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1 Introduction

It is often the case that studies such as clinical trials, business marketing in-
vestigations, and sociology and psychology experiments involve multivariate
response data. Many of the procedures required to analyze such data, in-
cluding MANOVA, discriminant analysis and multivariate regression, assume
multivariate normality (MVN). Simulation studies conducted by Hopkins and
Clay (1963), Mardia (1975), and Conover and Iman (1980) emphasize the im-
portance of the MVN assumption for many of these procedures, illustrating
that many of them lack robustness when they are applied to non-multivariate
normal data.

Despite the sensitivity of these multivariate inferential techniques to the
MVN assumption, and the vast number of tests that have been proposed for
detecting departures from MVN, the assumption frequently goes untested.
Looney (1995) lists a number of reasons for the reluctance to test for MVN,
including the lack of awareness of the existence of the tests, the limited avail-
ability of software, and the lack of information regarding size and power. This
article focuses on the latter issue of size and power. We examine via a Monte
Carlo simulation the performance of some of the more promising tests; some
of which appear to have received little or no attention in the literature.

There exists a vast number of proposed methods for testing MVN. A recent
review by Mecklin and Mundfrom (2005) lists over fifty different procedures.
However, despite the large number of approaches, these authors also found that
extremely little effort has been directed towards assessing the size and power
of these tests. In addition to their extensive simulation study involving a power
comparison of thirteen different approaches for a wide variety of alternative
distributions, Mecklin and Mundfrom (2005) also cite Ward (1988), Horswell
(1990), Horswell and Looney (1992), Romeu and Ozturk (1993), and Bogdan
(1999) as being among the few studies that have been concerned with the size
and power of tests for MVN. The study of Mecklin and Mundfrom (2005) is
based on the results of Mecklin (2000).

In their review of tests for MVN, Mecklin and Mundfrom (2005) indicate
that these tests can be categorized into one of four groups: goodness of fit
techniques, procedures based on skewness and kurtosis, consistent and invari-
ant tests, and graphical and correlational approaches. They also observed that
none of the studies listed above was exhaustive, and that most were designed
to focus on tests that fell into only one of the categories above. For example,
Romeu and Ozturk (1993) investigated the power of tests based on good-
ness of fit techniques, while studies conducted by Horswell (1990), Horswell
and Looney (1992), and Doornik and Hansen (1994) focused on tests based
on skewness and kurtosis. Henze and Zirkler (1990) compared the power of
consistent and invariant tests.
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Similar to Mecklin and Mundfrom (2005), we shall investigate the size and
power of different tests that cut across the major categories. However, our
study differs from theirs in that we do not examine a large number of tests.
Rather, we make use of the results of previous studies conducted by Romeu and
Ozturk (1993), Doornik and Hansen (1994), and Henze and Zirkler (1990) and
do not consider tests that have been shown to possess relatively low power.
Since each of these studies focus predominantly on tests that fall into one
of the first three major categories listed above (goodness of fit, skewness and
kurtosis, consistent and invariant tests), we choose to compare one of the more
powerful tests from each category. Therefore, despite the fact that only three
tests are evaluated here, our findings, when combined with those of previous
investigations, are quite comprehensive.

Specifically, among the tests we consider is one based on a revision given
in Royston (1992) of Royston’s (1983b) extension of the Shapiro and Wilk
(1965) goodness of fit test for univariate normality. Royston (1992) warned
that this revision to the Royston (1983b) extension was necessary, pointing to
a problem that leads to an incorrect specification of the null distribution. To
our knowledge, the present study marks the first effort to assess the size and
power of the 1992 revised version. In fact, we illustrate via simulation that the
Royston (1983b) test statistic does not achieve the nominal significance level.

