewed populations, it possesses a smaller mean square error than the simple 
random sample mean. 
 Noting that both the ratio and regression estimators can be derived from a regression super-population model, an 
intuitively clear strategy to obtain outlier-robust alternatives to these estimators is to use robust regression estimators.  
Huber (1973) introduced M-estimators for linear regression models.  However, these estimators are still susceptible to 
the effect of high-leverage outliers.  Generalized M-estimators (GM) attempt to control the effect of high-leverage 
outliers on the regression estimators (see Hill 1977, Krasker 1980, Krasker and Welsch 1982, and Hampel et al. 1986).  
In the survey sampling context, M- and GM-estimators were studied by Bassett and Saleh (1994), Chambers (1986), 
Gwet and Rivest (1992), and Hulliger (1995), among others. 
 The breakdown point of an estimator is the largest proportion of arbitrary observations that can be present in a 
data set before the estimator is driven beyond all bounds (see, for example, Donoho and Huber 1983).  Maronna et al. 
(1979) showed that GM-regression estimators have low breakdown point when high-leverage outliers may be present 
in the sample. 
 In this paper, we propose to extend MM-regression estimators (see Yohai 1987) to the survey sampling context.  
In the infinite-population model, these estimators are able to simultaneously achieve high-breakdown point and high 
efficiency when no outliers are present.  Our simulation results indicate that this property extends to the finite 
population case. 
 We report the results of a simulation study that compared the performance of outlier-robust alternatives to the ratio 
and regression estimators based on M-, GM-, and MM-estimators under the presence of representative and non-
representative outliers.  In Section 2, we describe the outlier-robust estimators that have been proposed in the literature, 
along with those based on MM-estimators.  Section 3 discusses the details surrounding the simulation study, while a 
conclusion and discussion is given in Section 4. 
 
 
2.  Outlier Robust Alternative Estimators 
Note that both the ratio and regression estimators are calculated using a least squares regression estimator.  In the case 

of the former estimator, Xyratio β̂ˆ =  where xy /ˆ =β , while for the latter )(ˆˆ xXyyreg −+= β  where xy ss /ˆˆ ρβ = .  
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Hence, a first approach to obtain robust alternatives for these estimators is to replace the least squares regression 

estimator β̂  above by a robust regression estimator. 
 To fix ideas, assume that the response variable values in the population are realizations of the random variables Yj, 
j = 1, …, N, according to 
 
            Yj = Xjβ + V(Xj)ej,                                                                        (3) 
 
where the ej are as defined in (1) above, and V(Xj) is a known function.  It is easy to see that in this case the least 
squares estimator bn satisfies 
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Let ρ be an even and non-decreasing loss function in (0, ∞) such that ρ(0) = 0.  The associated regression M-estimator 
bn (see Huber 1973) solves 
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where ψ(u) = ρ'(u) and σ̂  is a robust estimator of the error scale in )()( 2
ii xVyV σ= . 

 Unfortunately, M-estimators are not robust against high-leverage outliers (Maronna et al. 1979).  To address this 
problem, GM-estimators (see Hill 1977, Krasker 1980, Krasker and Welsch 1982, and Hampel et al. 1986) down-
weight the role of high-leverage observations in the estimating equations by incorporating a weight function w(x).  
Specifically, they are defined as the solution to 
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for a particular choice of weight function w(x).  One such choice would be the distance between x and a location 
parameter µX for the auxiliary variable X. 
 Gwet and Rivest (1992) suggested an outlier-robust alternative to the ratio estimator that is based on an M- or a 
GM-estimator.  They showed that if the score function ψ(u) is monotone increasing (which corresponds to an 
unbounded convex loss function ρ) and the covariates are strictly positive, then the resulting estimators are 
asymptotically design-consistent (see Wright 1983).  Using a first-order linearization of the estimating equations, they 
were able to calculate the asymptotic bias of the population mean estimator, and also the finite-population equivalent of 
the influence function of the regression estimator (see Hampel et al. 1986).  They also conducted a Monte Carlo study 
using two different populations containing outliers in order to compare their estimators to, among others, those of 
Chambers (1986), and the standard ratio estimator.  Their results demonstrate that the mean square error of the outlier-
robust estimators can be substantially smaller than that of the ratio estimator.   
 Bassett and Saleh (1994) proposed an outlier-robust methodology for estimating the population median of a 
response variable under the assumption of complete knowledge of an auxiliary variable.  Their estimator was based on 
the super-population model defined in (3).  However, rather than using weighted least squares to estimate β, Bassett 
and Saleh (1994) suggest using the least absolute value (L1) estimate based on a bivariate simple random sample 
instead.  The estimator for the population median of the response variable is then specified simply as the product of the 
L1 estimator for β and the population median of the auxiliary variable, which is known. 
 Hulliger (1995) developed design-based outlier-robust M-estimators for a finite population mean that were based 
on data obtained via unequal probability sampling.  Specifically, the simple linear model that implicitly underlies the 
Horvitz-Thompson (HT) estimator is explicitly expressed as a least squares functional of an empirical distribution 
function that acknowledges the complexity of the sample design.  This leads to a straightforward robustification of the 
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HT estimator.  Hulliger (1995) also developed an adaptive version of this robustified estimator, and demonstrated via a 
simulation study that his proposed estimators outperformed the standard HT estimator in many outlier situations. 
 Unfortunately, M-type estimators with unbounded loss function ρ have low breakdown point against high-leverage 
outliers (see Maronna et al. 1979).  High-breakdown point robust regression estimators include S-estimators (see 
Rousseeuw and Yohai 1984).  These estimators are defined as the vector of regression coefficients that minimizes a 
robust M-scale estimator of the residuals.  Specifically, for each b, define the scale σ(b) as the solution to 
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where 0 < a < 1 and ρ(u) is an even, non-decreasing function in (0, ∞) such that ρ(0) = 0.  The S-regression estimator 

