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Abstract

Additive models provide an attractive setup to estimate regression functions in
a nonparametric context. They provide a flexible and interpretable model, where
each regression function depends only on a single explanatory variable and can be
estimated at an optimal univariate rate. It is easy to see that most estimation proce-
dures for these models are highly sensitive to the presence of even a small proportion
of outliers in the data. In this paper, we show that a relatively simple robust version
of the backfitting algorithm (consisting of using robust local polynomial smoothers)
corresponds to the solution of a well-defined optimization problem. This formulation
allows us to find mild conditions to show that these estimators are Fisher consistent
and to study the convergence of the algorithm. Our numerical experiments show that
the resulting estimators have good robustness and efficiency properties. We illustrate
the use of these estimators on a real data set where the robust fit reveals the presence
of influential outliers. Supplementary materials for this paper are available on–line.
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1 Introduction

Consider a general regression model, where a response variable Y ∈ R is related to a vector

X = (X1, . . . , Xd)
t ∈ R

d of explanatory variables through the following non-parametric

regression model:

Y = g0(X) + σ0 ε . (1)

The error ε is assumed to be independent from X and centered at zero, while σ0 is the

error scale parameter. When ε has a finite first moment, we have the usual regression

representation E(Y |X ) = g0(X). Standard estimators for g0 can thus be derived relying

on local estimates of the conditional mean, such as kernel polynomial regression estimators.

It is easy to see that such procedures can be seriously affected either by a small proportion

of outliers in the response variable, or when the distribution of Y |X has heavy tails. Note,

however, that even when ε does not have a finite first moment, the function g0(X) can

still be interpreted as a location parameter for the distribution of Y |X. In this case, local

robust estimators can be used to estimate the regression function as, for example, the local

M−estimators proposed in Boente and Fraiman (1989) and the local regression quantiles

studied in Welsh (1996).

Unfortunately both robust and non-robust non-parametric regression estimators are

affected by the curse of dimensionality, which is caused by the fact that the expected

number of observations in local neighbourhoods decreases exponentially as a function of d,

the number of covariates. This results in regression estimators with a very slow convergence

rate. Stone (1985) showed that additive models can avoid these problems and produce

non-parametric multiple regression estimators with a univariate rate of convergence. In an

additive model, the regression function is assumed to satisfy

g0(X) = µ0 +

d∑

j=1

g0,j(Xj) , (2)

where µ0 ∈ R, g0,j : R→ R, 1 ≤ j ≤ d, are unknown smooth functions with E(g0,j(Xj)) =

0. Such a model retains the ease of interpretation of linear regression models, where each

component g0,j can be thought as the effect of the j-th covariate on the centre of the
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conditional distribution of Y . Moreover, Linton (1997), Fan et al. (1998) and Mammen et

al. (1999) obtained different oracle properties showing that each additive component can

be estimated as well as when all the other ones are known.

Several algorithms to fit additive models have been proposed in the literature. In this

paper, we focus on the backfitting algorithm as introduced in Friedman and Stuetzle (1981)

and discussed further in Buja et al. (1989). The backfitting algorithm can be intuitively

motivated by observing that, if (2) holds, then

g0,j(x) = E

(
Y − α−

∑

` 6=j

g0,`(X`)

∣∣∣∣Xj = x

)
. (3)

Hence, given a sample, the backfitting algorithm iteratively estimates the components g0,j ,

1 ≤ j ≤ d, using a univariate smoother of the partial residuals in (3) as functions of the j-th

covariate. This algorithm is widely used due to its flexiblity (different univariate smoothers

can be used), ease of implementation and intuitive motivation. Furthermore, it has been

shown to work very well in simulation studies (Sperlich et al. 1999) and applications,

although its statistical properties are difficult to study due to its iterative nature. Some

results regarding its bias and conditional variance can be found in Opsomer and Ruppert

(1997), Wand (1999) and Opsomer (2000).

When second moments exist, Breiman and Friedman (1985) showed that, under certain

regularity conditions, the backfitting procedure finds functions m1(X1), . . . , md(Xd) min-

imizing E(Y − µ0 −
∑d

i=1mj(Xj))
2 over the space of functions with E[mj(Xj)] = 0 and

finite second moments. In other words, even if the regression function g0 in (1) does not

satisfy the additive model (2), the backfitting algorithm finds the orthogonal projection

of the regression function onto the linear space of additive functions in L2. Equivalently,

backfitting finds the closest additive approximation (in the L2 sense) to E(Y |X1, . . . , Xd).

Furthemore, the backfitting algorithm is a coordinate-wise descent algorithm minimizing

the squared loss functional above. The sample version of the algorithm solves a system of

nd×nd normal equations and corresponds to the Gauss–Seidel algorithm for linear systems

of equations.

If the smoother chosen to estimate (3) is not resistant to outliers then the estimated
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additive components can be seriously affected by a relatively small proportion of atypical

observations. Given the local nature of non–parametric regression estimators, we will be

concerned with the case where outliers are present in the response variable. Bianco and

Boente (1998) considered robust estimators for additive models using kernel regression,

which are a robust version of those defined in Baek and Wehrly (1993). The main drawback

of this approach is that it assumes that Y−g0,j(Xj) is independent fromXj , which is difficult

to justify or verify in practice. Outlier–resistant fits for generalized additive models have

been considered recently in the literature. When the variance is a known function of the

mean and the dispersion parameter is known, we refer to Alimadad and Salibián-Barrera

(2012) and Wong et al. (2014), who consider robust fits based on backfitting and penalized

splines M−estimators, respectively. In the case of model (1), the approach of Wong et al.

(2014) reduces to that of Oh et al. (2007) which is an alternative based on penalized splines.

On the other hand, Croux et al. (2011) provides a robust fit for generalized additive models

with nuisance parameters using penalized splines, but no theoretical support is provided

for their method.

In this paper, we consider an intuitively appealing way to obtain robust estimators

for model (1) which combines the backfitting algorithm with robust univariate smoothers.

For example, one can consider those proposed in Boente and Fraiman (1989), Härdle and

Tsybakov (1988), Härdle (1990) and Oh et al. (2007). One of the main contributions of

this paper is to show that this intuitive approach to obtain a robust backfitting algorithm

is well justified. Specifically, we show that applying the backfitting algorithm using the

robust nonparametric regression estimators of Boente and Fraiman (1989) corresponds

to minimizing E[ρ((Y − µ0 −
∑d

i=1mj(Xj))/σ0)] over functions m1(X1), . . . , md(Xd) with

E[mj(Xj)] = 0, where ρ is a loss function. Furthermore, this robust backfitting corresponds

to a coordinate-wise descent algorithm and can be shown to converge. We also establish

sufficient conditions for these robust backfitting estimators to be Fisher consistent for

the true additive components when (2) holds. Our numerical experiments confirm that

these estimators have very good finite-sample properties, both in terms of robustness, and

efficiency with respect to the classical approach when the data do not contain outliers.
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These robust estimators cannot be interpreted as orthogonal projections of the regression

function onto the space of additive functions of the predictors. However, the first-order

conditions for the minimum of this optimization problem are closely related to the robust

conditional location functional defined in Boente and Fraiman (1989).