We choose the Royston (1992) test for investigation here as the Shapiro
and Wilk (1965) test has been found to be among the more powerful tests for
detecting departures from univariate normality, yielding comparable results
for small samples to those of the Spiegelhalter (1977, 1980) tests for many
different alternative distributions. In fact, Srivastava and Hui (1987) state that
the Shapiro and Wilk (1965) test “... has been found to be the best omnibus
test for detecting departures from univariate normality”. We shall also consider
a relatively new test of MVN proposed by Doornik and Hansen (1994) in a
working paper that is based on multivariate measures of skewness and kurtosis.
These authors conducted a small simulation study that suggests that their
statistic has better power properties than other tests based on skewness and
kurtosis. Thus, the promising power results associated with this test relative
to others within the same category that appear in refereed journals prompted
us to explore it further. Finally, we also study a consistent and invariant test
proposed by Henze and Zirkler (1990) that is based on an extension of the
Epps and Pulley (1983) test to the multivariate case. This test was found by
Henze and Zirkler (1990) to be relatively powerful for detecting departures
from MVN.

In Section 2, we discuss the reviews of tests for MVN and the associated
simulations that have been conducted. In Section 3, we describe and report the
results of a simulation designed to estimate the size and power of the three tests
considered here. We note that our results differ noticeably from those obtained
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in previous studies. We also illustrate that the Royston (1983b) extension to
the Shapiro and Wilk (1965) test is unable to achieve the nominal significance
level. Finally, conclusions and discussion are provided in Section 4.

2 Tests for Multivariate Normality

In this section we briefly review consistent and invariant tests for assessing
MVN, along with procedures based on goodness of fit and measures derived
from skewness and kurtosis. We use this review to motivate our choice of tests
investigated in this study. Note that we do not consider MVN tests arising from
correlational procedures due to their relatively poor size and power properties;
see, for example, the simulation studies of Young, Seaman, and Seaman (1995),
Mecklin (2000), and Mecklin and Mundfrom (2005).

Goodness of fit tests. Romeu and Ozturk (1993) provide a review and com-
parative study of many goodness of fit tests for MVN. In addition, Mudholkar,
McDermott, and Srivastava (1992) proposed a test that is a simple adaptation
of the Lin and Mudholkar (1980) test for univariate normality. A simulation
study demonstrated that this test is able to achieve the nominal significance
level for p variates in the range 2 ≤ p ≤ 6 and for sample size n ≥ 10, and
that it is reasonably powerful against long-tailed alternatives. Justel, Pena,
and Zamar (1997) introduced a distribution-free multivariate Kolmogorov-
Smirnov test and developed an algorithm to compute the associated statistic
in the bivariate case. A preliminary investigation suggested that its power does
not compare favourably to that of the other tests selected for our study. More
recently, goodness of fit tests based on generalized chi-square quantiles as dis-
cussed by Einmahl and Mason (1992) have also been proposed by Beirlant,
Mason, and Vynckier (1999).

Most reviews and comparative studies of tests for MVN refer to the Royston
(1983b) extension of the powerful Shapiro and Wilk (1965) goodness of fit test
for univariate normality (for example, see Romeu and Ozturk 1993, Doornik
and Hansen 1994, Looney 1995, Mecklin 2000, and Mecklin and Mundfrom
2005). The Shapiro and Wilk (1965) test was originally proposed for sample
sizes n between 3 and 50. Royston (1982b) extended this test to the cases 3 ≤
n ≤ 2000 and provided a suitable normalizing transformation. An algorithm
for computing this extension is given in Royston (1982a) and Royston (1983a).
Specifically, if X(1) < X(2) < . . . < X(n) represents an ordered univariate
sample, the Shapiro and Wilk (1965) test statistic is given by

W = (
n∑

i=1

aiX(i))
2/

n∑

i=1

(X(i) − X̄)2, (1)
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where the vector of weights a = (a1, . . . , an)′ are normalized “best linear un-
biased” coefficients. Values for ai are tabulated for n ≤ 20 by Sarhan and
Greenberg (1956). For n > 20, Royston (1982b) points to an approximation
for ai proposed by Shapiro and Wilk (1965).