nb  is defined as 

 

nb = arg minb σ(b) 

 
Associated with the S-regression estimator is a robust scale estimator of the residuals, namely )(ˆ nn bσσ = .  The 

constant a determines the consistency and the breakdown point of the S-estimator, which is min(a, 1 – a).  It follows 
that a = 1 / 2 gives the highest possible breakdown point.  The function ρ is then chosen such that 2/1)}/({ =σρ uE  
where u ~ N(0, σ2).  Unfortunately, high-breakdown S-estimators have low efficiency when the data do not contain 
outliers (Rousseeuw and Leroy 1987).  To obtain simultaneous high-breakdown point and high-efficiency, Yohai 

(1987) proposed the class of MM-estimators that are defined as the local minimum nb
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such that )ˆ()
~

( nn bhbh ≤ , where nb̂  is the S-regression estimator associated with the S-scale nσ̂ .  Moreover, the 

function ρ1 satisfies the same regularity conditions as ρ(u) and additionally ρ1(u) ≤ ρ(u) and supu ρ1(u) = supu ρ(u), 
where ρ is the function used for the S-estimator.  In what follows, we use functions ρ(u) in Tukey’s bi-square family 

(see Beaton and Tukey 1974); in particular, we use 642 )/()/(3)/(3)( dududuud +−=ρ  for │u│ ≤ d and 1)( =udρ  

for │u│ > d, where d is a tuning constant, which can be chosen (for ρ and ρ1) to obtain the desired breakdown point 
and efficiency. 
 We conjecture that the approach used in Gwet and Rivest (1992) to prove the asymptotic design-consistency of the 
estimators based on a GM-estimator can be extended to S- and MM-estimators.  Although our numerical simulation 
results are encouraging, this question is beyond the scope of this paper.  
 Rather than replacing the least squares regression estimator by a robust alternative in the formulae for the ratio and 
regression estimators given above, Chambers (1986) proposed an estimator that maintains the prediction error 
relatively stable under the presence of outliers.  Specifically, for a robust estimator bn and a function ψ(u), he proposed 

an estimator nt̂  for the population total of the form 

 

     ∑ ∑ −++∑=
∉ ∈∈ sj si

iiniijn
si

in xbyuXbyt ]/)[(ˆ σψ .                                            (4) 

 

In this expression, 2)( σσ ii xV= , the sum si ∈  is over all sampled units, while the sum sj ∉ is over all non-

sampled population units.  In addition, the quantity ∑ ∑=
∉ ∈

−−

sj si
iijiii xXxu 221 / σσ .  The robustness of the estimator in 

(4) will depend upon the choice of bn and ψ.  Typically, the former will be a robust and efficient estimator of β.  The 
choice of the real-valued function ψ is more difficult.  However, it should be bounded and skew-symmetric so that ψ(-t) 
= -ψ(t).  In addition, from the point of view of efficiency under the super-population model (3), it must also satisfy 
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ψ .  Under certain regularity conditions, Chambers (1986) finds the asymptotic bias and variance of the 

associated population total estimators under a gross-error contamination model.  Furthermore, to assess the 
performance of the estimator in (4) for different choices of ψ in practice, Chambers (1986) conducted an intensive 
simulation study involving numerous estimators, and a variety of sample designs.  A study population consisting of 557 
census blocks in east metropolitan Baltimore was used where the response variable was defined to be the 1970 census 
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count of the total population in each block, and the auxiliary variable was the corresponding 1960 census count of the 
number of occupied dwellings in each block.  Even with the assumption of super-population model (3) with V(Xj) = Xj, 
it was deemed that outliers were present in the population.  The results of the simulation conducted by Chambers 

(1986) suggested that an estimator nt̂ based on a function 

 

     }]))(2/([exp{)( 2btatt −−=ψ ,                                                 

 
in which a = 0.5 and b = 6 had the smallest root mean square error for all sampling schemes considered. 
 
 
3.  Simulation Study 
In this section, we discuss a simulation study that was conducted in order to compare the performance of a number of 
the standard and robustified estimators for a finite population mean when representative or non-representative outliers 
exist.  These populations were created using three versions of the generic super-population model 
 
            Yj = Xjβ + V(Xj)ej,               (5) 
 
where β was set as 1.7, the Xj were assumed to follow a beta distribution with both parameters equal to 0.1, while the ej 
were assumed to be normally distributed with a mean of zero.  The features that distinguished the three versions of the 
super-population model were restricted to the function specified for V(Xj), and the variance proposed for the ej.  For 
Version I, V(Xj) = 1 while the standard deviation of the ej, denoted by σ, was set at 0.75.  In Version II, V(Xj) = Xj and σ 

= 0.75, while for Version III, V(Xj) = 2
jX  and the standard deviation σ = 0.10. 