The rest of the paper is organized as follows. In Section 2, we show that the robust

backfitting algorithm mentioned above corresponds to a coordinate-descent algorithm to

minimize a robust functional using a convex loss function. We also prove that the resulting

estimator is Fisher consistent, which means that the solution to the population version

of the problem is the object of interest (in our case, the true regression function). The

convergence of this algorithm is studied in Section 2.1, while its finite-sample version using

local M−regression smoothers is presented in Section 3. The results of our numerical

experiments conducted to evaluate the performance of the proposed procedure are reported

in Section 4. Finally, in Section 5 we illustrate the advantage of using robust backfitting

on a real data set. All proofs are relegated to the Supplementary file available on–line.

2 The robust backfitting functional

In this section, we introduce a population-level version of the robust backfitting algorithm.

By showing that the robust backfitting corresponds to a coordinate-descent algorithm to

minimize a “robust functional”, we are able to find sufficient conditions for the robust

backfitting to be Fisher-consistent.

In what follows, we will assume that (Xt, Y )t is a random vector satisfying the additive

model (2), where Y ∈ R and X = (X1, . . . , Xd)
t, that is,

Y = µ0 +

d∑

j=1

g0,j(Xj) + σ0 ε . (4)

As it is customary, to ensure identifiability of the components of the model, we will further

assume that Eg0,j(Xj) = 0, 1 ≤ j ≤ d. When second moments exist, it is easy to see that
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the backfitting estimators solve the following minimization problem

min
(ν,m)∈R×Had

E

(
Y − ν −

d∑

j=1

mj(Xj)
)2
, (5)

whereHad =
{
m(x) =

∑d

j=1mj(xj), mj ∈ Hj

}
⊂ H,H = {r(x) : E(r(X)) = 0 ,E(r2(X)) <

∞} and Hj is the Hilbert space of measurable functions mj of Xj, with zero mean and

finite second moment, i.e., Emj(Xj) = 0 and Em2
j (Xj) < ∞. The solution to (5) is

characterized by its residual Y − µ − g(X) being orthogonal to Had. Since this space is

spanned by H`, 1 ≤ ` ≤ d, the solution of (5) satisfies E( Y − µ −
∑d

j=1 gj(Xj) ) = 0 and

E( Y − µ −∑d
j=1 gj(Xj) |X` ) = 0, for 1 ≤ ` ≤ d, from where it follows that µ = E(Y )

and g`(X`) = E(Y − µ −
∑

j 6=` gj(Xj)|X`), 1 ≤ ` ≤ d. Given a sample, the backfitting

algorithm iterates the above system of equations replacing the conditional expectations

with non-parametric regression estimators (e.g. local polynomial smoothers).

To reduce the effect of outliers on the regression estimates, we replace the square loss

function in (5) by a function with bounded derivative such as the Huber or Tukey’s–loss

functions. For these losses, ρc(u) = c2ρ1(u/c), where c > 0 is a tuning constant to achieve

a given efficiency. The Huber–type loss corresponds to ρ1 = ρh with ρh (u) = u2/2 if

|u| ≤ 1, ρh (u) = |u| − 1/2 otherwise, and the Tukey bisquare loss to ρ1(u) = ρt(u) =

min (3u2 − 3u4 + u6, 1). Other possible choices are ρ1(u) =
√
1 + u2− 1 which is a smooth

approximation of the Huber function and ρ1(u) = u arctan(u) − 0.5 ln(1 + u2) which has

derivative ρ′1(u) = arctan(u). The bounded derivative of the loss function controls the

effect of outlying values in the response variable (sometimes called “vertical outliers” in

the literature).

Formally, our objective function is given by

Υ(ν,m) = E ρ

(
Y − ν −∑d

j=1mj(Xj)

σ0

)
, (6)

where ρ : R → [0,∞) is even, ν ∈ R and the functions mj ∈ Hj , 1 ≤ j ≤ d. Let P be

a distribution in R
d+1 and let (Xt, Y )t ∼ P . Define the functional (µ(P ), g(P )) as the
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solution of the following optimization problem:

(µ(P ), g(P )) = argmin
(ν,m)∈R×Had

Υ(ν,m) , (7)

where g(P )(X) =
∑d

j=1 gj(P )(Xj) ∈ Had.

To prove that the functional in (7) is Fisher-consistent and to derive first-order condi-

tions for the point where it attains its minimum value, we will need the following assump-

tions:

E1 The random variable ε has a density function f0(t) that is even, non-increasing in |t|,
and strictly decreasing for |t| in a neighbourhood of 0.

R1 The function ρ : R → [0,∞) is continuous, non-decreasing, ρ(0) = 0, and ρ(u) =

ρ(−u). Moreover, if 0 ≤ u < v with ρ(v) < supt ρ(t) then ρ(u) < ρ(v).

A1 Given functions mj ∈ Hj , if P(
∑d

j=1mj(Xj) = 0) = 1 then, for all 1 ≤ j ≤ d, we

have P(mj(Xj) = 0) = 1

Remark 2.1. Assumption E1 is a standard condition needed to ensure Fisher-consistency

of an M−location functional (see, e.g. Maronna et al., 2006). Assumption R1 is satisfied

by the so-called family of “rho functions” in Maronna et al. (2006), which include many

commonly used robust loss functions, such as those mentioned above. Since the loss func-

tion ρ can be chosen by the user, this assumption is not restrictive. Finally, assumption

A1 allows us to write the functional g(P ) in (7) uniquely as g(P ) =
∑d

j=1 gj(P ).