Provided that the sample X1, . . . , Xn comes from a normal distribution,
Royston (1982b) suggested the normalizing transformation Z = [(1 −W )λ −
µ]/σ, where λ, µ, and σ are calculated according to Royston (1982b). Roys-
ton (1983b) extended this idea to the multivariate case. For the jth vari-
ate, j = 1, . . . , p, the data vector Xj = (X1j , . . . , Xnj)′ is used to com-
pute Wj , the corresponding univariate Shapiro and Wilk (1965) test statis-
tic. The normalizing transformation is then applied to each Wj to determine
Zj = [(1 −Wj)λ − µ]/σ, where λ, µ, and σ are obtained as before. Next, one
computes Kj = {φ−1[φ(−Zj)/2]}2, where φ(·) denotes the standard normal
cumulative distribution function. Then, if (X1, . . . , Xp)′ is jointly multivari-
ate normal and its components mutually independent, then G =

∑p
j=1 Kj

is approximately χ2
p. If the Xj ’s are not independent, then H = eG is ap-

proximately χ2
e, where e is referred to as the equivalent degrees of freedom.

Royston (1983b) suggests an estimate for e based on the method of moments,
ê = p/[1 + (p− 1)c̄], where c̄ is an estimate for the average correlation among
the Kj .

Unfortunately, the results of the simulation in Naczk (2004) show that the
statistic based on Royston (1983b) is unable to achieve the nominal significance
level. Indeed, Royston (1992) revised the procedure to approximate a. Refer-
ring to this article, Royston (1993) stated that “Investigation revealed that
Shapiro and Wilk’s (1965) approximation to the weights (a), used by Royston
(1982a,b) was inadequate, therefore the earlier ‘W test’ differed seriously from
the true test”. Royston (1995) provides an algorithm that uses the revised
procedure for any 3 ≤ n ≤ 5000. Despite the findings of Royston (1992), the
recent reviews and simulation studies of MVN tests listed above only refer to
the Royston (1983b) approach that employs the weights in Royston (1982a,b).

We have consequently chosen to investigate the Royston (1992) revised pro-
cedure as a promising representative from the goodness of fit test category
as a result of the power of the univariate Shapiro and Wilk (1965) test upon
which it is based. Moreover, to our knowledge, no study published to date has
included Royston’s (1992) approach. We also consider values of p larger than
those studied in Royston (1992), namely p = 4, 5, and 10.

Skewness and kurtosis tests. Horswell (1990) reports results from a simula-
tion study on the performance of tests in this class. Among others, Horswell
considered the tests proposed in the landmark paper of Mardia (1970). Mar-
dia (1970) introduced measures of skewness and kurtosis, demonstrated that
functions of these variables were asymptotically distributed as chi-square and
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standard normal, respectively and derived two tests of multivariate normal-
ity. Despite the widespread use of Mardia’s (1970) statistics, Horswell (1990)
demonstrated that, generally speaking, MVN tests based on measures of skew-
ness and kurtosis did not distinguish well between ‘skewed’ and ‘non-skewed’
distributions. Subsequent simulation studies by Horswell and Looney (1992),
Mecklin (2000), and Mecklin and Mundfrom (2005) confirm the relatively low
power of these tests. To improve upon power, some authors have attempted
to combine measures of skewness and kurtosis into a single ‘omnibus’ test
statistic. Mardia and Foster (1983) derived six statistics, including one that
uses the Wilson-Hilferty approximation (Wilson and Hilferty, 1931). However,
Horswell and Looney (1992) found that this statistic lacked power.

More recently, Doornik and Hansen (1994) have proposed a simple omnibus
MVN test based on measures of skewness and kurtosis that is an extension of
the univariate test proposed by Shenton and Bowman (1977). For each of the
p variates, the measure of skewness,

√
b1j for j = 1, . . . , p, is transformed to a

standard normal Z1j as in D’Agostino (1970), while the measure of kurtosis,
b2j , is transformed from a gamma distribution to a chi-square and then to
a standard normal Z2j using the Wilson-Hilferty cubed root transformation.
Doornik and Hansen (1994) propose the statistic Z ′1Z1 + Z ′2Z2, where Z1 =
(Z11, . . . , Z1j , . . . , Z1p)′ and Z2 = (Z21, . . . , Z2j , . . . , Z2p)′. This statistic has a
χ2

2p asymptotic distribution when the data are MVN.
Using a Monte Carlo simulation study, Doornik and Hansen (1994) com-

pared their proposed method against four other statistics for testing MVN,
including those of Mardia (1970), and the Royston (1983b) extension of the
Shapiro and Wilk (1965) test. They demonstrated that their test was able
to achieve the nominal significance level, and that it possessed good power
properties, bettering the other tests in the comparison in this regard.