 These three versions of the super-population model given in (5) were used to create finite populations of size N = 
600.  In what follows, we refer to these three finite populations created using Versions I through III of the model given 
in (5) as I(a), II(a), and III(a) respectively.  Note that all three reflect a relationship between the two variables that 
passes through the origin.  However, for the population based on Version I of (5), the variance of the response variable, 
V(Yj), is constant.  By contrast, for the populations generated using Versions II and III of (5), V(Yj) increases as the 
value of the auxiliary variable increases; for Version II the increase is linear, while in Version III, the increase is 
proportional to the square of Xj.  The distribution of the response variable for each of the three finite populations is 
illustrated graphically on the left hand side of Figure 1.  For the population created using Version I of the model in (5), 
the distribution of Yj is unimodal, symmetric, and bell-shaped.  The finite population generated under Version II 
possesses a distribution for the response variable that is right skewed, while the distribution of Yj for the population 
created using Version III is right-skewed and bimodal.   
 Populations I(a), II(a), and III(a) do not contain outliers.  Random samples from these populations were 
contaminated by the addition of 10% or 20% of low- or high-leverage outliers.  These samples thus contain outliers that 
are non-representative.  Note that we also intend to select samples from contaminated populations to investigate the 
behaviour of the estimators considered in this study when the samples contain representative outliers (as the outliers 
present in the samples correspond to actual observations in the finite populations being sampled).  To accomplish this, 
four additional populations were created from each of Populations I(a) and II(a) by randomly replacing 5% and 10% of 
the observations by low- and high-leverage outliers.  For example, a finite population I(b) with N = 600 was obtained 
by randomly substituting 5% of the units in population I(a) with low-leverage outliers around (Xj, Yj) = (0.5, 5).  The 
outliers were randomly generated by following a bivariate normal distribution with independent co-ordinates with mean 
(0.5, 5) and standard deviations equal to 0.1.   Similarly, by replacing 5% of the units in population I(a) with high-
leverage outliers around (3, 20), a population I(c) was created.  Populations I(d) and I(e) were obtained analogously to 
I(b) and I(c) respectively; however these two populations consisted of 10% low- and high-leverage outliers as described 
above.  Counterpart populations II(b) through II(e) were obtained in an identical manner using II(a).  Finally, a finite 
population IV(a) was constructed to mimic the population in Figure 2 of Gwet and Rivest (1992).  It consists of N = 
235 observations with thirteen outliers.  For comparative purposes with populations I(a), II(a), and III(a) that do not 
contain outliers, the right hand side of Figure 1 presents the distribution of the response variable for I(e), II(e), and 
IV(a). 
 A total of 5,000 samples of size n = 60 were drawn from each of the populations I(a) through I(e), II(a) through 
II(e), and III(a).  This process was then repeated for samples of size n = 30.  To be consistent with Gwet and Rivest 
(1992), 5,000 samples of sizes n = 10, 20, and 40 were selected.  For each sample, estimates for the finite population 
mean based on eight different estimators were calculated.  Specifically, these estimators were 
 

   LS-1: )/(ˆ xXyyratio =  

   LS-2: )(ˆ xXbyyreg −+=  

   LS-3: )(ˆ __ robrobroblsreg xXbyy −+=  
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   MM-1: )/(ˆ _ robrobratio xXyy =  

   MM-2: )(ˆ _ robrobrobrobreg xXbyy −+=  

   L1-1: )(ˆ 11_ xXbyy LLreg −+=  

   L1-2: )(ˆ 1_1_ robLrobrobLreg xXbyy −+=  

   CH: Nty nChamb /ˆˆ =  where  ∑ ∑ −++∑=
∉ ∈∈ sj si

iiniijn
si

in xbyuXbyt ]/)[(ˆ σψ  

 

Note that LS-1 and LS-2 are simply the standard ratio and regression estimators, where X  is the population mean of 
the auxiliary variable, x  and y  are sample means of the auxiliary and response variables, and b is the least squares 

estimator of β that is based on a model containing an intercept term.  The estimates robx  and roby  in LS-3 are robust 

M-estimators of the centre of the samples.  Specifically, for a tuning constant c > 0, let 
 

Ψc(u) = min [max (- c, u), c], 
 

be Huber’s score function (see Huber 1964) and let robx  be the solution to 
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where σ̂  is a robust scale estimator.  In our simulation, we used )(ˆ jjii xmedianxmedian −=σ , the median 

absolute deviation from the median (Rousseeuw and Leroy 1987) and c = 1.345.  The latter choice was motivated by 
the fact that, in the infinite population setup, the resulting estimator is 95% efficient when the observations x1, …, xn are 
normally distributed.  The location estimator roby  was computed analogously with the values of yi, i = 1, …, n. 