Assumption A1 appears to be the most restrictive and deserves some discussion. It is

closely related to the identifiability of the additive model (4) and holds if the explanatory

variables are independent from each other. Indeed, let us denote (x,Xα) the vector with

the α−th coordinate equal to x and the other ones equal to Xj, j 6= α and by m(x) =
∑d

j=1mj(xj), for mj ∈ Hj . For any fixed 1 ≤ α ≤ d, the condition P(m(X) = 0) = 1

implies that for almost every xα, P(m(xα,Xα) = 0|Xα = xα) = 1. Using that the com-

ponents of X are independent, we obtain that P(m(xα,Xα) = 0) = 1 which implies that
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∫
m(xα,uα)dFXα

(u) = 0, where FXα
denotes the distribution function of Xα. Note that

since Emj(Xj) = 0 for all j,
∫
m(xα,uα)dFXα

(u) = mα(xα) +
∫ ∑

j 6=αmj(uj)dFXα
(u) =

mα(xα). Hence, mα(xα) = 0, for almost every xα as desired. However, if the compo-

nents of X are not independent, then P(m(xα,Xα) = 0|Xα = xα) = 1 does not imply
∫
m(xα,uα)dFXα

(u) = 0. This has already been observed by Hastie and Tibshirani (1990,

page 107). The fact that Had is closed in H entails that under mild assumptions, the

minimum of E(Y −m(X))2 over Had exists and is unique. However, the individual func-

tions mj(xj) may not be uniquely determined since the dependence among the covariates

may lead to more than one representation for the same surface (see also Breiman and

Friedman, 1985). In fact, condition A1 is analogous to assumption 5.1 of Breiman and

Friedman (1985). It is also worth noticing that Stone (1985) gives conditions to ensure

that A1 holds. Indeed, Lemma 1 in Stone (1985) implies Proposition 2.1 below which

gives weak conditions for the unique representation and hence, as shown in Theorem 2.1

below, for the Fisher–consistency of the functional g(P ). Its proof is omitted since it follows

straightforwardly.

Proposition 2.1. Assume that X has compact support S and that its density fX is

bounded in S and such that infx∈S fX(x) > 0. Let Vj = mj(Xj) be random variables such

that P(
∑d

j=1 Vj = 0) = 1 and E(Vj) = 0, then P(Vj = 0) = 1.

The next Theorem establishes the Fisher–consistency of the functional (µ(P ), g(P )).

In other words, it shows that the solution to the optimization problem (7) are the target

quantities to be estimated under model (4).

Theorem 2.1. Assume that the random vector (Xt, Y )t ∈ R
d+1 satisfies (4) and let P

stand for its distribution.

a) If E1 and R1 hold, then Υ(ν,m) in (6) achieves its unique minimum over R× Had

at (µ(P ), g(P )) = (µ(P ),
∑d

j=1 gj(P )) when µ(P ) = µ0 and P(
∑d

j=1 gj(P )(Xj) =
∑d

j=1 g0,j(Xj) ) = 1 .

b) If in addition A1 holds, the unique minimum (µ(P ), g(P )) = (µ(P ),
∑d

j=1 gj(P ))
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satisfies µ(P ) = µ0 and P ( gj(P )(Xj) = g0,j(Xj) ) = 1 for 1 ≤ j ≤ d.

It is worth noticing that a minimizer (µ(P ), g(P )) of (7) always exists if ρ is a strictly

convex function, even if E1 does not hold. If in addition A1 holds, the minimizer will have

a unique representation.

For ν ∈ R, x = (x1, . . . , xd)
t ∈ R

d and m = (m1, . . . , md)
t ∈ H1 × · · · × Hd let

Γ(ν,m,x) = (Γ0(ν,m),Γ1(ν,m, x1), . . . ,Γd(ν,m, xd))
t , where

Γ0(ν,m) = E

[
ψ

(
Y − ν −

∑d

j=1mj(Xj)

σ0

)]

Γ`(ν,m, x`) = E

[
ψ

(
Y − ν −

∑d

j=1mj(Xj)

σ0

)∣∣∣∣∣X` = x`

]
, 1 ≤ ` ≤ d . (8)

Our next theorem shows that it is possible to choose the solution g(P ) of (7) so that its

additive components gj = gj(P ) satisfy first order conditions which are generalizations of

those corresponding to the classical case where ρ(u) = u2.

Theorem 2.2. Let ρ be a differentiable function satisfying R1 and such that its derivative

ρ′ = ψ is bounded and continuous. Let (Xt, Y )t ∼ P be a random vector such that

(µ(P ), g(P )) is a minimizer of Υ(ν,m) over R×Had where µ(P ) ∈ R, g(P ) =
∑d

j=1 gj(P ) ∈
Had, i.e., (µ(P ), g(P )) is the solution of (7). Then, (µ(P ), g(P )) satisfies the system of

equations Γ(ν,m,x) = 0 almost surely PX.

Remark 2.2. a) It is also worth mentioning that if (Xt, Y )t satisfies (4) with the

errors satisfying E1, then Γ(µ0, g0,x) = 0. Moreover, if the model is heteroscedas-

tic, i.e., if Y = g0(X) + σ0(X) ε = µ0 +
∑d

j=1 g0,j(Xj) + σ0(X) ε, where the errors ε

are symmetrically distributed and the score function ψ is odd, then (µ0, g0) satisfies

Eψ
(
(Y − µ0 −

∑d

j=1 g0,j(Xj))/σ0(X)
)
= 0 and for 1 ≤ ` ≤ d,

E

[
1

σ0(X)
ψ

(
Y − µ0 −

∑
j 6=` g0,j(Xj)− g0,`(X`)

σ0(X)

)∣∣∣∣X`

]
= 0 ,

which provides a way to extend the robust backfitting algorithm to heteroscedastic models.
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b) Assume now that missing responses can arise in the sample, that is, we have a sample

(Xt

i , Yi, δi)
t, 1 ≤ i ≤ n, where δi = 1 if Yi is observed and δi = 0 if Yi is missing, and

(Xt

i , Yi)
t satisfy an additive heteroscedastic model. Let (Xt, Y, δ)t be a random vector

with the same distribution as (Xt

i , Yi, δi)
t. Moreover, assume that responses may be miss-

ing at random (mar), i.e., P(δ = 1|(X, Y )) = P(δ = 1|X) = p(X). Define (µ(P ), g(P )) =

argmin(ν,m)∈R×Had Υδ(ν,m) where Υδ(ν,m) = E δρ
(
(Y − ν −

∑d

j=1mj(Xj))/σ0(X)
)

=

E p(X)ρ
(
(Y − ν −∑d

j=1mj(Xj))/σ0(X)
)
. Analogous arguments to those considered in

the proof of Theorem 2.1, allow to show that, if E1 and R1 hold, Υδ(ν,m) achieves its

unique minimum at (ν,m) ∈ R × H where ν = µ0 and P(m(X) =
∑d

j=1 g0,j(Xj)) = 1.

Besides, if in addition A1 holds, the unique minimum satisfies that µ(P ) = µ0 and

P(gj(P )(Xj) = g0,j(Xj)) = 1, that is, the functional is Fisher–consistent.

On the other hand, the proof of Theorem 2.2 can be also generalized to the case of an

homocedastic additive model (4) with missing responses. Effectively, when infx p(x) > 0,

using the mar assumption, it is possible to show that there exists a unique measurable

solution g̃`(x) of λ`,δ(x, a) = 0 where

λ`,δ(x, a) = E

{
p(X) ψ

(
Y − µ(P )−

∑
j 6=` gj(P )(Xj)− a
σ0

)∣∣∣∣X` = x

}
.

