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S.1 Empirical Influence

A well-known measure of robustness of an estimator is given by its influence function (see
Hampel et al. 1986). The influence function measures resistance of an estimator against
infinitesimal proportions of outliers and helps study the local robustness and asymptotic
efficiency of an estimator. The finite-sample version of the influence function, called the
empirical influence function (Tukey, 1977), is a useful measure of sensitivity quantifying the
effect of a single outlier on the estimator computed on a given sample. Although influence
functions have been widely studied for many parametric models, much less attention has
been paid to nonparametric estimators. To measure the influence of a contaminating point
on the estimators, we follow the approach of Manchester (1996), who proposed a graphical
method to display the sensitivity of a scatter plot smoother that is related to the finite–
sample influence function introduced by Tukey (1977).

Given a data set {(Xt
i , Yi)

t}1≤i≤n satisfying the additive model Y = µ0+
∑d

j=1 g0,j(Xj)+
σ0 ε, let ĝn,j(τ) be the estimator of the j−th component based on this data set evaluated
at the point τ ∈ R. Assume that z0 = (xt0 , y0)

t represents a contaminating point and let

ĝ
(z0)
n,j (τ) be the estimator based on the augmented data set {(Xt

1 , Y1)
t, . . . (Xt

n , Yn)
t, z0}

evaluated at the point τ . For a fixed value of τ , we define the empirical influence function
of ĝn,j(τ) at z0 as the surface

EIFj,τ(z0) = (n + 1)
[
ĝ
(z0)
n,j (τ)− ĝn,j(τ)

]
, (S.1)

as z0 varies in R
d×R. To explore the sensitivity of the backfitting estimators to the presence

of outliers using the empirical influence function (S.1), we generated a data set of size
n = 500 following an additive model with location µ0 = 0, additive components g0,1(x1) =
24 (x1 − 0.5)2 − 2 and g0,2(x2) = 2π sin(πx2) − 4 and covariates Xi = (Xi,1, Xi,2)

t ∼
U([0, 1]× [0, 1]). The data and the regression function are shown in Figure S.1.

We used an Epanechnikov kernel with bandwidths h1 = h2 = 0.10, local constant
smoothers (q = 0) and the same tuning constants as in our simulation study. We computed
EIFj,τ(z0) for τ = 0.20, 0.40, 0.60 and 0.80 and a grid of points z0 = ((x1, 0.5)

t, y)t, where
x1 ranges over 30 equidistant points in the interval [0.15, 0.85] and y takes 50 equally spaced
points in [−20, 20].

The results for each estimator and for τ = 0.2 and 0.4 are displayed in Figure S.2, while
the results for τ = 0.6 and 0.8 are given in Figure S.3.

These plots illustrate the expected lack of robustness of the classical backfitting esti-
mator, for which the empirical influence function takes very large values. Note the EIF
attain the largest absolute value when x1 is close to τ , and estimators based on Tukey’s
bisquare loss function have a slightly larger |EIF | than those based on Huber’s loss. The
redescending structure of the score function can also be observed in the plot, showing that
very large values of the responses have less effect on the estimator based on the Tukey loss
function than in that based on the Huber loss, as noted also in the simulation study. It
is important to note that, when the nonparametric regression model does not take into
account an additive structure and when using a kernel with compact support to compute
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Figure S.1: Data used for the influence function study, and the corresponding regression function
g0.

a kernel regression estimator only outliers near the value at which the regression function
estimator is evaluated may impact the regression estimator. However, the situation is dif-
ferent for the backfitting method, which involves the estimation of the location parameter
and an iterative algorithm involving all the residuals.

Since the absolute value of EIF1,τ (x, y) attains its maximum value near τ , Figure S.4
shows the surfaces EIF1,x1

((x1, 0.5), y), which represent the worst possible bias of these
estimators in this setting. The plots of |EIF1,x1