 The estimators MM-1 and MM-2 are robustified M-estimators of the ratio and regression estimators LS-1 and LS-
2.  In addition to  robx  and roby  used in MM-1, the estimator MM-2 also employs a robust MM-estimator, brob, of the 

slope parameter.  The tuning constants for ρ(u) in Tukey’s bi-square family for the S- and MM- estimators were d = 
1.548 and d = 4.685 respectively.  In the infinite population setup, these choices yield a regression estimator with both 
50% breakdown point and 95% efficiency when the errors are normally distributed.  The two estimators L1-1 and L1-2 
were based on the L1 estimator for the slope parameter for β considered by Bassett and Saleh (1994).  The estimator L1-
2 is simply a robustified version of L1-1, with the M-estimators robx  and roby  used instead of x  and y .  Finally, CH 

is based on Chambers’ (1986) estimator given in (4) where bn is the same MM-estimator used in MM-1, and 

}]))(2/([exp{)( 2btatt −−=ψ  with a = 0.5 and b = 6 (as recommended in Chambers 1986). 

  The estimates obtained for each of the 5,000 samples (contaminated or not) drawn from a particular finite 
population were then used to compute estimates of the relative bias (RB) and relative root mean square error (RRMSE) 
for each of the eight estimators according to 
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respectively, where Y is the population mean, and jŷ  is, for a particular estimator, the estimate for the population 

mean obtained from the j-th sample.  Note that there are twelve finite populations in total, labeled I(a) through I(e), 
II(a) through II(e), III(a), and IV(a). 
 Table 1 presents the estimates obtained for RB when the eight estimators were used to estimate the mean of 
population I(a) under the five scenarios of no outlier contamination, and the four different degrees of non-
representative outlier contamination described above.  Results obtained for both n = 30 and n = 60 are presented.  
Tables 2 and 3 contain analogous RB estimates for populations II(a) and III(a).  For the case of no outlier 
contamination, the standard least squares estimators LS-1 and LS-2, along with the L1 estimator L1-1 have the smallest 
estimates of RB for all three populations.  Given some level of non-representative outlier contamination, MM-1 
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possesses relatively small estimates of RB for all three populations, and generally speaking, seems to perform the best 
with respect to relative bias.  Similar results are obtained for MM-2 when samples from populations II(a) and III(a) are 
contaminated; however RB estimates are noticeably higher than for MM-1 for population I(a).  With the exception of 
20% high-leverage outlier contamination, L1-2 performs similarly to MM-1 when non-representative outliers are added 
to any one of the three populations.  The LS-3 and CH estimators perform well for low-leverage outlier contamination.  
Across the three populations, estimates of RB for the former estimator under this type of contamination are similar to 
those of MM-1.  Analogous low-contamination RB estimates for CH are similar to those of MM-1 under population 
I(a), notably smaller for population II(a), but larger for population III(a). 
 Tables 4 through 6 give the counterpart RRMSE estimates of the estimates of RB presented in Tables 1 through 3, 
respectively.  For the case of no outlier contamination, the standard least squares estimators LS-1 and LS-2, along with 
the L1 estimator L1-1 have the smallest estimates of RRMSE for populations I(a) and II(a).  There is little difference 
among all estimators for the case of population III(a) when there is no contamination with non-representative outliers.  
When non-representative outliers are incorporated into population I(a), it would appear that CH possesses the best 
results with regards to RRMSE, with the exception of 20% high-leverage contamination (and 10% high-leverage with n 
= 60) , where MM-1 is better.  Estimates of RRMSE under this latter estimator are generally similar to those of CH.  
Also of note for population I(a) is the admirable performance of LS-3 and L1-2 for low-leverage outliers.  Similar 
results regarding the relative performance of the estimators are obtained when population II(a) is contaminated with 
non-representative outliers.  However, one notable difference with population I(a) is the similarity of the RRMSE 
estimates for MM-1 and MM-2.  This similarity holds when outliers are introduced into population III(a), where these 
two estimators tend to produce the best results with respect to RRMSE, followed by L1-2, and then CH.  In addition, 
relative to the other estimators, LS-3 once again performs well for low-leverage observations.  Thus, to summarize, in 
the presence of non-representative outliers, MM-1 seems to perform relatively well with respect to RRMSE.  The 
performance of CH is also notable; however this estimator did not manage well in the situations where population III(a) 
was contaminated. 
 In order to assess the performance of the estimators when representative outliers are present, Table 7 presents the 
estimates of RB obtained for the eight estimators when estimating the finite population means of populations I(a) 
through I(e), II(a) through II(e), III(a), and IV(a).  With the exception of population IV(a), results are reported for 
samples of size n = 30 and n = 60.  For IV(a), in order to be consistent with Gwet and Rivest (1992), sample sizes of n 
= 10, n = 20, and n = 40 were used.  Regardless of the nature (low versus high leverage, 5% versus 10%) of the 
representative outliers incorporated into population I(a), the estimates of RB are similar and smallest for LS-3, MM-1, 
L1-2, and CH.  For population II(a), a similar conclusion can be drawn with regards to these four estimators; however, 
with the exception of 10% high-leverage representative outliers, the estimates for CH seem to be notably smaller than 
those for LS-3, MM-1, and L1-2.  In addition, estimates of RB for MM-2 for populations II(b) through II(e) are close to 
those associated with these latter three estimators.  Finally, for population IV(a), estimates of RB are best for MM-1 
and L1-2.  However, with the exception of this population, in the presence of representative outliers, CH seems to be 
the estimator of choice with regards to RB. 
 The analogous RRMSE estimates obtained for the eight estimators when estimating the finite population means of 
populations I(a) through I(e), II(a) through II(e), III(a), and IV(a) are given in Table 8.  Generally speaking, in the 
presence of representative outliers, the RRMSE estimates appear to be smallest for CH.  Estimates for LS-3, MM-1, 
L1-2 are better than those obtained for LS-1, LS-2, and L1-1 when populations I(b) through I(e) and II(b) through II(e) 
are considered; however, they are clearly worse than those of CH.  Also worthy of note is the similarity of the MM-1 
and MM-2 estimates of RRMSE for populations II(b) through II(e), and the closeness of the estimates for all estimators 
when population IV(a) is considered.  Nevertheless, it would appear that, as was the case with RB, the CH estimator 
seems to be the one of choice with regards to RRMSE when representative outliers are present. 
 