More precisely, let Γδ(ν,m,x) = (Γ0,δ(ν,m),Γ1,δ(ν,m, x1), . . . ,Γd,δ(ν,m, xd))
t with m =

(m1, . . . , md)
t, Γ0,δ(ν,m) = E

[
p(X)ψ

(
(Y − ν −

∑d
j=1mj(Xj))/σ0

)]
and, for 1 ≤ ` ≤ d,

Γ`,δ(ν,m, x`) = E

[
p(X) ψ

(
(Y − µ(P )−

∑
j 6=`mj(Xj)−m`(X`))/σ

)∣∣∣X` = x`

]
. Similar

arguments to those considered in the proof of Theorem 2.2, allow to show that if there exists

a unique minimizer (µ(P ), g(P )) ∈ R×Had of Υδ(ν,m), then (µ(P ), g(P )) is a solution of

Γδ(ν,m,x) = 0. Note that instead of a simplified approach, a propensity score approach

may be considered taking δ/p(X) instead of δ. In this case, Υδ(ν,m) = Υ(ν,m) defined

in (6) and Γ`,δ = Γ` defined in (8). The propensity approach is useful when preliminary

estimates of the missing probability are available, otherwise, the simplified approach is

preferred.
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2.1 The population version of the robust backfitting algorithm

In this section, we derive an algorithm to solve (7) and study its convergence. For simplicity,

we will assume that the vector (Xt, Y )t is completely observed and that it satisfies (4).

By Theorem 2.2, the robust functional (µ(P ), g(P )) satisfies (8). To simplify the notation,

in what follows we will put µ = µ(P ) and gj = gj(P ), 1 ≤ j ≤ d and
∑m

s=` as will be

understood as 0 if m < `. The robust backfitting algorithm is given in Algorithm 1.

Algorithm 1 Population version of the robust backfitting

1: Let ` = 0 and g(0) = (g
(0)
1 , . . . , g

(0)
d )t be an initial set of additive components, for

example: g(0) = 0 and µ0 an initial location parameter.

2: repeat

3: `← `+ 1

4: for j = 1 to d do

5: Let R
(`)
j = Y − µ(`−1) −

∑j−1
s=1 g̃

(`)
s (Xs)−

∑d

s=j+1 g
(`−1)
s (Xs)

6: Let g̃
(`)
j solve

E

[
ψ

(
R

(`)
j − g̃

(`)
j (Xj)

σ0

)∣∣∣∣∣Xj = x

]
= 0 a.s.

7: end for

8: for j = 1 to d do

9: g
(`)
j = g̃

(`)
j − E[g̃

(`)
j (Xj)].

10: end for

11: Let µ(`) solve

E

[
ψ

(
Y − µ(`) −

∑d

j=1 g
(`)
j (Xj)

σ0

)]
= 0 .

12: until convergence

Our next Theorem shows that each Step ` of the algorithm above reduces the objective

function Υ(µ(`), g(`)).

Theorem 2.3. Let ρ be a differentiable function satisfying R1 and such that its derivative

ρ′ = ψ is a strictly increasing, bounded and continuous function with limt→+∞ ψ(t) > 0
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and limt→−∞ ψ(t) < 0. Let
(
µ(`), g(`)

)
`≥1

= (µ(`), g
(`)
1 , . . . , g

(`)
d )`≥1 be the sequence obtained

with Algorithm 1. Then, {Υ(µ(`), g(`))}`≥1 is a decreasing sequence, so that the algorithm

converges.

3 The sample version of the robust backfitting algo-

rithm

In practice, given a random sample (Xt

i , Yi)
t 1 ≤ i ≤ n from the additive model (4) we

apply Algorithm 1 replacing the unknown conditional expectations with univariate robust

smoothers. Different smoothers can be considered, including splines, kernel weights or

even nearest neighbours with kernel weights. In what follows we describe the algorithm for

kernel polynomial M-estimators.

Let K : R → R be a kernel function and let Kh(t) = (1/h)K(t/h). The estimators of

the solutions of (8) using kernel M−polynomial estimators of order q ≥ 0 are given by the

solution to the following system of equations:

1

n

n∑

i=1

ψ

(
Yi − µ̂−

∑d

j=1 ĝj(Xi,j)

σ̂0

)
= 0

1

n

n∑

i=1

Khj
(Xi,j − xj)ψ

(
Yi − µ̂−

∑
` 6=j ĝ`(Xi,`)−

∑q

s=0 βs,jZi,j,s

σ̂0

)
Zi,j(xj) = 0 , 1 ≤ j ≤ d ,

where Zi,j(xj) = (Zi,j,0, Zi,j,1, . . . , Zi,j,q)
t with Zi,j,s = (Xi,j − xj)

s, 0 ≤ s ≤ d. Then,

we have ĝj(xj) = β0,j , 1 ≤ j ≤ d. The corresponding algorithm is described in detail in

Algorithm 2. The same procedure can be applied when responses are missing.

Remark 3.1. A possible choice of the preliminary scale estimator σ̂0 is obtained by

calculating the mad of the residuals obtained with a simple and robust nonparametric re-

gression estimator, as local medians. In that case we have σ̂0 = mad1≤i≤n

{
Yi − Ŷi

}
, where

Ŷi = median1≤j≤n {Yj : |Xj,k −Xi,k| ≤ hk, ∀ 1 ≤ k ≤ d}. The bandwidths hk are prelimi-

nary values to be selected, or alternatively they can be chosen as the distance between Xi,k
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Algorithm 2 The sample version of the robust backfitting

1: Let ` = 0 and ĝ(0) = (ĝ
(0)
1 , . . . , ĝ

(0)
d )t be an initial set of additive components, for

example: ĝ(0) = 0, and let σ̂0 be a robust residual scale estimator. Moreover, let µ̂(0)

an initial location estimator such as an M−location estimator of the responses.

2: repeat

3: `← `+ 1

4: for j = 1 to d do

5: for i0 = 1 to n do

6: Let xj = Xi0,j

7: for i = 1 to n do

8: Let Zi,j(xj) = (1, (Xi,j − xj), (Xi,j − xj)2, . . . , (Xi,j − xj)q)t and R̂
(`)
i,j = Yi −

µ̂(`) −
∑j−1

s=1 g̃
(`)
s (Xi,s)−

∑d

s=j+1 ĝ
(`−1)
s (Xi,s).

9: end for

10: Let β̂j(xj) = (β̂0j(xj), β̂1j(xj), . . . , β̂qj(xj))
t be the solution to

1

n

n∑

i=1

Kh(Xi,j − xj)ψ
(
R̂

(`)
i,j − β̂j(xj)

tZi,j(xj)

σ̂0

)
Zi,j(xj) = 0 .