We have selected the Doornik and Hansen (1994) statistic from the group of
tests based on multivariate measures of skewness and kurtosis for evaluation in
this study. The initial work of these authors suggest that the test is promising.

Consistent and invariant tests. Many tests in the three classes mentioned
above have been criticized because they may not be consistent and/or invari-
ant under linear transformations of the data. One test that is simultaneously
consistent for any non-MVN distribution and invariant has been proposed by
Epps and Pulley (1983). It is based on

T =
∫ ∞

−∞
|φn(t)− φ̂0(t)|2dG(t) , (2)

where φn(t) is the empirical characteristic function, φ̂0(t) is an estimate of
the characteristic function of the normal distribution, and G(t) is a weight
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function.
Csörgő (1989) proved that the test statistic in (2) is consistent, and also

showed the consistency of an extension of this test to the multivariate case
proposed by Baringhaus and Henze (1988). Henze and Zirkler (1990) proposed
a multivariate extension of (2), namely

Dn β =
∫

Rd

|Φn(t)− Φ̂0(t)|2ϕβ(t)dt , (3)

where Φn(t) is the empirical characteristic function of the standardized obser-
vations, Φ̂0(t) is the characteristic function of a multivariate standard normal
distribution, and ϕβ(t) is a kernel function. Henze and Zirkler (1990) use the
density function of a Np(0, β2 Ip) random vector (β ∈ R) as the kernel in (3),
they show that the test statistic has a lognormal asymptotic distribution and
derive a closed form expression for Dn β . They also provide a formula for de-
termining an optimal choice of β for each n and p. The consistency of this test
follows directly from Csörgő (1989).

Using various values of β, Henze and Zirkler (1990) conducted a simulation
study to compare their statistic with others, including Mardia’s (1970) multi-
variate measures of skewness and kurtosis. A number of alternative distribu-
tions were considered, including those with independent marginals, mixtures
of normal distributions, and spherically symmetric distributions. Henze and
Zirkler (1990) demonstrated that their test had good power, and also found
that the choice β = 0.5 produced a powerful test against alternative distri-
butions with heavy tails. The Henze and Zirkler (1990) statistic was also one
of the thirteen considered in the simulation study conducted by Mecklin and
Mundfrom (2005) that evaluated the size of these tests, and also considered
their power over a wide variety of alternative distributions. Based on the re-
sults of their simulation study, Mecklin and Mundfrom (2005) recommend the
Henze and Zirkler (1990) test for assessing MVN.

We have therefore selected the Henze and Zirkler (1990) test from the class
of invariant and consistent tests. Moreover, note that this test has not yet been
compared against the corrected Royston test (Royston 1992).

3 Simulation Study

A simulation was conducted to compare the size and power of the Royston
(1992), Doornik and Hansen (1994), and Henze and Zirkler (1990) tests (R92,
DH, and HZ). We also include the Royston (1983b) statistic, R83, in the
size comparison to illustrate that it is not possible to achieve the nominal
significance level with this test. To assess the size of the four tests we used a
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significance level of 0.05. We generated 10,000 multivariate normal samples for
specified values of n and p using the functions rnorm and rmvnorm in S-PLUS
6.2. For each data set, the R83, R92, DH, and HZ statistics were calculated,
along with associated P-values. The size of each test was estimated by the
proportion of the 10,000 samples for which the P-value was less than 0.05. We
considered all combinations of n = 25, 50, 75, 100, and 250 with p = 2, 3, 4,
5, and 10. The S-PLUS and functions used to compute the test statistics are
available at http://hajek.stat.ubc.ca/~matias/MVN.