 
4.  Conclusion and Discussion 
A simulation study was conducted in order to evaluate and compare the performance of the standard ratio and 
regression estimators (denoted by LS-1 and LS-2, respectively) with outlier-robust alternatives in the presence of 
representative and non-representative outliers.  The latter type of unusual observation has received little attention in the 
literature. 
 Among the outlier-robust alternatives investigated were two least absolute value L1 estimators (L1-1 and L1-2) in 
the spirit of Bassett and Saleh (1994), an estimator proposed by Chambers (1986) referred to as CH, and an outlier-
resistant least squares alternative, LS-3.  In addition, MM-estimators were extended in this study to the survey sampling 
context, and two such estimators, MM-1 and MM-2, were also evaluated in the simulation study. 
 When representative outliers were present in the samples, CH yielded in general the best results with regards to 
relative bias and relative root mean square error.  With regards to relative bias, results obtained for MM-1, L1-2, and 
LS-3 were also promising, and in many cases very similar to the results associated with CH.  In fact, these three 
estimators were often able to out-perform CH in the presence of high-leverage representative outliers.  In addition, CH 
encountered some difficulty when applied to population IV(a), which is analogous to the one considered by Gwet and 
Rivest (1992), and was dramatically bettered by MM-1, L1-2, and LS-3.  When relative root mean square errors are 
considered, CH is clearly the estimator of choice from those investigated. 
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 The simulation study also investigated the performance of the estimators in the presence of non-representative 
outliers.  Generally speaking, when relative bias is considered, MM-1, the extended MM-estimator proposed in this 
study, performs well when compared to the others estimators included in the study.  The other MM-estimator, MM-2 
also performed well when V(Xj) ≠ 1.  In addition, for low-leverage outlier contamination, L1-2, LS-3, and CH 
performed similarly to MM-1.  Of note is that those of CH were notably smaller than those of MM-1 when V(Xj) is 

proportional to Xj, but larger when 2)( jj XXV = .  In terms of relative root mean square error, generally speaking MM-

1 yields the most promising results.  However there are some cases for population I(a) with low-leverage outlier 
contamination where CH performs slightly better than MM-1. 
 To summarize, CH and MM-1 seemed to perform relatively well under the conditions dictated by the simulation 
study.  The former estimator appears to be strongest in the presence of representative outliers, while the latter was best 
for the cases in which non-representative outliers persisted.  Clearly, these conclusions are limited to the simulation 
study considered, and further work is necessary in order to better comprehend the performance of these estimators in 
the presence of these two different types of outliers.  In particular, some theoretical development surrounding the 
extensions of the MM-estimator, MM-1 and MM-2, seems warranted.  This research is however, beyond the scope of 
the present study. 
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Figure 1: Histograms of the response variable distribution in populations I(a), II(a), and III(a) that do not contain 
outliers, along with populations I(e), II(e), and IV(a). 
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Table 1:  For each estimator, estimated relative biases based on 5,000 samples from population I(a), where the samples 
are contaminated with non-representative outliers. 
 

Outliers n LS-1 LS-2 LS-3 MM-1 MM-2 L1-1 L1-2 CH 
None 
None 

Low10 
Low10 
High10 
High10 
Low20 
Low20 
High20 
High20 

30 
60 
30 
60 
30 
60 
30 
60 
30 
60 

0.0057 
0.0010 
0.4890 
0.4808 
0.7711 
0.7592 
0.8895 
0.8789 
1.0468 
1.0382 

0.0032 
0.0000 
0.4908 
0.4813 
1.1893 
1.1800 
0.8922 
0.8793 
1.7126 
1.7055 

0.0380 
0.0394 
0.2972 
0.2808 
-0.1780 
-0.2496 
0.5901 
0.5750 
-1.1350 
-1.3841 

0.0382 
0.0394 
0.2803 
0.2736 
0.1013 
0.0844 
0.5759 
0.5713 
0.0533 
-0.0187 

1.0823 
0.2892 
0.6699 
0.3151 
0.4954 
0.1251 
0.6667 
0.5747 
0.1617 
0.0197 

0.0059 
0.0011 
0.4844 
0.4790 
1.4973 
1.4957 
0.8829 
0.8770 
0.8002 
0.6992 

0.0388 
0.0398 
0.2844 
0.2754 
0.0991 
0.0253 
0.5780 
0.5721 
-1.2766 
-1.6136 

0.0471 
0.0427 
0.2873 
0.2930 
0.1401 
0.2291 
0.4764 
0.4830 
0.2381 
0.4157 

 
 
Table 2:  For each estimator, estimated relative biases based on 5,000 samples from population II(a), where the samples 
are contaminated with non-representative outliers. 
 