((x1, 0.5), y)| are given in Figure S.5. As
expected, the bias of the classical estimators follows the size of the contaminated responses.
On the other hand, the empirical functions of the robust estimators are bounded, and the
most influential points correspond to x1 near 0.2 and 0.8, which reflects the expected
boundary effect. Due to the redescending nature of the Tukey score function, the absolute
value of the empirical function for larger values of y (|y| > 5, say) remains very low, near
its minimum absolute value of 0.019.
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Classical Huber Function Tukey Function
τ = 0.2
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Figure S.2: Empirical influence for the classical and robust estimators, EIF1,τ (x, y) when τ = 0.2
and 0.4 and x = (x1, 0.5).
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Classical Huber Function Tukey Function
τ = 0.6
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τ = 0.8
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Figure S.3: Empirical influence for the classical and robust estimators, EIF1,τ (x, y) when τ = 0.6
and 0.8 and x = (x1, 0.5)
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Classical Huber Function Tukey Function
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Figure S.4: Empirical influence EIF1,x1
((x1, 0.5), y) for the classical and robust estimators.
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Figure S.5: Absolute value of the empirical influence, |EIF1,x1
((x1, 0.5), y)| for the classical and

robust estimators.
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S.2 Real data example

In this section, we give the plots for the partial residuals obtained using the classical and
robust estimators with all the data (Figure S.6) and when using the classical estimators on
the data set without the 5 detected atypical observations (Figure S.7).
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Figure S.6: Partial residuals, R̂j for 1 ≤ j ≤ 3, and estimated curves for the classical (in red

dashed lines) and robust (in blue solid lines) backfitting estimators with data-driven bandwidths

hls and hr, respectively.

S.3 Proofs

Proof of Theorem 2.1. (a) We will show that if (ν,m) ∈ R×Had is such that either
ν 6= µ0 or P(

∑d

j=1mj(Xj) =
∑d

j=1 g0,j(Xj)) < 1 then Υ (ν,m) > Υ (µ0, g0). For any

(ν,m) ∈ R×Had we have

Υ (ν,m) = Eρ

(
Y − ν −

∑d

j=1mj(Xj)

σ0

)
= EX

(
Eε|X

{
ρ

(
ε−

b(X)

σ0

)})
,

where b(x) = ν − µ +
∑d

j=1(mj(xj) − g0,j(xj)). Furthermore, since ε is independent of
X, it follows that Υ (ν,m) = EX Eε {ρ (ε− [b(X)/σ0])} . To simplify the notation, let
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Figure S.7: Partial residuals and estimated curves for the classical backfitting estimator, ĝ
(−5)
j ,

(in red dashed lines) with data-driven bandwidth h
(−5)
ls .

a(x) = b(x)/σ0 and B0 = {x : b(x) = 0}. We have

Υ (ν,m) =

∫

B0

Eε (ρ (ε)) dFX(x) +

∫

Bc

0

Eε (ρ (ε− a(x))) dFX(x) . (S.2)

Note that if either ν 6= µ0 or P(
∑d

j=1mj(Xj) =
∑d

j=1 g0,j(Xj)) < 1 then P (B0) < 1.
To see this, assume that P(B0) = 1 which implies that E [b(X)] = 0. Since E [mj(Xj)] =
E [g0,j(Xj)] = 0, for all 1 ≤ j ≤ d, we have that ν = µ0. Moreover, it then follows that

P(
∑d

j=1mj(Xj) =
∑d

j=1 g0,j(Xj)) = 1, which is a contradiction.

In addition, Lemma 3.1 of Yohai (1987) and assumptions E1 and R1 imply that for all
a 6= 0, Eε [ρ (ε− a)] > Eε [ρ (ε)].

Hence, if (ν,m) ∈ R×Had is such that either ν 6= µ0 or P(
∑d

j=1mj(Xj) =
∑d

j=1 g0,j(Xj)) <
1 we have P (B0) < 1, and then from (S.2) it follows that

Υ (ν,m) >

∫

B0

Eε (ρ(ε)) dFX(x) +

∫

Bc

0

Eε (ρ(ε)) dFX(x) = Eε (ρ(ε)) = Υ (µ0, g0) .

(b) Follows immediately from (a) and A1 noting that gj(P )− g0,j ∈ Hj, 1 ≤ j ≤ d.

Proof of Theorem 2.2. For the sake of simplicity, denote µ = µ(P ) and gj = gj(P ).
Note that Υ(µ, g) ≤ Υ(ν, g), since Υ(µ, g) ≤ Υ(ν,m). Then, if we denote L(ν) = Υ(ν, g),
we have that µ = argminν∈R L(ν) which leads to L′(µ) = 0. Noting that L′(ν) =

−(1/σ0)Eψ
(
(Y − ν −

∑d

j=1 gj(Xj))/σ0

)
, we obtain that Γ0(µ, g(P )) = 0, as desired.