Table 1 presents the empirical Type I error rates for the four tests. The
results clearly show that R83 does not achieve the nominal significance level;
the maximum empirical Type I error rate for this test was 1.01% with n =
75 and p = 2. In addition, all estimates were zero for R83 when n = 25 or
250. These findings are in rather sharp contrast to those obtained by Mecklin
(2000) and Mecklin and Mundfrom (2005) who found empirical levels ranging
between 4.7% and 5.3%. Our results are in agreement with the comments of
Royston (1992) regarding the inadequacy of the choice of weights suggested in
Royston (1983b). Based on these observations, we did not to include the R83
test in our power comparisons.

Royston’s (1992) test produced the best results regarding empirical Type I
error rates, which ranged between 4.54% and 5.26% over all combinations of
n and p. The estimates for the DH test were also extremely good in all cases.
The empirical Type I error rates for the HZ test were conservative for small
n, in particular for n = 25, where rates ranging from 3.23% to 4.09% were
obtained. The test was still somewhat conservative for n = 50, but yielded
estimates that approached the 0.05 nominal rate for values of n = 75 or more.

Regarding a comparison of the power of the tests, according to Mecklin and
Mundfrom (2005), “In a Monte Carlo study, it is important to carefully choose
the distributions to be simulated.” The set of alternative distributions em-
ployed here was chosen for comparative purposes to emulate those used in the
Mecklin and Mundfrom (2005) study that summarizes the results in Mecklin
(2000). We chose to work with these distributions since, according to Mecklin
(2000), the comparison of results from simulation studies for MVN tests “...
is difficult, since there has been no complete uniformity in the test procedures
studied or the alternatives to multivariate normality that were considered”.
Our choice of distributions addresses the latter concern. Following Mecklin
(2000), to assess the power of the R92, DH and HZ tests, we used a variety of
alternative distributions that included fifteen different mixtures of two multi-
variate normals, that were distinguished by three levels of contamination and
five combinations of means and covariance matrices. In this regard, Mecklin
(2000) wisely selected degrees of mixing that covered a wide range of contami-
nation levels ranging from mild (skewed and leptokurtic) to moderate (skewed
and mesokurtic) to severe (symmetric and platykurtic). The second contami-
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nation level was of particular interest, as it reflects a non-normal distribution
with normal kurtosis. In addition, to assess the effect on power of differences
in certain parameters in the two multivariate normal distributions comprising
the mixture, five different combinations of equal versus unequal means and
variances were considered. We also investigated ten symmetric distributions
from the elliptically contoured family that included the multivariate Cauchy,
the multivariate t10, and eight members of the Pearson Type II family, one
of which was the multivariate uniform. Non-normal distributions with some
characteristics identical to those of the multivariate normal were also studied.
These distributions include the Khintchine and generalized exponential power
distributions. While neither of these distributions is jointly multivariate nor-
mal, the former has normal marginals, while the latter possesses the same
skewness and kurtosis as the multivariate normal. The power of tests against
two heavily skewed distributions, the multivariate χ2

1, and the multivariate
lognormal, were also evaluated. Further details regarding the alternative dis-
tributions considered here can be found in Naczk (2004).

To estimate the power of the R92, DH, and HZ tests against each alter-
native distribution, we used S-PLUS 6.2 to generate 10,000 samples from a
particular distribution for specified n and p and then computed the statis-
tics for each test, along with the associated P-values. We used the algo-
rithms described in Johnson (1987) to generate the multivariate samples.
The S-PLUS functions used to generate these distributions are available at
http://hajek.stat.ubc.ca/~matias/MVN. For each combination of n and p
we estimated the power for each statistic at a significance level of 0.05 as the
proportion of samples where the P-value was less than 0.05. The same values
of n and p used for assessing size were used for the power comparison.

None of the tests performed well in detecting the multivariate normal mix-
tures. Most estimates of power were under 10%, even for large n and p. There
were a few mixtures where the powers of all three tests exceeded 30%; these
cases occurred when n and p were both large. For such situations, R92 yielded
higher estimates than DH and HZ. In fact, R92 almost always had the highest
power for all values of n and p across all mixtures, although in most cases the
estimates for all tests were low (under 10%) and extremely similar.