Outliers n LS-1 LS-2 LS-3 MM-1 MM-2 L1-1 L1-2 CH 
None 
None 

Low10 
Low10 
High10 
High10 
Low20 
Low20 
High20 
High20 

30 
60 
30 
60 
30 
60 
30 
60 
30 
60 

0.0022 
0.0005 
0.4330 
0.4269 
0.8695 
0.8606 
0.7905 
0.7818 
1.2001 
1.1934 

0.0021 
0.0005 
0.4348 
0.4278 
1.0546 
1.0473 
0.7931 
0.7831 
1.5277 
1.5218 

-0.1923 
-0.1684 
0.0885 
0.1263 
-0.3187 
-0.3031 
0.4094 
0.4404 
-0.9665 
-1.0984 

-0.2139 
-0.1734 
0.0694 
0.1212 
-0.1047 
-0.0606 
0.3926 
0.4341 
-0.0894 
-0.1064 

-0.1890 
-0.1711 
0.0644 
0.1127 
-0.0891 
-0.0540 
0.3812 
0.4281 
-0.0605 
-0.0639 

0.0011 
0.0001 
0.4253 
0.4235 
1.4363 
1.4333 
0.7790 
0.7763 
2.4722 
2.4723 

-0.1950 
-0.1694 
0.0768 
0.1222 
-0.1202 
-0.0845 
0.3961 
0.4349 
-0.2386 
-0.2820 

-0.0237 
-0.0023 
0.0173 
0.0567 
0.0787 
0.1786 
0.0565 
0.1062 
0.1745 
0.3470 

 
 
Table 3:  For each estimator, estimated relative biases based on 5,000 samples from population III(a), where the 
samples are contaminated with non-representative outliers. 
 

Outliers n LS-1 LS-2 LS-3 MM-1 MM-2 L1-1 L1-2 CH 
None 
None 

Low10 
Low10 
High10 
High10 
Low20 
Low20 
High20 
High20 

30 
60 
30 
60 
30 
60 
30 
60 
30 
60 

-0.0006 
-0.0004 
0.3867 
0.5317 
1.2914 
1.6169 
0.9524 
0.9296 
2.3486 
2.3236 

-0.0011 
-0.0008 
0.3769 
0.5255 
1.3976 
1.8330 
0.9361 
0.9203 
2.7771 
2.7563 

-0.0582 
-0.0568 
0.0408 
0.0560 
0.1532 
0.0086 
0.1738 
0.1553 
-0.6093 
-0.6592 

-0.0636 
-0.0643 
-0.0197 
0.0079 
-0.0549 
-0.0495 
0.1458 
0.1457 
-0.0345 
-0.0341 

-0.0666 
-0.0660 
-0.0235 
0.0071 
-0.0551 
-0.0485 
0.1287 
0.1364 
-0.0327 
-0.0338 

0.0011 
0.0002 
0.3743 
0.5420 
1.6598 
2.3981 
0.9859 
0.9848 
4.2958 
4.2954 

-0.0604 
-0.0600 
-0.0122 
0.0147 
-0.0472 
-0.0481 
0.1462 
0.1454 
-0.0872 
-0.0918 

-0.0219 
-0.0273 
0.0319 
0.1012 
0.0815 
0.2903 
0.2583 
0.3685 
0.2989 
0.6122 

 
 
Table 4:  For each estimator, estimated relative root mean square errors based on 5,000 samples from population I(a), 
where the samples are contaminated with non-representative outliers. 
 

Outliers n LS-1 LS-2 LS-3 MM-1 MM-2 L1-1 L1-2 CH 
None 
None 

Low10 
Low10 
High10 
High10 
Low20 
Low20 
High20 
High20 

30 
60 
30 
60 
30 
60 
30 
60 
30 
60 

0.183 
0.127 
0.518 
0.495 
0.824 
0.785 
0.906 
0.887 
1.087 
1.058 

0.190 
0.129 
0.524 
0.497 
1.201 
1.185 
0.914 
0.889 
1.719 
1.709 

0.396 
0.283 
0.449 
0.337 
1.014 
0.622 
0.646 
0.593 
1.488 
1.525 

0.398 
0.284 
0.391 
0.316 
0.307 
0.192 
0.616 
0.588 
0.276 
0.171 

5.430 
1.338 
2.894 
0.510 
2.881 
0.435 
1.266 
0.597 
1.126 
0.164 

0.183 
0.127 
0.513 
0.493 
1.504 
1.499 
0.896 
0.884 
0.940 
0.763 

0.400 
0.284 
0.403 
0.320 
0.588 
0.277 
0.620 
0.589 
1.687 
1.781 

0.141 
0.101 
0.318 
0.307 
0.191 
0.245 
0.499 
0.493 
0.289 
0.423 
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Table 5:  For each estimator, estimated relative root mean square errors based on 5,000 samples from population II(a), 
where the samples are contaminated with non-representative outliers. 
 