Let 1 ≤ j ≤ d be fixed and consider the problem of minimizing Υ(µ,m) with respect to
mj for any m(x) ∈ Had such that its j−th component is mj(Xj), the other ones been equal
to gs. To be more precise, for any mj ∈ Hj let m

(j) ∈ Had be defined as m(j)(x) = mj(xj)+∑
s 6=j gs(xs). Denote Lj(mj) = Υ(µ,m(j)) = E ρ

(
(Y − µ−mj(Xj)−

∑
s 6=j gs(Xs))/σ0

)
.

Note that the fact that Υ(µ, g) ≤ Υ(ν,m) for any m ∈ Had, entails that Lj(gj) ≤ Lj(mj).
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Hence, for any direction η ∈ Hj, the partial Gateaux derivative of Lj at gj along η should
vanish. Denote this Gateaux derivative as ∂Lj(gj ; η). Furthermore, let νη(t) = Lj(gj + tη)
and note that ∂Lj(gj ; η) = ν ′

η(0), where

ν ′
η(0) = lim

t→0

1

t
E

[
ρ

(
Rj − gj(Xj)− tη(Xj)

σ0

)
− ρ

(
Rj − gj(Xj)

σ0

)]
, (S.3)

with Rj = Y − µ−
∑

s 6=j gs(Xs). Then, the first order condition states that ν ′
η(0) = 0, for

any η ∈ Hj. Note that for any (x1, x2, . . . , xd, y)
t we have

∂

∂t

{
ρ

(
rj − gj(xj)− t η(xj)

σ

)}
= ψ

(
rj − gj(xj)− t η(xj)

σ

)(
−
η(xj)

σ

)
,

where rj = y−µ−
∑

` 6=j g`(x`). Now we use (S.3) and the Dominating Convergence Theorem
to obtain ν ′

η(t) = −(1/σ0)E [ψ ((Rj − gj(Xj)− t η(Xj))/σ0) η(Xj)], so that ∂Lj(gj; η) =
− (1/σ0)E [ψ ((Rj − gj(Xj))/σ0) η(Xj)] . Hence, the first order condition ν ′η(0) = 0 is

E

[
ψ

(
Rj − gj(Xj)

σ0

)
η(Xj)

]
= 0 , ∀η ∈ Hj . (S.4)

Let h be any measurable function such that E|h(Xj)| <∞ and denote ah = Eh(Xj). Then,
η = h− ah ∈ Hj , so from (S.4) we get that

E

[
ψ

(
Rj − gj(Xj)

σ0

)
h(Xj)

]
= ahE

[
ψ

(
Rj − gj(Xj)

σ0

)]
. (S.5)

Recall that we have shown that Γ0(µ, g(P )) = 0, i.e.,

Eψ

(
Rj − gj(Xj)

σ0

)
= 0 . (S.6)

Therefore, from (S.5) and (S.6), we obtain that E [ψ ((Rj − gj(Xj))/σ0) h(Xj)] = 0, for
any integrable function h, which implies that E [ψ ((Rj − gj(Xj))/σ0)|Xj = x] = 0 a.s.
concluding the proof since Γj (µ, g, xj) = E [ψ ((Rj − gj(xj))/σ0)|Xj = xj ].

Proof of Theorem 2.3. Since the value of the objective function is not changed,
we will assume that Eg̃

(`)
j (Xj) = 0. Hence, g

(`)
j = g̃

(`)
j and µ(`) = µ̃(`). Note that

the last equation in the `−th iteration of the algorithm is equivalent to solving µ(`) =

argminµ∈R Eρ
(
(R

(`)
0 − µ)/σ0

)
, where R

(`)
0 = Y −

∑d

j=1 g
(`)
j (Xj), since ψ is strictly increas-

ing so that the equation has a unique solution. On the other hand, in the (k + 1)−th
equation of the `−th iteration, we seek for a solution a = gk(Xk) ∈ Hk of

E

[
ψ

(
Y − µ(`−1) −

∑k−1
j=1 g

(`)
j (Xj)−

∑d

j=k+1 g
(`−1)
j (Xj)− a

σ0

)∣∣∣∣∣Xk

]
= 0 .
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which corresponds to finding the M-conditional location functional, as defined in Boente
and Fraiman (1989), of the partial residuals R

(`)
k = Y−µ(`−1)−

∑k−1
j=1 g

(`)
j (Xj)−

∑d

j=k+1 g
(`−1)
j (Xj).

Using again that ψ is strictly increasing, we obtain that

g
(`)
k (Xk) = argmin

mk∈Hk

E

[
ρ

(
R

(`)
k −mk(Xk)

σ0

)∣∣∣Xk

]
.