By contrast, all three tests exhibited high power for skewed distributions.
For both the multivariate χ2

1 and the lognormal, for each test all estimates of
power were 100% at all combinations of n and p with the exception of a few
cases when n = 25 for the DH and HZ tests where the estimated power was
almost 100%. The lowest power achieved was 95.28%; this occurred with HZ
for n = 25 and p = 10. The R92 test always attained 100% power.

Similar findings were observed for the multivariate Cauchy (t1). For n = 50
and larger, all tests achieved 100% power regardless of p. For n = 25, the
powers for the tests ranged from 97.50% to 99.90% across all values of p, with
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HZ having slightly larger power than the other tests at each p. By contrast,
with n ranging from 25 to 100 and 2 ≤ p ≤ 5, Mecklin (2000) obtains powers for
HZ that range from 2.6% to 4.9%. Mecklin (2000) and Mecklin and Mundfrom
(2005) do not consider R92 and DH. We attempt to explain our discrepancy
with Mecklin (2000) below; however, our finding is consistent with the high
power of univariate tests when applied to data from a Cauchy distribution, in
particular the Shapiro and Wilk (1965) test, upon which R92 is based.

Our findings for HZ also differ from Mecklin (2000) for the multivariate t10

distribution. Figure 1 presents our power estimates for R92, DH, and HZ at
various values of n and p. Across all tests and the values of p, the powers
range from 15% to 46% when n = 50, and increase steadily with increasing n,
ranging from 41% to 100% when n = 250. With the exception of some cases
where n is small (25 or 50) or p is large, DH has the highest power. This test
is definitely the one of choice when n ≥ 50, and p ≤ 5. When n is small and p
is large, R92 possesses the highest power, while HZ is best when n and p are
both large.

For n = 100 and 2 ≤ p ≤ 5, Mecklin (2000) obtains powers for the multivari-
ate t10 based on HZ that decrease from 5.2% to 3.6% as p increases. Over the
same values of p, our counterpart estimates increase from 21.87% to 47.30%.
However, note that we have not used the formula cited in Mecklin (2000) for
generating multivariate tν data (also given in Johnson 1987, page 118). For
such data, Mecklin (2000, page 90) gives the following formula:

X = (
√

S

ν
)−1Z + µ , (4)

where µ is the mean vector of X, Z is generated from a p-variate normal
with mean vector zero and known covariance matrix, and S is generated in-
dependently from Z as a χ2

ν variable. Unfortunately (4) does not reduce to a
univariate tν distribution when p = 1 since the degrees of freedom parameter
is not in the square root. Instead, Johnson and Kotz (1972, page 133) give

X = (

√
S

ν
)−1Z + µ , (5)

which is the formula we have used to generate multivariate Cauchy (t1) and
t10 data.

In Naczk (2004) we show that the empirical powers of R92, DH, and HZ
when the data come from a multivariate Cauchy are very high. By contrast,
the powers observed by Mecklin (2000) notably resemble the nominal level of
the tests. This difference might be explained by the fact that if the same value
for the χ2

1 variable S is used for all n observation vectors generated with (4)
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or (5) then the generated X’s are simply translated multiples of Z, and thus
have a MVN distribution. For such a situation, one would expect the observed
“power” to be close to the nominal level, since the data distribution is in fact
normal.

Figures 2 and 3 present the power estimates for the three tests for two
of the Pearson Type II distributions. This family of distributions is indexed
by a shape parameter m > −1. When m = 0 the distribution is also called
multivariate uniform. The larger the value of m, the more this distribution
resembles a multivariate normal (Johnson 1987, page 114). The results in
Figure 2 are for the multivariate uniform distribution (m = 0), while those in
Figure 3 are associated with a distribution having shape parameter m = 10.
For n = 50 or larger, Figure 2 demonstrates that the HZ test is clearly the
most powerful for the multivariate uniform distribution, especially for large
p. This is true in general for the Pearson Type II distributions; however the
power of all three tests decreases as the shape parameter m increases. For
example, for n = 100 and p = 3, the power of the HZ test is 98.39% when m
= 0, and only 6.22% when m = 10. Our results for the HZ test again differ
noticeably from those in Mecklin (2000). Specifically, for values of n = 25,
50, and 100, and p = 2, 3, 4, and 5, Mecklin (2000) obtains nearly identical
power estimates for the multivariate uniform (m = 0) distribution and the
Pearson Type II distribution with m = 10, all of them very close to 100%
for almost all combinations of n and p. However, when m = 10, the Pearson
Type II distribution is already very close to a multivariate normal and, thus,
one would expect a significant decrease in the empirical powers, as the one we
observed in our study.