11: Let g̃
(`)
j (xj) = β̂0j(xj).

12: end for

13: end for

14: for j = 1 to d do

15: ĝ
(`)
j = g̃

(`)
j −

∑n

i=1 g̃
(`)
j (Xi,j)/n.

16: end for

17: Let µ̂(`) solve

1

n

n∑

i=1

ψ

(
Yi − µ̂(`) −

∑d
j=1 ĝ

(`)
j (Xi,j)

σ̂0

)
= 0 .

18: until convergence

and its r-th nearest neighbour among {Xj,k}j 6=i.
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3.1 Selection of the smoothing parameter

As with other nonparametric procedures, the selection of the smoothing parameter is an

important practical issue when fitting additive models. The importance of using a robust

criterion for selecting smoothing parameters, even when one uses robust estimators, has

been described, for instance, by Leung et al. (1993), Wang and Scott (1994), Boente et al.

(1997), Cantoni and Ronchetti (2001) and Leung (2005). Several proposals have been made

in the literature, including L1 cross–validation (Wang and Scott, 1994), a robust version

of Cp and cross-validation (Cantoni and Ronchetti, 2001) and a robust plug–in procedure

discussed in Boente et al. (1997).

Here we use an intuitively simple K−fold cross-validation method related to the pro-

cedure described in Bianco and Boente (2007). As usual, first randomly partition the data

set into K disjoint subsets of approximately equal sizes, with indices Cj , 1 ≤ j ≤ K, so

that
⋃K

j=1 Cj = {1, . . . , n}. Let G ⊂ R
d be the set of bandwidth combinations to be consid-

ered, and let ĝ
(j)
h
(X) be the robust backfitting predictor for X, computed with smoothing

parameters h = (h1, . . . , hd) ∈ G and without using the observations with indices in Cj .
For each i = 1, . . . , n, the prediction residuals êi are

êi = Yi − ĝ(j)h
(Xi) , i ∈ Cj , j = 1, . . . , K .

Noting that the classical cross-validation criterion can be decomposed into the sum of

the squared bias and the variance, it would be natural to use robust measures of bias

and dispersion instead. Let µn(Z1, . . . , Zn) and σn(Z1, . . . , Zn) denote robust estimators

of location and dispersion based on the sample {Z1, . . . , Zn}, such as the sample median

and the mad (median of the absolute deviations with respect to the median). The robust

cross-validation smoothing parameters are selected by minimizing over h ∈ G the following

criterion:

Lr(h) = µ2
n (ê1, . . . , ên) + σ2

n (ê1, . . . , ên) . (9)

Leave–one–out cross–validation is a particularly important case of K−fold obtained when

K = n and Cj = {j}, 1 ≤ j ≤ n.
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4 Numerical studies

In this section, we report the results of our numerical experiments designed to compare our

proposed estimator with other alternatives proposed in the literature. All computations

were carried out using an R implementation of our algorithm, publicly available on–line at

http://www.stat.ubc.ca/~matias/soft.html.

We generated data following additive models with d = 2 and d = 4 components. Our

experiments involved N = 500 samples for each simulation setting. For models with two

additive components (d = 2) we include here the results obtained with samples of size

n = 100 and bandwidths chosen using K–fold cross-validation. For d = 4 we used n = 500

and fixed bandwidths set to their asymptotic optimal values. Additional results for d = 2

and n = 500 are reported in Boente et al. (2015).

We considered samples without outliers, four types of possible data contaminations,

independent and correlated covariates, and also cases where the response variable was

missing, as described in Remark 2.2. More specifically, we first generated observations

(Xt

i , Yi)
t satisfying the additive model Y = g0(X) + u = µ0 +

∑d
j=1 g0,j(Xj) + u , where

u = σ0 ε. We then generated independent Bernoulli random variables {δi}ni=1 such that

P (δi = 1|Yi,Xi) = P (δi = 1|Xi) = p (Xi). For models with d = 4 we considered the case

without missing data (p(x) ≡ 1) and also used p(x) = p4(x) = 0.4 + 0.5(cos(x1 x3 +

0.2))2, which produces approximately 33% of missing Yi’s. Since other robust estimators

proposed in the literature for this model cannot be applied directly to samples with missing

observations, we ran a series of experiments with d = 2, n = 100 and no missing data.

Comparisons between the robust and classical backfitting algorithm for d = 2 and missing

data generated with p(x) = p2(x) = 0.4 + 0.5(cos(x1 +0.2))2 can be found in Boente et al.

(2015).

We compared the following estimators:

• The classical backfitting estimator adapted to missing responses.

• A robust backfitting estimator using Huber’s loss function with tuning constant c =
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1.345. This loss function is such that ρ′c(u) = ψc(u) = min (c,max(−c, u)) .

• A robust backfitting estimator using Tukey’s bisquare loss function with tuning con-

stant c = 4.685. This loss function satisfies ρ′c(u) = ψc(u) = u (1− (u/c)2)
2
I[−c,c](u) .

• The estimator defined in Bianco and Boente (1998).

• The estimator proposed by Croux et al. (2011), denoted ĝcr.

The univariate smoothers were computed using the Epanechnikov kernelK(u) = 0.75 (1−
u2)I[−1,1](u). We used local linear polynomials with q = 0 and q = 1 in Algorithm 2. Not

surprisingly, our results for d = 2 show that in general local linear smoothers outperform

locally constant ones. Hence, here we only report the results for q = 1, but see Boente et

al. (2015) for additional tables. In what follows, classical backfitting estimates obtained

using local linear smoothers (q = 1) are indicated as ĝbc,1, while the robust counterparts

based on Tukey’s bisquare and Huber’s loss functions are denoted ĝbr,t,1 and ĝbr,h,1, respec-

tively. Note that in order to perform a fair comparison between estimators we adapted the

proposal in Bianco and Boente (1998) to the case q = 1, which we denote by ĝbb,1.

The performance of each estimator ĝj of g0,j, 1 ≤ j ≤ d, was measured through the

following approximated integrated squared error (ise):

ise(ĝj) =
1∑n
i=1 δi

n∑

i=1

(g0,j (Xij)− ĝj (Xij))
2 δi .

where Xij is the jth component of Xi and δi = 0 if the i-th response was missing and δi = 1

otherwise. An approximation of the mean integrated squared error (mise) was obtained

by averaging the ise above over all replications. A similar measure was used to compare

the estimators of the regression function g0 = µ0 +
∑d

j=1 g0,j.