Outliers n LS-1 LS-2 LS-3 MM-1 MM-2 L1-1 L1-2 CH 
None 
None 

Low10 
Low10 
High10 
High10 
Low20 
Low20 
High20 
High20 

30 
60 
30 
60 
30 
60 
30 
60 
30 
60 

0.102 
0.068 
0.446 
0.433 
0.887 
0.869 
0.800 
0.786 
1.213 
1.200 

0.101 
0.068 
0.449 
0.434 
1.062 
1.051 
0.805 
0.789 
1.532 
1.524 

0.286 
0.233 
0.235 
0.189 
0.614 
0.398 
0.460 
0.463 
1.088 
1.148 

0.312 
0.242 
0.228 
0.196 
0.217 
0.153 
0.461 
0.466 
0.214 
0.186 

0.270 
0.233 
0.233 
0.197 
0.204 
0.147 
0.451 
0.457 
0.171 
0.131 

0.102 
0.068 
0.436 
0.428 
1.438 
1.434 
0.784 
0.779 
2.474 
2.473 

0.291 
0.235 
0.222 
0.194 
0.232 
0.162 
0.458 
0.464 
0.332 
0.330 

0.210 
0.145 
0.175 
0.119 
0.192 
0.207 
0.154 
0.132 
0.227 
0.355 

 
 
Table 6:  For each estimator, estimated relative root mean square errors based on 5,000 samples from population III(a), 
where the samples are contaminated with non-representative outliers. 
 

Outliers n LS-1 LS-2 LS-3 MM-1 MM-2 L1-1 L1-2 CH 
None 
None 

Low10 
Low10 
High10 
High10 
Low20 
Low20 
High20 
High20 

30 
60 
30 
60 
30 
60 
30 
60 
30 
60 

0.155 
0.107 
0.421 
0.545 
1.347 
1.641 
0.975 
0.940 
2.385 
2.341 

0.155 
0.106 
0.411 
0.539 
1.427 
1.847 
0.959 
0.932 
2.799 
2.767 

0.158 
0.113 
0.179 
0.134 
0.592 
0.496 
0.276 
0.207 
1.198 
0.993 

0.159 
0.117 
0.155 
0.115 
0.159 
0.117 
0.267 
0.214 
0.174 
0.122 

0.163 
0.120 
0.156 
0.113 
0.158 
0.115 
0.240 
0.198 
0.160 
0.113 

0.157 
0.107 
0.400 
0.550 
1.664 
2.399 
0.993 
0.988 
4.297 
4.296 

0.154 
0.112 
0.150 
0.111 
0.158 
0.122 
0.256 
0.207 
0.225 
0.172 

0.179 
0.132 
0.208 
0.206 
0.200 
0.318 
0.434 
0.479 
0.360 
0.625 

 
 
Table 7:  For each estimator, estimated relative biases based on 5,000 samples from populations I(a) through I(e), II(a) 
through II(e), III(a), and IV(a). 
 

Population n LS-1 LS-2 LS-3 MM-1 MM-2 L1-1 L1-2 CH 
I(a): None 
I(a): None 
I(b): 5L 
I(b): 5L 
I(c): 5H 
I(c): 5H 
I(d): 10L 
I(d): 10L 
I(e): 10H 
I(e): 10H 

II(a): None 
II(a): None 
II(b): 5L 
II(b): 5L 
II(c): 5H 
II(c): 5H 
II(d): 10L 
II(d): 10L 
II(e): 10H 
II(e): 10H 

III(a): None 
III(a): None 
IV(a): 13Out 
IV(a): 13Out 
IV(a): 13Out 

30 
60 
30 
60 
30 
60 
30 
60 
30 
60 
30 
60 
30 
60 
30 
60 
30 
60 
30 
60 
30 
60 
10 
20 
40 

0.006 
0.001 
0.318 
0.310 
0.661 
0.655 
0.625 
0.613 
1.302 
1.291 
0.002 
0.001 
0.192 
0.188 
0.418 
0.415 
0.383 
0.375 
0.828 
0.822 
-0.001 
-0.000 
0.009 
-0.017 
-0.031 

0.003 
0.000 
0.320 
0.311 
0.658 
0.654 
0.631 
0.616 
1.298 
1.289 
0.002 
0.001 
0.193 
0.188 
0.417 
0.415 
0.386 
0.377 
0.827 
0.821 
-0.001 
-0.001 
0.000 
-0.021 
-0.032 

0.038 
0.039 
0.166 
0.155 
0.113 
0.101 
0.341 
0.315 
0.230 
0.212 
-0.192 
-0.168 
-0.040 
-0.014 
-0.079 
-0.054 
0.124 
0.151 
0.047 
0.076 
-0.058 
-0.057 
-0.035 
-0.059 
-0.072 