An interesting insight into the behaviour of the R92, DH, and HZ tests
can be obtained from Figure 5. In this plot we considered the case p = 3,
n = 25, 50, 75 and 100, and data following a multivariate uniform distribution
(MUD). For each test and each value of n we display two boxplots comparing
the empirical distributions of the test statistic when the data follow MVN
and MUD distributions, respectively. For example, panel (c) (n = 75) consists
of three pairs of boxplots, one for each test. The left boxplot in each pair
contains the test statistics obtained with 10,000 simulated samples following
a MVN distribution, while the right boxplot corresponds to test statistics
based on 10,000 samples from a MUD distribution. The solid horizontal line
for each pair of boxplots corresponds to the empirical 95% quantile of the
null distribution (MVN) of the test (the 5%-level critical value). Similar to
Figure 2, the plots in Figure 5 illustrate the improvement in power that is
achieved by the HZ test as opposed to R92 and DH. However, we believe that
the plot provides further information about how the underlying distribution of
the data affects the behaviour of these test statistics, in particular how their
shape, scale and location change, and how these changes subsequently affect
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the power of the tests. For example, for a given n, the HZ test appears to
obtain its power solely through a shift in the location of the distribution of
the test statistic under MUD data relative to MVN. Moreover, the larger the
sample size, n, the greater the shift, and hence the power.

We next consider the two distributions that possess some properties of
the MVN, namely the Khintchine (KHN) and generalized exponential power
(GEP) distributions. Figure 4 presents the power estimates based on KHN;
the results indicate that HZ is the clear winner here. The power estimates for
R92 are all around 5%, and those for DH are even worse. The power for HZ
increases steadily with increasing n and p, ranging from 51.81% when n = 75
and p = 3, to 100% when n and p are both large. For the GEP distribution,
R92 had the best power estimates for small n = 25, ranging from 90.12% to
100% as p increased from 2 to 5, followed by the DH test with estimates from
71.67% to 94.07%, and finally the HZ test that for n = 25 had maximum
power of 61.75% with p = 2. For n = 75 of larger, all three tests achieved the
maximum possible power of 100% for all p. While the results of Mecklin (2000)
were somewhat similar to ours for HZ under KHN, those for GEP were quite
different. For example, our power estimates for HZ under GEP were all 100%
for n = 100 and 2 ≤ p ≤ 5, while those of Mecklin (2000) ranged from 5.9% to
7.8%. We are unable to explain this difference; however throughout our inves-
tigation we verified to the best of our ability that our routines for multivariate
data generation were producing samples from the appropriate distribution by
constructing quantile-quantile plots and plotting histograms of the marginals.

4 Conclusion and Discussion

Many of the inferential procedures for analyzing multivariate data assume
MVN, and it has been shown that their performance can be affected by vi-
olations of this assumption. We have reviewed many of the tests for assess-
ing MVN and conducted a simulation to compare some of the more recent
and promising ones, including those of Royston (1992), Doornik and Hansen
(1994), and Henze and Zirkler (1990). We showed in the simulation that while
these tests are able to maintain the nominal level, this was not the case for
Royston (1983b).