4.1 Monte Carlo study with d = 2 additive components

Our data were generated according to the additive model in (2) with n = 100, σ0 = 0.5

µ0 = 0, g0,1(x1) = 24 (x1 − 0.5)2 − 2 and g0,2(x2) = 2π sin(πx2)− 4. The distributions of
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X1 and X2 were U([0, 1]) and we considered two situations for the distribution of the vector

(X1, X2)
t: independent components, and cor(X1, X2) = 0.7. The latter was generated as

follows. Let Z ∼ N2(0,Σ) be a bivariate Gaussian random vector where Σ1,1 = Σ2,2 = 1

and Σ1,2 = Σ2,1 = 2 sin(ρ π/6), with ρ ∈ (−1, 1). Let Xj = Φ(Zj), j = 1, 2, where Φ is

the cumulative distribution function of a standard normal distribution. It follows that the

marginal distribution of each Xj is U([0, 1]), j = 1, 2 and that their correlation equals ρ.

To select the bandwidths of the classical backfitting estimator we used the standard

K-fold cross-validation procedure with a square loss function, while for the robust backfit-

ting and the estimator of Bianco and Boente (1998) we used the robust K−fold method

described in Section 3.1. In all these cases we set K = 5. The parameters involved in the

estimators defined by Croux et al. (2011) were chosen as described therein.

For the error distribution, we considered the following settings:

• C0: ui ∼ N(0, σ2
0).

• C1: ui ∼ (1− 0.15)N(0, σ2
0) + 0.15N(15, 0.01).

• C2: ui ∼ N(15, 0.01) for all i’s such that Xi ∈ D0.3, where Dη = [0.2, 0.2 + η]2.

• C3: ui ∼ N(10, 0.01) for all i’s such that Xi ∈ D0.09, where Dη is as above.

• C4: ui ∼ (1− 0.30)N(0, σ2
0) + 0.30N(15, 0.01) for all i’s such that Xi ∈ D0.3.

The first case, C0, corresponds to samples without outliers and they will illustrate the

loss of efficiency incurred by using a robust estimator when it may not be needed. The

contamination setting C1 corresponds to a gross-error model where all observations have the

same chance of being contaminated. On the other hand, case C2 is highly pathological in

the sense that all observations with covariates in the square [0.2, 0.5]× [0.2, 0.5] are severely

affected, while C3 is similar but in the region [0.2, 0.29]× [0.2, 0.29]. The difference between

C2 and C3 is that the asymptotically optimal bandwidths are wider than the contaminated

region in C3. Finally, case C4 is a gross-error model with a higher probability of observing an

outlier, but these are restricted to the square [0.2, 05]× [0.2, 0.5]. Figures 1 and 2 illustrate
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these contamination scenarios on one randomly generated sample with independent and

correlated covariates, respectively. The panels correspond to settings C2, C3 and C4, with

solid triangles indicating contaminated cases.

Note that for the case of correlated covariates the contamination setting C2 produces

samples with a very high number of outliers in neighbourhoods of points with one coordinate

between 0.2 and 0.5 (see Figure 2). Since all the estimators considered in our experiment

were severely affected in this setting, we omit the corresponding results here.
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Figure 1: Scatter plots of covariates (X1, X2)
t ∼ U([0, 1]2) with solid triangles indicating observations

with contaminated response variables, for contamination settings C2, C3 and C4. The square regions

indicate the sets Dη for each scenario.
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Figure 2: Scatter plots of covariates (X1, X2)
t with solid triangles indicating observations with contam-

inated response variables, for contamination settings C2, C3 and C4. The square regions indicate the sets

Dη for each scenario and the covariates have correlation 0.7 with marginal uniform distribution.

Tables 1 and 2 report the obtained values of the mise when estimating the regression

function g0 = µ0 + g0,1 + g0,2 and each additive component g0,1 and g0,2, respectively. We
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ĝbc,1 ĝcr ĝbb,1 ĝbr,t,1 ĝ1,bc,1 ĝ1,cr ĝ1,bb,1 ĝ1,br,t,1 ĝ2,bc,1 ĝ2,cr ĝ2,bb,1 ĝ2,br,t,1

C0 0.032 0.135 0.391 0.038 0.049 0.093 0.562 0.052 0.050 0.112 0.462 0.053

C1 7.641 3.676 0.430 0.336 1.188 0.491 0.420 0.182 1.130 0.476 0.377 0.203

C2 8.113 2.336 0.474 0.740 3.223 1.068 0.324 0.376 3.113 0.502 0.377 0.338

C3 0.153 0.073 0.385 0.039 0.104 0.064 0.548 0.053 0.102 0.076 0.452 0.054

C4 1.125 0.138 0.376 0.037 0.522 0.108 0.475 0.052 0.452 0.069 0.386 0.053

Table 1: mise of the estimators of the regression function g0 = µ0+
∑2

j=1
g0,j and the additive components

g0,1 and g0,2 under different contaminations and when the covariates are independent.

ĝbc,1 ĝcr ĝbb,1 ĝbr,t,1 ĝ1,bc,1 ĝ1,cr ĝ1,bb,1 ĝ1,br,t,1 ĝ2,bc,1 ĝ2,cr ĝ2,bb,1 ĝ2,br,t,1

C0 0.035 0.107 1.299 0.045 0.062 0.120 1.581 0.073 0.065 0.141 1.358 0.078

C1 7.581 3.756 1.417 0.327 1.773 0.918 1.467 0.260 1.674 0.955 1.358 0.159

C3 0.286 0.056 1.281 0.044 0.173 0.071 1.561 0.072 0.168 0.074 1.345 0.076

C4 1.690 0.234 1.182 0.043 0.710 0.182 1.430 0.071 0.617 0.102 1.287 0.074

Table 2: mise of the estimators of the regression function g0 = µ0+
∑

2

j=1
g0,j and the additive components

g0,1 and g0,2 under different contaminations and when the covariates have correlation 0.7.

only report here the results for the robust backfitting estimator computed using Tukey’s

score function. Additional results obtained with the Huber loss function can be found in

Boente et al. (2015).

As expected, when the data do not contain outliers the robust backfitting estimator

ĝbr,t,1 is slightly less efficient than the least squares one, although the differences in the

estimated mise’s are well within the Monte Carlo margin of error. On the other hand,

the estimators ĝcr and ĝbb,1 showed much larger mean square errors. In particular, the

mise of the Bianco and Boente (1998) estimator is more than 10 times higher than that

of ĝbr,t,1. For correlated covariates this can be expected since ĝbb,1 is a biased estimator

unless Y − g0,j(Xj) is independent from Xj , j = 1, 2.

For the contamination cases C1 and C2, when using the backfitting algorithm combined

with local linear smoothers, the mise of the classical estimator for g0 is notably larger than

those of all robust estimators (more than 20 times larger) for independent covariates. This
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difference is smaller when estimating each component g0,1 and g0,2, but remains fairly large

nonetheless. A similar behavior is observed under C1 when the covariates are correlated.