0.038 
0.039 
0.156 
0.149 
0.120 
0.111 
0.325 
0.307 
0.265 
0.251 
-0.214 
-0.174 
-0.063 
-0.020 
-0.091 
-0.050 
0.100 
0.144 
0.061 
0.103 
-0.064 
-0.064 
0.006 
0.005 
0.004 

1.082 
0.289 
0.904 
0.274 
0.903 
0.246 
0.835 
0.366 
0.810 
0.312 
-0.189 
-0.171 
-0.056 
-0.027 
-0.082 
-0.053 
0.102 
0.138 
0.058 
0.097 
-0.067 
-0.066 
-0.011 
-0.038 
-0.052 

0.006 
0.001 
0.315 
0.308 
0.660 
0.654 
0.617 
0.609 
1.298 
1.289 
0.001 
0.000 
0.187 
0.186 
0.415 
0.413 
0.374 
0.372 
0.822 
0.919 
0.001 
0.000 
-0.021 
-0.034 
-0.038 

0.039 
0.040 
0.158 
0.150 
0.119 
0.111 
0.326 
0.308 
0.260 
0.247 
-0.195 
-0.169 
-0.049 
-0.017 
-0.079 
-0.049 
0.111 
0.146 
0.066 
0.100 
-0.060 
-0.060 
-0.003 
-0.007 
-0.009 

0.047 
0.043 
0.151 
0.160 
0.124 
0.138 
0.258 
0.273 
0.246 
0.259 
-0.024 
-0.002 
-0.018 
0.012 
0.031 
0.071 
-0.007 
0.027 
0.085 
0.143 
-0.022 
-0.027 
0.152 
0.154 
0.155 
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Table 8:  For each estimator, estimated relative root mean square errors based on 5,000 samples from populations I(a) 
through I(e), II(a) through II(e), III(a), and IV(a). 
 

Population n LS-1 LS-2 LS-3 MM-1 MM-2 L1-1 L1-2 CH 
I(a): None 
I(a): None 
I(b): 5L 
I(b): 5L 
I(c): 5H 
I(c): 5H 
I(d): 10L 
I(d): 10L 
I(e): 10H 
I(e): 10H 

II(a): None 
II(a): None 
II(b): 5L 
II(b): 5L 
II(c): 5H 
II(c): 5H 
II(d): 10L 
II(d): 10L 
II(e): 10H 
II(e): 10H 

III(a): None 
III(a): None 
IV(a): 13Out 
IV(a): 13Out 
IV(a): 13Out 

30 
60 
30 
60 
30 
60 
30 
60 
30 
60 
30 
60 
30 
60 
30 
60 
30 
60 
30 
60 
30 
60 
10 
20 
40 

0.183 
0.127 
0.455 
0.375 
0.842 
0.741 
0.747 
0.677 
1.472 
1.374 
0.102 
0.068 
0.274 
0.228 
0.524 
0.467 
0.462 
0.416 
0.932 
0.872 
0.155 
0.107 
0.272 
0.205 
0.145 

0.190 
0.129 
0.464 
0.378 
0.841 
0.740 
0.762 
0.683 
1.469 
1.373 
0.101 
0.068 
0.277 
0.229 
0.523 
0.467 
0.468 
0.418 
0.931 
0.872 
0.155 
0.106 
0.280 
0.210 
0.148 

0.396 
0.283 
0.437 
0.298 
0.578 
0.386 
0.540 
0.409 
0.704 
0.473 
0.286 
0.233 
0.261 
0.180 
0.292 
0.193 
0.330 
0.260 
0.349 
0.244 
0.158 
0.113 
0.285 
0.214 
0.155 

0.398 
0.284 
0.409 
0.276 
0.398 
0.262 
0.506 
0.388 
0.467 
0.348 
0.312 
0.242 
0.274 
0.189 
0.258 
0.175 
0.330 
0.263 
0.301 
0.230 
0.159 
0.117 
0.292 
0.201 
0.127 

5.430 
1.338 
4.816 
0.869 
5.020 
0.903 
4.380 
0.671 
4.740 
0.684 
0.270 
0.233 
0.259 
0.192 
0.241 
0.181 
0.328 
0.262 
0.289 
0.229 
0.163 
0.120 
0.262 
0.195 
0.139 

0.183 
0.127 
0.450 
0.373 
0.840 
0.741 
0.735 
0.672 
1.471 
1.375 
0.102 
0.068 
0.268 
0.226 
0.521 
0.466 
0.449 
0.410 
0.926 
0.870 
0.157 
0.107 
0.307 
0.231 
0.163 

0.400 
0.284 
0.405 
0.278 
0.401 
0.271 
0.494 
0.390 
0.466 
0.354 
0.291 
0.235 
0.259 
0.184 
0.243 
0.171 
0.323 
0.261 
0.290 
0.226 
0.154 
0.112 
0.280 
0.197 
0.129 

0.141 
0.101 
0.271 
0.223 
0.257 
0.201 
0.396 
0.331 
0.436 
0.321 
0.210 
0.145 
0.206 
0.141 
0.217 
0.164 
0.195 
0.133 
0.225 
0.202 
0.179 
0.132 
0.261 
0.210 
0.177 

 
 