Hence, taking expectation with respect to Xk, we get that

g
(`)
k (Xk) = argmin

mk∈Hk

E

[
ρ

(
R

(`)
k −mk(Xk)

σ0

)]
.

Hence, for the `−th iteration, the system of equations in Algorithm 1 is equivalent to the
following system of equations





g
(`)
k (Xk) = argmin

mk∈Hk

E

[
ρ

(
R

(`)
k −mk(Xk)

σ0

)]
1 ≤ k ≤ d

µ(`) = argmin
ν∈R

Eρ

(
R

(`)
0 − ν

σ0

) (S.7)

Let us show that this entails that {υ`}`≥1 is a decreasing sequence where υ` = Υ(µ(`), g(`)).
Let 1d be the d−dimensional vector with all its components equal to 1. To reinforce

the additive structure, denote Φ (ν,m) = Υ(ν, 1tm) = Eρ
(
(Y − ν −

∑d

j=1mj(Xj))/σ0

)
,

where m = (m1, . . . , md)
t.

We begin with Step 1. The first equation of the first iteration seeks for the first

additive component through g
(1)
1 (X1) = argminm1∈H1

Eρ
(
(R

(1)
1 −m1(X1))/σ0

)
. Hence,

choosing m1 = g
(0)
1 , we get that Φ

(
µ(0), g

(1)
1 , g

(0)
2 , . . . , g

(0)
d

)
≤ Φ

(
µ(0), g

(0)
1 , g

(0)
2 , . . . , g

(0)
d

)
=

Φ
(
µ(0), g(0)

)
≤ Φ

(
µ(0), g(0)

)
.

Assume that Φ
(
µ(0), g

(1)
1 , . . . , g

(1)
k−1, g

(0)
k , . . . , g

(0)
d

)
≤ Φ

(
µ(0), g(0)

)
and consider the k−th

equation of the first iteration. Then, as g
(1)
k (Xk) = argminmk∈Hk

E

[
ρ
(
(R

(1)
k −mk(Xk))/σ0

)]
,

we get Φ
(
µ(0), g

(1)
1 , . . . , g

(1)
k , g

(0)
k+1 . . . , g

(0)
d

)
≤ Φ

(
µ(0), g

(1)
1 , . . . , g

(1)
k−1, g

(0)
k , . . . , g

(0)
d

)
, choosing

mk = g
(0)
k . Applying these arguments for 1 ≤ k ≤ d we finally get for k = d that

Φ
(
µ(0), g(1)

)
= Φ

(
µ(1), g

(1)
1 , . . . , g

(1)
d

)
≤ Φ

(
µ(0), g

(1)
1 , . . . , g

(1)
d−1, g

(0)
d

)
≤ Φ

(
µ(0), g(0)

)
. (S.8)

Finally, using the last equation in (S.7), we have that µ(1) = argminν∈R Eρ
(
(R

(1)
0 − ν)/σ0

)
=

argminν∈R Φ
(
ν, g(1)

)
, which entails that for any ν ∈ R, Φ

(
µ(1), g(1)

)
≤ Φ

(
ν, g(1)

)
. In par-

ticular, taking ν = µ(0) we obtain that Φ
(
µ(1), g(1)

)
≤ Φ

(
µ(0), g(1)

)
≤ Φ

(
µ(0), g(0)

)
, where

the last inequality follows from (S.8). Therefore, we have shown that υ1 ≤ υ0.
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Let us consider ` > 1 and assume that υs ≤ υs−1 for s = 1, . . . , `. As above, the k−th
equation in (S.7) leads to

Φ
(
µ(`−1), g

(`)
1 , . . . , g

(`)
k , g

(`−1)
k+1 , . . . , g

(`−1)
d

)
≤ Φ

(
µ(`−1), g

(`)
1 , . . . , g

(`)
k−1, g

(`−1)
k , g

(`−1)
k+1 , . . . , g

(`−1)
d

)
.

(S.9)
Using (S.9) iteratively for k = 1, . . . d, we get Φ

(
µ(`−1), g(`)

)
≤ Φ

(
µ(`−1), g(`−1)

)
= υ`−1. Fi-

nally, using similar arguments as those considered above, we get easily that υ` = Φ
(
µ(`), g(`)

)
≤

Φ
(
µ(`−1), g(`)

)
, so that υ` ≤ υ`−1.
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