This contamination causes the most damage to the estimator of Croux et al. (2011), with a

resulting mise which is 10 times that of the robust backfitting and 30 times that obtained

under C0. Quite surprisingly, under C3, the estimators proposed by Croux et al. (2011)

perform better than under the uncontaminated case C0.

In general, when the data contain outliers, we note that the robust backfitting estimators

give noticeably better regression estimators (both for g0 and its components) than the

classical one and outperforms the estimators proposed in Bianco and Boente (1998) and

Croux et al. (2011). Based on the above results, from its stability with respect to the

studied contaminations and the lower bias under the central model, we recommend the

robust backfitting algorithm combined with local linear smoothers computed with Tukey’s

loss function.

4.2 Monte Carlo study with d = 4 additive components

For this model we generated covariatesXi = (Xi1, Xi2, Xi3, Xi4) ∼ U([−3, 3]4), independent
errors εi ∼ N(0, 1), set µ0 = 0 and σ0 = 0.15. The additive components were: g0,1(x1) =

x31/12, g0,2(x2) = sin(−x2), g0,3(x3) = x23/2 − 1.5, g0,4(x4) = ex4/4 − (e3 − e−3)/24. Based

on the results obtained for two additive components, with d = 4 we only compared the

classical backfitting estimator and the robust proposal described in this paper. In addition

to the settings C0 and C1 described above, we modified the contamination setting C2 so

that ui ∼ N(15, 0.01) for all i such that Xi,j ∈ [−1.5, 1.5] for all 1 ≤ j ≤ 4.

Due to the intensive computational effort required to perform K−fold cross–validation

with 4 bandwidths, we report here results obtained using fixed bandwidths set to their

optimal asymptotic value. These fixed bandwidths were computed assuming that the

other components in the model are known (Härdle et al., 2004), resulting in hMISE

opt
=

(0.36, 0.38, 0.34, 0.29). However, it was difficult to obtain a reliable estimate for the resid-

ual scale σ0 using these bandwidths (see Remark 3.1), since many 4-dimensional neigh-
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p(x) ≡ 1 p(x) = p4(x)

ĝbc,1 ĝbr,h,1 ĝbr,t,1 ĝbc,1 ĝbr,h,1 ĝbr,t,1

C0 0.0023 0.0023 0.0023 0.0033 0.0033 0.0033

C1 7.6095 0.0497 0.0046 8.8581 0.1563 0.0932

C2 4.8224 0.0221 0.0025 6.0121 0.0258 0.0038

Table 3: mise of the estimators of the regression function g0 = µ0 +
∑

4

j=1
g0,j under different con-

taminations and missing mechanisms. p(x) ≡ 1 corresponds to the case of no missing responses and

p4(x) = 0.4 + 0.5 cos2(x1 x3 + 0.2) to missing responses according to p4.

bourhoods did not contain sufficient observations. To solve this problem we used hσ =

(0.93, 0.93, 0.93, 0.93) to estimate σ0 (using this vector of bandwidths we expect an aver-

age of 5 points in each 4-dimensional neighbourhood). We then applied the backfitting

algorithm with the optimal bandwidths hMISE

opt
.

Tables 3 to 7 report the mise for the different estimators, contamination settings and

missing mechanisms. Ratios of mise’s for clean and contaminated settings and median

ise’s are reported in tables included in Boente et al. (2015).

Our experiments with and without missing responses yield similar conclusions regarding

the advantage of the robust procedure over the classical backfitting. As expected, when

responses are missing, all the mise’s are slightly inflated. It is also not surprising that when

the data do not contain outliers (C0), the robust estimators have a slightly larger mise than

their classical counterparts. However, when outliers are present, both robust estimators

provide a substantially better performance than the classical one, given similar results to

those for clean data. The mise of the estimators based on Tukey’s bisquare score function

are more stable across the different contamination settings than those using Huber’s score

function. A similar behaviour was observed for models with d = 2 (see Boente et al., 2015).

Based on these observations, we also recommend using our robust backfitting method using

local linear smoothers and Tukey’s loss function.
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p(x) ≡ 1 p(x) = p4(x)

ĝ1,bc,1 ĝ1,br,h,1 ĝ1,br,t,1 ĝ1,bc,1 ĝ1,br,h,1 ĝ1,br,t,1

C0 0.0020 0.0020 0.0020 0.0030 0.0030 0.0030

C1 0.6356 0.0066 0.0021 0.9703 0.0250 0.0178

C2 0.9897 0.0060 0.0020 1.1960 0.0073 0.0030

Table 4: mise of the estimators of the additive component g0,1 under different contaminations and missing

mechanisms. p(x) ≡ 1 corresponds to the case of no missing responses and p4(x) = 0.4+0.5 cos2(x1 x3+0.2)

to missing responses according to p4.

p(x) ≡ 1 p(x) = p4(x)

ĝ2,bc,1 ĝ2,br,h,1 ĝ2,br,t,1 ĝ2,bc,1 ĝ2,br,h,1 ĝ2,br,t,1

C0 0.0016 0.0016 0.0016 0.0024 0.0024 0.0024

C1 0.6189 0.0081 0.0026 0.8982 0.0226 0.0136

C2 0.9482 0.0055 0.0016 1.2339 0.0067 0.0024

Table 5: mise of the estimators of the additive component g0,2 under different contaminations and missing

mechanisms. p(x) ≡ 1 corresponds to the case of no missing responses and p4(x) = 0.4+0.5 cos2(x1 x3+0.2)

to missing responses according to p4

p(x) ≡ 1 p(x) = p4(x)

ĝ3,bc,1 ĝ3,br,h,1 ĝ3,br,t,1 ĝ3,bc,1 ĝ3,br,h,1 ĝ3,br,t,1

C0 0.0042 0.0042 0.0042 0.0082 0.0082 0.0082

C1 0.6741 0.0106 0.0052 1.0679 0.0449 0.0337

C2 1.0007 0.0085 0.0042 1.2256 0.0126 0.0082

Table 6: mise of the estimators of the additive component g0,3 under different contaminations and missing

mechanisms. p(x) ≡ 1 corresponds to the case of no missing responses and p4(x) = 0.4+0.5 cos2(x1 x3+0.2)

to missing responses according to p4
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p(x) ≡ 1 p(x) = p4(x)