In comparing our simulation results with those of other studies, we note
some important differences that we believe may be due to the use of different
data generation routines. The generation of multivariate data is no easy task,
and must be performed with care. Throughout our investigation, we ensured
to the best of our ability that the routines that we programmed for data
generation were performing as expected by constructing quantile-quantile plots
and exploring the corresponding marginal distributions.
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The results of our simulation suggest that, relative to the other two tests
considered, the Henze and Zirkler (1990) test generally possesses good power
across the alternative distributions investigated, in particular for n ≥ 75. The
fact that the test is slightly conservative for small n may explain why it does
not perform as well in these situations. In addition, the Henze and Zirkler
(1990) test is not useful in detecting the reason(s) for departure from MVN.
For small sample sizes around n = 25, the Royston (1992) test offers good
power, relatively speaking, across all alternative distributions, while the power
of the Doornik and Hansen (1994) test for the multivariate t10 is worthy of
note. Regardless of the test used for assessing MVN, we also recommend the
simultaneous use of graphical methods and numerical summaries as aids to
diagnose the specific departure(s) from MVN that may exist.
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Table 1. Empirical Type I error rates (in percent) based on 10,000 samples and a 5% significance level

for the Royston (1983b), Royston (1992), Doornik and Hansen (1994), and Henze and Zirkler (1990) test

statistics for various values of n and p.

n Test p = 2 p = 3 p = 4 p = 5 p = 10
25 R83 0.00 0.00 0.00 0.00 0.00

R92 4.54 5.17 5.07 5.11 4.93
DH 4.64 5.21 5.39 5.06 4.25
HZ 4.09 3.39 3.79 3.23 3.44

50 R83 0.62 0.28 0.32 0.16 0.03
R92 5.14 4.75 4.87 4.87 5.04
DH 5.52 4.64 5.09 4.85 4.48
HZ 4.80 4.53 4.44 4.65 4.17

75 R83 1.01 0.62 0.56 0.77 0.22
R92 4.62 4.61 4.77 5.11 5.23
DH 5.03 4.66 4.78 5.54 4.89
HZ 4.57 4.35 4.82 4.82 4.88

100 R83 0.60 0.50 0.32 0.34 0.09
R92 4.94 4.93 5.04 4.75 5.05
DH 4.98 5.17 5.17 5.06 5.15
HZ 4.95 5.13 5.09 4.99 4.55

250 R83 0.01 0.00 0.00 0.00 0.00
R92 5.06 4.97 5.26 5.16 5.12
DH 5.26 5.41 5.60 5.46 5.57
HZ 4.72 4.84 5.06 5.10 5.85
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Figure 1. Empirical powers for the Royston (1992) [R92], Doornik and Hansen (1994) [DH], and
Henze and Zirkler (1990) [HZ] test statistics for the Multivariate T distribution with 10 degrees of
freedom. Based on 10,000 samples of sizes n = 25, 50, 75, 100 and 250, and p = 2, 3, 4, 5 and 10.
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Figure 2. Empirical powers for the Royston (1992) [R92], Doornik and Hansen (1994) [DH], and
Henze and Zirkler (1990) [HZ] test statistics for the Multivariate Uniform distribution. Based on

10,000 samples of sizes n = 25, 50, 75, 100 and 250, and p = 2, 3, 4, 5 and 10.
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Figure 3. Empirical powers for the Royston (1992) [R92], Doornik and Hansen (1994) [DH], and
Henze and Zirkler (1990) [HZ] test statistics for the Pearson Type II distribution with m = 10.

Based on 10,000 samples of sizes n = 25, 50, 75, 100 and 250, and p = 2, 3, 4, 5 and 10.
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Figure 4. Empirical powers for the Royston (1992) [R92], Doornik and Hansen (1994) [DH], and
Henze and Zirkler (1990) [HZ] test statistics for the Khintchine distribution. Based on 10,000

samples of sizes n = 25, 50, 75, 100 and 250, and p = 2, 3, 4, 5 and 10.
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Figure 5. Empirical distributions of the Royston (1992) [R92], Doornik and Hansen (1994) [DH],
and Henze and Zirkler (1990) [HZ] test statistics for the multivariate normal and multivariate
uniform distributions (left and right boxplots respectively), based on 10,000 samples of sizes

n = 25, 50, 75 and 100 and p = 3. The solid horizontal lines correspond to the 95% quantile of the
distribution under multivariate normal data.