ĝ4,bc,1 ĝ4,br,h,1 ĝ4,br,t,1 ĝ4,bc,1 ĝ4,br,h,1 ĝ4,br,t,1

C0 0.0036 0.0036 0.0036 0.0058 0.0058 0.0058

C1 0.7558 0.0097 0.0037 1.2310 0.0583 0.0429

C2 1.0592 0.0078 0.0036 1.3877 0.0117 0.0061

Table 7: mise of the estimators of the additive component g0,4 under different contaminations and missing

mechanisms. p(x) ≡ 1 corresponds to the case of no missing responses and p4(x) = 0.4+0.5 cos2(x1 x3+0.2)

to missing responses according to p4

5 Real data example

In this section, we compare the performance of the robust backfitting described in this paper

with the classical one on a real data set. We considered the airquality data set available

in R. The data set corresponds to 153 daily air quality measurements in the New York region

between May and September, 1973 (see Chambers et al., 1983). The interest is in explaining

mean Ozone concentration (“O3”, measured in ppb) as a function of 3 potential explanatory

variables: temperature (“Temp”, in degrees Fahrenheit), wind speed (“Wind”, in mph) and

solar radiance measured in the frequency band 4000-7700 (“Solar.R”, in Langleys). In our

analysis, we only considered the 111 cases that do not contain missing observations. Dengyi

and Kawagochi (1986) and Lacour et al. (2006) report a positive correlation between

ozone concentration and temperature in the Antarctica during Spring and also, in France

during the 2003 heat wave. Cleveland (1985) finds that the relationship between ozone

concentration and wind speed is non-linear, with higher wind speeds associated to lower

Ozone concentrations. Simple visual exploration of the data indicates that the relationship

between ozone and the other variables does not appear to be linear, so we propose to fit

an additive model of the form O3 = µ0 + g0,1(Temp) + g0,2(Wind) + g0,3(Solar.R) + u ,

where the errors u = σ0 ε are assumed to be independent, homoscedastic and with location

parameter 0.

Based on the results obtained in Section 4, we used local linear backfitting estimators
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with the classical squared loss function and also with Tukey’s bisquare loss (with tuning

constant c = 4.685) to provide a robust alternative. Bandwidths were selected using

a 3-dimensional grid search. For the bandwidth hj of the j-th covariate, 1 ≤ j ≤ 3,

we considered 6 possible values (equal to multiples of its estimated standard deviation):

Gj = {σ̂j/2, σ̂j , 1.5 σ̂j, 2 σ̂j, 2.5 σ̂j, 3 σ̂j}, where σ̂j = sd(Xj). Our 3-dimensional grid is the

product of these sets: G = G1 × G2 × G3 ⊂ R
3. Let (Xt

1 , Y1)
t, . . . , (Xt

n , Yn)
t be the

considered observations (n = 111). The usual leave-one-out cross-validation criterion in

this setting is given by Lls(h) = (1/n)
∑n

i=1

(
Yi − ĝ−i

bc,h(Xi)
)2
, where ĝ−i

bc,h(Xi) denotes the

backfitting predictor for Xi, computed with bandwidth h ∈ G and without using the i-th

observation. For the classical backfitting estimator the smallest value of Lls over the grid

G was obtained at hls = (9.53, 10.67, 91.15).

As mentioned in Section 3, when outliers may be present in the data, it is important

to use a robust selection criterion for smoothing parameters, even when considering robust

estimators. For this real data set, we have considered the robust leave–one–out cross-

validation criterion defined through Lr(h) in (9) taking µn as the median and σn as the

mad. More precisely, let ĝ−i
br,t,h(Xi) denote the robust backfitting predictor atXi, computed

with the smoothing parameter h ∈ G and without using the i-th observation. The robust

cross-validation criterion used is

Lr(h) =

(
median
1≤i≤n

{Yi − ĝ−i
br,t,h(Xi)}

)2

+

(
mad
1≤i≤n

{Yi − ĝ−i
br,t,h(Xi)}

)2

.

The minimum of Lr over G was obtained at hr = (4.76, 8.89, 136.73), which leads to a

smaller bandwidth for the first additive component and a larger one for the third than the

ones chosen with the classical approach. This suggests that some influential observations

may be present, which lead to oversmoothing of the classical estimator of the first additive

component.

Figure 3 shows the estimated regression components for each explanatory variable,

both for the classical and robust estimators. The plots of the partial residual are given

in the supplemental file available on–line. Although the shape of the estimated additive

components are similar, some important differences in their pattern can be highlighted.
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Figure 3: Estimated curves for the classical (in red dashed lines) and robust (in blue solid lines)

backfitting estimators with data-driven bandwidths hls and hr, respectively.

On the one hand, the classical estimator appears to magnify the effect of the covariates on

the additive components of the regression function. With the classical estimator increasing

temperatures correspond to a higher mean ozone concentration, but only for temperatures

between 70 and 90 degrees (F). Higher temperatures correspond to lower mean ozone

concentrations, and the same happens for increasing wind speeds and low values of solar

radiance. At the same time, low wind speeds and solar radiance values between 150 and

250 correspond to higher mean levels of ozone. Intriguingly, lower temperatures are seen

to result in a slight increase in mean ozone concentration. On the other hand, the robust

estimator suggests covariate effects that are more moderate. For example, in the case of

temperature, we note that the corresponding additive component is practically constant for

temperatures up to 75 degrees, and for temperatures beyond 90 degrees does not decrease

as markedly as the classical one.
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Figure 4: Boxplot of the residuals obtained using the robust fit with data-driven bandwidth hr.

We can use the residuals obtained with the robust fit to explore the presence of potential

outliers in the data. Figure 4 shows the corresponding residual boxplot which indicates
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5 clear outliers (observations 23, 34, 53, 68 and 77). To study the influence of these

observations on the classical fit we repeat the analysis without them. The obtained cross–

validation bandwidths for the classical estimator are now h
(−5)
ls = (4.85, 10.52, 138.87). Note

that these values are very similar to those obtained with the robust estimator combined

with the robust cross–validation criterion. Figure 5 shows the estimates, ĝ
(−5)
j , j = 1, . . . , 3,

obtained with the classical estimator using the “cleaned” data together with the robust

ones obtained with the original data set. We see that both sets of fits are now very

similar. In other words, the robust fit automatically down-weighted potential outliers and

returned estimated additive components based on the remaining observations that are

almost identical to the classical ones when the outliers are removed by hand. Furthermore,

the residuals obtained from the robust fit allow us to identify potential outliers.
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Figure 5: Estimated curves for the classical backfitting estimator, ĝ
(−5)
j (in red dashed lines)

with data-driven bandwidth h
(−5)
ls and for the robust ones (in blue solid lines) computed with all

the data and with data-driven bandwidth hr.

SUPPLEMENTARY MATERIAL

The supplementary file includes three Sections labelled S.1 to S.3 which contain:

S.1: Empirical Influence To study the sensitivity of the robust backfitting with respect to

single outliers, we provide a numerical study of the empirical influence function.

S.2: Real Data Example Partial residuals plots for each explanatory variable, both for the

classical and robust estimators. For the classical estimators, partial residuals are given for

the complete data set and for the data without the outliers.
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S.3: Proofs Proofs of Theorems 2.1 to 2.3.
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